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Decisions regarding competing risks are usually based on a continuous-valued marker toward predicting a cause-specifc
outcome. Te classifcation power of a marker can be summarized using the time-dependent receiver operating characteristic
curve and the corresponding area under the curve (AUC). Tis paper proposes a Gaussian copula-based model to represent the
joint distribution of the continuous-valued marker, the overall survival time, and the cause-specifc outcome. Ten, it is used to
characterize the time-varying ROC curve in the context of competing risks. Covariate efects are incorporated by linking linear
components to the skewed normal distribution for the margin of the marker, a parametric proportional hazards model for the
survival time, and a logit model for the cause of failure. Estimation is carried out using maximum likelihood, and a bootstrap
technique is implemented to obtain confdence intervals for the AUC. Information-criteria strategies are employed to fnd
a parsimonious model. Te performance of the proposed model is evaluated in simulation studies, considering diferent sample
sizes and censoring distributions. Te methods are illustrated with the reanalysis of a prostate cancer clinical trial. Te joint
regression strategy produces a straightforward and fexible model of the time-dependent ROC curve in the presence of competing
risks, enhancing the understanding of how covariates may afect the discrimination of a marker.

1. Introduction

In clinical medical practice, decisions about personalized
treatments are generally guided by markers that can dis-
criminate between diferent levels of risk of a specifc type of
death. In time-to-event data, an individual can be exposed to
two types of failure, the so-called competing risks; here, the
phenomenon of interest is to assess the classifcation capacity
of the marker to predict a cause-specifc outcome within
a certain period, leading to a more objective choice of
treatment of a condition. In this context, Saha and Heagerty
[1] defned cumulative/dynamic discriminatory measures to
evaluate the prediction accuracy of a marker M to distinguish

between the subjects who experience the cause-specifc event
D within survival time T and those who do not. Specifcally,
they defne the cumulative true positive rate TPC

j as the
probability of a high marker value among those subjects who
experience the event D � j (j � 1, 2) within time t and the
dynamic false positive rate FPD as the probability of a high
marker value among subjects who are event-free through time
t. Te cumulative/dynamic ROCC/D

j curve for each event type
can be obtained by plotting TPC

j versus FPD at time t, for all
possible values of the marker. Te corresponding area under
the curve AUCC/D

j is then used as a global summary of the
classifcation power of the marker.

Hindawi
International Journal of Mathematics and Mathematical Sciences
Volume 2024, Article ID 1671254, 13 pages
https://doi.org/10.1155/2024/1671254

https://orcid.org/0000-0003-0793-6453
https://orcid.org/0000-0002-3863-475X
https://orcid.org/0000-0002-7152-3760
https://orcid.org/0000-0002-1743-9330
mailto:arv@xanum.uam.mx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/1671254


Inference methods have mainly used nonparametric
approaches for the estimation of ROCC/D

j [1–3].Te primary
limitation of such formulations is the difculty that occurs
when it comes to incorporating covariates into the analysis.
Zheng et al. [4] obtained expressions of TPC

j and FPD in
terms of the cumulative incidence functions (CIF’s), which
are represented using cause-specifc regression hazard
functions models for the diferent failure types; however, it
has been documented that standard specifcations for those
models, including the proportional hazards assumption they
employ, lead to model selection issues since testing for
covariate efects on the CIF’s is not possible [5], thus
hampering the comparison between diferent ROC curves.

In this article, we employ the joint regression analysis
using Gaussian copulas introduced in [6] to model the joint
distribution of (M, T, D). Tis approach represents the joint
model in terms of a trivariate Gaussian copula distribution,
subsequently utilized to characterize the ROCC/D

j curve. Te
regression model is constructed by specifying the marginal
distribution of the marker with a skewed normal regression
model, the marginal distribution of the survival time with
a parametric proportional hazards regression model, and the
marginal distribution of the cause of failure with a logistic
regression model. Maximum likelihood is employed with
a constraint that ensures that the dependence parameters in
the Gaussian copula yield a positive-defnitive correlation
matrix, which must be satisfed. Also, information-criterion
metrics are employed for variable selection, leading to the
formulation of a parsimonious model. Te joint regression
modeling yields a straightforward and fexible model for the
time-dependent ROC curve in the presence of competing
risks. Tis direct approach enhances comprehension re-
garding covariates’ impact on a marker’s discriminatory
ability, representing the paper’s principal contribution.

Te rest of the paper is organized as follows. Section 2
defnes the parametric Gaussian copula-based model, the
copula relation to time-dependent discrimination metrics,
and the marginal specifcations. In Section 3, the maximum
likelihood estimation procedure is described. Section 4
provides some simulation results to explore the properties of
the proposed estimators under diferent sample sizes and
censoring scenarios. Section 5 illustrates the method with
data from a well-known prostate cancer dataset [7]. Te
paper culminates with a conclusion.

2. Methods

2.1. Gaussian Copula-Based Models and the Relation with
ROC and AUC. In applied research, the copula model
represents a convenient and fexible way to construct
multivariate distributions that embody wide ranges of de-
pendence structures while allowing for the specifcation of
the underlying marginal distributions [8]. Sklar’s theorem
provides the decomposition of any continuous m-variate
distribution function F in terms of the marginal cumulative
distribution functions (CDF’s) F1, . . . , Fm and the associated
copulaC: [0, 1]m⟶ [0, 1], which is am-variate distribution
function with uniform margins U(0, 1) [9], and thus the
representation of the multivariate distribution function (MDF)
is given by F(y1, . . . , ym) � C(F1(y1), . . . , Fm(ym)); also,
the theorem states that given F, the copula is unique on
Range(F1) × · · · × Range(Fm), implying that the copula is
unique if the marginals F1, . . . , Fm are continuous.

Given its fexibility, analytical tractability, and capacity
to characterize rich dependence structures, similar to the
multivariate Gaussian distribution, this study adopted the
trivariate Gaussian copula, which is defned by

C F1 y1( 􏼁, F2 y2( 􏼁, F3 y3( 􏼁; Γ( 􏼁 � Φ3 Φ
− 1

F1 y1( 􏼁􏼈 􏼉,Φ− 1
F2 y2( 􏼁􏼈 􏼉,Φ− 1

F3 y3( 􏼁􏼈 􏼉; Γ􏼐 􏼑, (1)

where Φ3 is the standard normal trivariate distribution
function (zeromeans and unit variances),Φ− 1 is the quantile
function corresponding to the univariate standard normal
distribution, and Γ is a nonnegative symmetric positive
defnite correlation matrix given by

Γ �

1 c12 c13

c12 1 c23

c13 c23 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

where each dependence parameter cij � corr􏼒Φ− 1 Fi(yi)􏼈 􏼉,

Φ− 1 Fj(yj)􏽮 􏽯􏼓 takes values in [− 1, 1].
Following the Radon–Nikodym derivative methodology

introduced in [6], the joint density function of (M, T, D)

corresponding to the copula model in equation (1) is rep-
resented by

fM,T,D(m, t, j; Γ)

� fM(m)∗fT(t) 􏽘

2

jd�1
(− 1)

jd C
∗

FM(m), FT(t), ud,jd; Γ􏼐 􏼑,
(3)

2 International Journal of Mathematics and Mathematical Sciences



where fY(·) and FY(·) are, respectively, the density and CDF
functions of the random variable Y, ud,1 � FD(j − 1), ud,2 �

FD(j), FD(j) is the CDF of the event type,

C
∗

FM(m), FT(t), ud,jd; Γ􏼐 􏼑

� (2π)
− 1/2

|Γ|− 1/2
􏽚
Φ− 1 ud,jd( 􏼁

− ∞
exp

1
2

qT
, z􏼐 􏼑Γ− 1 qT

, z􏼐 􏼑
T

−
1
2
qTq􏼚 􏼛dz,

(4)

and q � (Φ− 1 FM(m)􏼈 􏼉,Φ− 1 FT(t)􏼈 􏼉)T.
Given the cumulative true positive rate for cause j,

defned by TPC
j � (m, t) � Pr(M>m ∣ T≤ t, D � j), and the

dynamic false positive rate, defned by FPD(m, t) � Pr
(M>m ∣ T> t), the time-dependent cumulative/dynamic
ROC curve at time t for cause j is expressed as follows:

ROCC/D
j (q, t) � TPC

j FPD
􏽨 􏽩

− 1
(q, t), t􏼒 􏼓, for q ∈ [0, 1],

(5)

where [FPD]− 1(q, t) � inf c c: FPD(q, t)≤ q􏼈 􏼉. Te corre-
sponding area under the curve at time t for cause j,
AUCC/D

j (t) � 􏽒
1
0 ROC

C/D
j (x, t)dx, represents the probability

that an individual with a positive diagnosis has a higher
value of the marker than an individual with a negative
diagnosis [10].

Te discrimination metrics can be expressed in terms of
the joint model equation (4):

TPC
j (m, t)

� 1 −
C FM(m), FT(t), FD(j)􏼂 􏼃 − C FM(m), FT(t), FD(j − 1)􏼂 􏼃

C FT(t), FD(j)􏼂 􏼃 − C FT(t), FD(j − 1)􏼂 􏼃
,

(6)

FPD
(m, t) �

1 − FT(t) − FM(m) + C FM(m), FT(t)( 􏼁

1 − FT(t)
. (7)

Here, C[FT(t), FD(j)] and C[FM(t), FT(t)] represent
the marginal bivariate Gaussian copula functions associated
with the trivariate Gaussian copula, following the margin-
alization property of the multivariate Gaussian copula [11].
Te derivation of equations (6) and (7) is detailed in
Appendix A.

2.2. Marginal Specifcations. In practice, markers tend to
exhibit skewed distributions [12]. Tus, in this study, the
margin of M follows the skewed-normal distribution,
denoted here by M ∼ SN(ξM,ω2

M, αM), whose density
function is given by [13]

fM m; ξM,ω2
M, αM􏼐 􏼑 �

2
ωM

φ
m − ξM

ωM

􏼠 􏼡Φ αM

m − ξM

ωM

􏼠 􏼡, m ∈ (− ∞,∞), (8)

where φ and Φ are, respectively, the density and CDF of
a standard normal random variable, ξM ∈ (− ∞,∞) is the
location parameter, ω2

M ∈ (0,∞) is the scale parameter, and
αM ∈ (− ∞,∞) is the slant parameter. Explanatory variables
are incorporated by linking location parameter to a linear
component, namely, ξM � αTw, where α andw are vectors of
parameters and covariates, respectively.

For modeling the margin of T, this study employed
the proportional hazards model, which is given by
FT(t;Λ, x) � 1 − 1 − F0(t;Λ)􏼈 􏼉

exp(βTx), where F0(t;Λ)) is

a baseline distribution with vector of parameters Λ, and β
and x are vectors of parameters and covariates, respectively;
here, x does not contain the intercept and does not nec-
essarily contain the same variables in w. Since it has shown
good fts to survival data in various applied analyses [14], this
study used the Weibull distribution as the baseline; that is,
F0(t; ], κ) � 1 − exp(− (t/κ)]), where t ∈ (0,∞), and
] ∈ (0,∞) and κ ∈ (0,∞) are, respectively, the shape and
scale parameters. Te incorporation of covariates x to the
margin was specifed with the following which will be re-
ferred to as the survival component:

International Journal of Mathematics and Mathematical Sciences 3



ST(t; ], κ, x) � S0(t; ], κ)􏼈 􏼉
exp βTx( ), (9)

where S0(t; ], κ) is the baseline survival function (which
follows aWeibull distribution) and β is the parameter vector
(which does not include intercept).

Similar to various competing risk regression formula-
tions for the cause of the event [15, 16], the marginal model
for D � 1 was specifed with a logistic model, which is given
by

Pr(D� 1 | z) �
exp δT

1 z􏼐 􏼑

1 + exp δT
1 z􏼐 􏼑

, (10)

where z is the vector of covariates, not necessarily containing
the same variables in w and x, and δ1 is a vector representing
the model parameters when D � 1.

In the proposed fully parametric Gaussian copula re-
gression model, the cumulative true positive rate for cause j

and the dynamic false positive rate are now expressed

conditionally on the covariates: TPC
j (m, t;w, x, z) and FPD

(m, t; w, x, z). Consequently, the time-dependent cumulative/
dynamic ROC curve for event type j and the corresponding
AUC are also conditional expressions, ROCC/D

j (q, t;w, x, z)

and AUCC/D
j (t;w, x, z), respectively.

3. Estimation

Consider the vector ofmarker, survival time, and cause of death
(Mi, Ti, Di) for the i-th subject in the study, i � 1, . . . , n. Te
observed dataset is (mi, ti, di, yi); i � 1, . . . , n􏼈 􏼉, wheremi is the
observed value of Mi, ti is the time to either failure or cen-
soring, di identifes the type of failure, taking values 1 and 2 for
the observed survival times and 0 for the censored times, and yi

is a vector of covariates. Te full likelihood function is given by

L(ω) � 􏽙
n

i�1
fM,T,D mi, ti, 1( 􏼁

φi fM,T,D mi, ti, 2( 􏼁
ψi 􏽚
∞

ti

fM,T mi, x( 􏼁dx􏼠 􏼡

1− φi − ψi

, (11)

where ω is a vector containing all parameters, φi � I 1{ }(di),
and ψi � I 2{ }(di); here fM,T(m, t) can be obtained by
marginalizing the trivariate joint model [11].

Due to the complexity of the likelihood function for-
mulation, we propose a numerical procedure for the cor-
responding estimation process, which involves employing
an optimization algorithm called PRAXIS (Principal Axis),
developed by Richard Brent [17]. Te optimization algo-
rithm is implemented in the R package nloptr using the
function nloptr(  ).

Maximizing the log-likelihood function in equation (11)
requires setting lower and upper bound constraints for each
dependence parameter, cMT, cTD, and cMD, to ensure the
positive defniteness of the correlation matrix Γ. To achieve
this, we developed a heuristic algorithm to create box con-
straints for each dependence parameter, ensuring lbMT < ubMT,
lbMD < ubMD, and lbTD < ubTD. A detailed explanation of the
heuristic algorithm can be found in Appendix B. Log links are
used for the strictly positive parameters.

4. Simulation Experiments

To evaluate the methods’ performance and robustness, we
generate 200 samples of n � 200 and n � 400 from the trivariate
Gaussian and Student t copulas with margins U[0,1]. Te
dependence parameters are set to cMT � − 0.2, cMD � − 0.7, and
cTD � 0. Te copulas are implemented using the functions
normalCopula(  ) and tCopula(  ) from the copula package.

To generate variates following the skew-normal distri-
bution with parameters α � (α0, α1) � (10, 0.5), ωM � 2,
and αM � 2, we employ the inverse distribution function

method [8]. For the proportional hazards model, we follow
the approach proposed in [18] to generate variates con-
forming to the proportional hazards model with a Weibull
baseline survival function, setting parameter values as
β1 � − 0.5, ] � 2, and κ � 2. Tese marginals share the same
covariate x � w, which is assumed to follow a normal dis-
tribution N(10, 1). We set the logistic model to
δ1 � (− 1, 1), with a dichotomous covariate z that is gen-
erated from the binomial distribution B(1, 0.5).

Te censoring time is simulated from a uniform dis-
tribution U(0, c), where c takes values of 200 and 85. Te
observation is considered censored if a simulated failure
time exceeds the corresponding simulated censoring time.
Te average percent censored for c � 200 and c � 85 was
around 11% and 26%, respectively.

Tables 1 and 2 present empirical bias, standard error (SE),
and mean square error (MSE) of the coefcients obtained
from the Gaussian copula regression model for simulations
from both copulas. Generally, empirical biases and standard
errors are relatively small compared to the actual parameters,
resulting in a low mean square error, which suggests that the
estimation process is appropriate for both sample sizes.

Overall, all three performance measures tend to ap-
proach zero with an increased sample size. Notably, an
increase in censoring has minimal impact on the estimation
process, as evidenced by the only marginal increase in mean
square error. Additionally, although there is a slight increase
in the mean square error for estimators derived from
simulations of a trivariate Student t copula, this increase is
not drastic. Consequently, the Gaussian copula regression
model exhibits favorable estimation properties in the
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considered moderate sample sizes and appears robust
concerning the Student t copula.

5. Prostate Cancer Study Data

Tis study utilizes the dataset described in [7] to exemplify the
proposed methods’ use. Te dataset comprises an approxi-
mate fve-year follow-up of a cohort consisting of 506 patients

diagnosed with prostate cancer of stages III and IV. Tese
patients were recruited in a clinical trial conducted between
1967 and 1969. A total of 4.54% of patients were excluded
from the analysis due to incomplete covariate information.
Among the remaining cohort, 125 patients (25.88%) suc-
cumbed to prostate cancer (D � 1), 219 patients (45.34%)
died from other causes (D � 2), and the remaining 139
patients (28.78%) had censored survival times.

Table 1: Empirical bias, standard error (SE), and mean square error (MSE) of the estimators of the parametric Gaussian copula regression
model for simulations generated from a Gaussian copula, with sample sizes 200 and 400 and censoring distributions U(0, 200) and
U(0, 85).

Sample
size and censoring Parameters Bias SE MSE

n � 200 censoring U(0, 200)

α0 � 10 − 0.0078 0.9158 0.8387
α1 � 0.5 − 0.0030 0.0878 0.0077

log(ω) � 0.6931 0.0094 0.0977 0.0096
α � 2 − 0.1236 0.6693 0.4632

β1 � − 0.5 − 0.0009 0.0627 0.0039
log(]) � 0.6931 − 0.0928 0.4011 0.1695
log(κ) � 0.6931 − 0.0250 0.0822 0.0074

δ0 � − 1 0.0270 0.2416 0.0591
δ1 � 1 − 0.0393 0.2946 0.0883

cMT � − 0.2 − 0.0101 0.0772 0.0061
cMD � − 0.7 0.0234 0.0565 0.0037

cTD � 0 0.0013 0.1080 0.0117

n � 400 censoring U(0, 200)

α0 � 10 − 0.0634 0.6162 0.3838
α1 � 0.5 0.0028 0.0593 0.0035

log(ω) � 0.6931 0.0083 0.0718 0.0052
α � 2 − 0.0394 0.4825 0.2344

β1 � − 0.5 0.0066 0.0393 0.0016
log(]) � 0.6931 − 0.0431 0.2895 0.0857
log(κ) � 0.6931 − 0.0176 0.0638 0.0044

δ0 � − 1 0.0143 0.1670 0.0281
δ1 � 1 − 0.0024 0.2003 0.0401

cMT � − 0.2 0.0017 0.0488 0.0024
cMD � − 0.7 0.0209 0.0472 0.0027

cTD � 0 − 0.0066 0.0668 0.0045

n � 200 censoring U(0, 85)

α0 � 10 − 0.0731 0.9864 0.9783
α1 � 0.5 − 0.0025 0.0943 0.0089

log(ω) � 0.6931 0.0098 0.1173 0.0139
α � 2 − 0.1441 0.8617 0.7633

β1 � − 0.5 − 0.0006 0.0660 0.0044
log(]) � 0.6931 − 0.1841 0.4170 0.2078
log(κ) � 0.6931 − 0.0544 0.0881 0.0107

δ0 � − 1 − 0.0143 0.2482 0.0618
δ1 � 1 0.0069 0.3008 0.0905

cMT � − 0.2 0.0021 0.0742 0.0055
cMD � − 0.7 0.0177 0.0653 0.0046

cTD � 0 − 0.0060 0.1032 0.0107

n � 400 censoring U(0, 85)

α0 � 10 0.1473 0.7044 0.5178
α1 � 0.5 − 0.0214 0.0689 0.0052

log(ω) � 0.6931 − 0.0081 0.0773 0.0060
α � 2 − 0.0741 0.5356 0.2924

β1 � − 0.5 0.0083 0.0441 0.0020
log(]) � 0.6931 − 0.2557 0.3006 0.1558
log(κ) � 0.6931 − 0.0746 0.0635 0.0096

δ0 � − 1 − 0.0260 0.1569 0.0253
δ1 � 1 0.0161 0.1885 0.0358

cMT � − 0.2 − 0.0012 0.0571 0.0033
cMD � − 0.7 0.0184 0.0473 0.0026

cTD � 0 − 0.0088 0.0710 0.0051
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Te underlying research problem consists of identi-
fying a marker to then measure its discriminatory power.
French et al. [19] suggested the utilization of a Cox re-
gression model to formulate a composite marker, which is
obtained as a weighted combination of both biomarkers
and clinical variables, wherein the estimated regression
coefcients serve as the weighting factors. In this
study, the marker is derived as the linear predictor of

a cause-specifc parametric Cox regression model [20],
with the event of interest defned as death from prostate
cancer. Specifcally, the linear component of the cause-
specifc hazard for D � 1 is estimated by treating the event
times of all individuals who failed due to cause D � 2 as
censored. Te ftting process is carried out utilizing the
survreg(  ) function from the survival package in R,
considering a Weibull distribution.

Table 2: Empirical bias, standard error (SE), and mean square error (MSE) of the estimators of the parametric Gaussian copula regression
model for simulations generated from Student t copula, with sample sizes 200 and 400 and censoring distributions U(0, 200) and U(0, 85).

Sample
size and censoring Parameters Bias SE MSE

n � 200 censoring U(0, 200)

α0 � 10 − 0.1377 0.9418 0.9060
α1 � 0.5 0.0026 0.0871 0.0076

log(ω) � 0.6931 0.0266 0.1092 0.0126
α � 2 − 0.0138 0.7599 0.0577

β1 � − 0.5 0.0050 0.0613 0.0038
log(]) � 0.6931 − 0.0876 0.3737 0.1473
log(κ) � 0.6931 − 0.0260 0.0774 0.0067

δ0 � − 1 − 0.0084 0.2302 0.0531
δ1 � 1 − 0.0151 0.2874 0.0828

cMT � − 0.2 0.0008 0.0908 0.0082
cMD � − 0.7 − 0.0063 0.0678 0.0046

cTD � 0 0.0103 0.1062 0.0114

n � 400 censoring U(0, 200)

α0 � 10 0.0665 0.7295 0.5366
α1 � 0.5 − 0.0177 0.0710 0.0054

log(ω) � 0.6931 0.0211 0.0886 0.0083
α � 2 0.0519 0.5557 0.3115

β1 � − 0.5 0.0091 0.0423 0.0019
log(]) � 0.6931 − 0.2629 0.3089 0.1646
log(κ) � 0.6931 − 0.0759 0.0651 0.0100

δ0 � − 1 − 0.0193 0.1820 0.0335
δ1 � 1 0.0156 0.2148 0.0464

cMT � − 0.2 − 0.0125 0.0619 0.0040
cMD � − 0.7 0.0057 0.0479 0.0023

cTD � 0 − 0.0017 0.0849 0.0072

n � 200 censoring U(0, 85)

α0 � 10 0.0109 0.9646 0.9307
α1 � 0.5 − 0.0154 0.0934 0.0090

log(ω) � 0.6931 0.0280 0.1148 0.0140
α � 2 0.0264 0.7735 0.5990

β1 � − 0.5 − 0.0061 0.0677 0.0046
log(]) � 0.6931 − 0.2373 0.4156 0.2290
log(κ) � 0.6931 − 0.0634 0.0860 0.0114

δ0 � − 1 0.0379 0.2350 0.0567
δ1 � 1 − 0.0492 0.3089 0.0979

cMT � − 0.2 − 0.0048 0.0940 0.0089
cMD � − 0.7 0.0054 0.0670 0.0045

cTD � 0 − 0.0101 0.1153 0.0134

n � 400 censoring U(0, 85)

α0 � 10 − 0.0146 0.6337 0.4018
α1 � 0.5 − 0.0038 0.0636 0.0041

log(ω) � 0.6931 0.0164 0.0678 0.0049
α � 2 0.0106 0.4484 0.2012

β1 � − 0.5 − 0.0025 0.0418 0.0018
log(]) � 0.6931 − 0.0818 0.2821 0.0863
log(κ) � 0.6931 − 0.0208 0.0586 0.0039

δ0 � − 1 0.0084 0.1624 0.0264
δ1 � 1 − 0.0032 0.1945 0.0378

cMT � − 0.2 − 0.0083 0.0610 0.0038
cMD � − 0.7 − 0.0048 0.0462 0.0022

cTD � 0 0.0063 0.0759 0.0058
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A backward elimination approach that is guided by the
Bayesian information criterion (BIC) was employed to
systematically eliminate the least signifcant covariate in
each iteration, aiming to derive the most parsimonious
model.Te fnal regressionmodel incorporates the following
covariates: PF (performance rating: 0, standard; 1, limitation
of activity), HG (serum hemoglobin in g/100ml), SZ (size of
the primary lesion in cm2), and SG (Gleason stage-grade
category). Te resulting composite marker is defned as
MC � 0.5243 × PF − 0.0144 × HG + 0.2948 × SG + 0.0381 ×

SZ. Figure 1 shows the histogram of the marker MC, which
exhibits a skewed shape. Superimposed are the Gaussian
kernel-based nonparametric density and the ftted skewed-
normal density.

5.1.DiscriminatoryPerformanceof theCompositeMarkerMC.
Te discrimination power of the composite marker MC is
initially examined without considering covariates. Following
themodel ftting, it is observed that the sole parameter lacking
individual signifcance is cTD, with an estimated value of
− 0.089. A likelihood ratio test assesses the null hypothesis of
cTD � 0 employing the chi-squared distribution approxi-
mation with one degree of freedom. With a p value of 0.2441,
the null hypothesis cannot be rejected. Consequently, the
simpler model with cTD � 0 is chosen on the grounds of
parsimony. Te parameter estimates of the joint simpler
model and their standard errors are detailed in Table 3.

Analyzing the dependence parameters, the negative
correlation cMT � − 0.207 indicates that high values of M

are associated with the early occurrence of any event (T
represents overall survival time). Furthermore, because
cMD � − 0.641, high values of M are more strongly associated
with cause 1 than cause 2. Tus, the estimated correlations
suggest a marker with desirable classifcation properties.

To assess the appropriateness of the parametric model’s
ft, we perform a comparative analysis between the ROC
curves obtained from the Gaussian copula regression model
and the IPCW nonparametric ROC curves introduced by
Blanche et al. [2]. Te IPCW nonparametric approach
possesses the advantage of not requiring any tuning pa-
rameters. Additionally, it can be easily implemented using
the timeROC(  ) function within the timeROC package in
R.Te plots of the parametric and nonparametric estimators
of ROCC/D

1 (q, t) at time horizons 12, 36, and 60months are
depicted in Figure 2. It appears that the two curves are
relatively close, suggesting that the ft of the parametric
model is adequate.

5.2. Inclusion of Covariates. A Gaussian copula regression
model is ftted to evaluate how the classifcation power of MC

changes on including covariates. We consider potential
predictors as the remaining variables not included in the
composite marker: RX (drug treatment), HX (history of
cardiovascular disease: 0, no; 1, yes), AGE (age in years), and
WT (weight index: weight in kg–height in cm+200). A
backward elimination process based on the BIC is employed
to remove the least signifcant covariate sequentially, resulting
in the most parsimonious regression model. Table 4 displays

BIC values from various regression models, indicating the
predictors included in eachmarginal regressionmodel during
the elimination process. Te chosen model is Model 9, as it
exhibits the lowest BIC.

Table 5 presents the best-ftting parametric Gaussian
copula regression model coefcients. Similar to the case
without covariates, only one parameter is not statistically
signifcant: cTD. A likelihood ratio test is conducted, con-
sidering a nested model with cTD � 0 as the null hypothesis.
Based on a chi-squared distribution with one degree of
freedom, the null hypothesis of a model with cTD � 0 cannot
be rejected.

To assess the validity of the proportionality assumption for
the factor AGE in the survival component, Figure 3 illustrates
the plot of the empirical estimator of log − log[􏽢S(t)]􏽮 􏽯 as
a function of log(t). As AGE is a continuous variable, two
balanced groups are created: Group 1 comprises individuals
with ages less than 74, and Group 2 comprises individuals with
ages greater than or equal to 74. Te log-minus-log plot shows
approximate parallelism for most of the time, with some
sparsity observed toward the end due to a limited number of
observations in both groups at extended time points. Tis
visual examination provides evidence in favor of the validity of
the proportionality assumption in the Cox regression model.

Figure 4 illustrates ROCC/D
1 (q, t;HX,AGE) based on the

best-ftting parametric Gaussian copula regression model for
the two levels of the variable HX (history of cardiovascular
disease) and ages 60, 73, and 85 years old at a time horizon of

0.0
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0.3

0.4

0 2 4 6
Composite marker

de
ns

ity

Figure 1: Distribution of the composite marker MC. Non-
parametric density with Gaussian kernel (line) is superimposed, as
well as the ftted skewed-normal density (black dots).

Table 3: Coefcients (Coef.) and standard error (SE) of the
best-ftting parametric copula model considering the composite
marker MC for the prostate cancer study data.

MC

Parameter Coef. SE p value

ξ 0.568 0.077 <0.0001
log(ω) 0.584 0.054 <0.0001
α 3.983 0.746 <0.0001
log(]) 0.185 0.046 0.0001
log(κ) 3.288 0.048 <0.0001
δ0 − 0.497 0.112 <0.0001
cMT − 0.207 0.044 <0.0001
cMD − 0.641 0.045 <0.0001
cTD Zero N.A. N.A.
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Figure 2: Gaussian copula regression model and nonparametric IPCW plots of ROCC/D
1 (q, t) at time horizon 12months, 36months, and

60months for the composite marker MC in the absence of covariates.

Table 4: BICs obtained for the various models in each component of the joint model when using the backward elimination process.

#Model Variable M Variable T Variable D BIC
1 RX+AGE+WT+HX RX+AGE+WT+HX RX+AGE+WT+HX 4,374.37
2 RX+WT+HX RX+AGE+WT+HX RX+AGE+WT+HX 4,364.91
3 RX+WT+HX RX+AGE+WT+HX RX+AGE+HX 4,355.39
4 RX+WT+HX AGE+WT+HX RX+AGE+HX 4,349.31
5 RX+WT+HX AGE+WT RX+AGE+HX 4,343.30
6 WT+HX AGE+WT RX+AGE+HX 4,338.88
7 WT+HX AGE+WT AGE+HX 4,334.68
8 WT+HX AGE AGE+HX 4,331.25
9 HX AGE AGE+HX 4,330.98
10 HX AGE AGE 4,338.33

Table 5: Coefcients (Coef.) and standard error (SE) of the best-ftting parametric Gaussian copula regression model considering the
composite marker MC for the study of prostate cancer study data.

Parameter Coef. SE p value
MC

α0 0.8904 0.1054 <0.0001
αHX − 0.4462 0.1021 <0.0001
log(ω) 0.5164 0.0565 <0.0001
α 3.346 0.6422 <0.0001
log(]) 0.1933 0.046 <0.0001
log(κ) 4.5952 0.4928 <0.0001
βAGE 0.0221 0.0083 0.0077
δ0 4.1075 1.1176 0.0002
δAGE − 0.0588 0.0155 0.0001
δHX − 0.85 0.2361 0.0003
cMT − 0.1895 0.0511 0.0002
cMD − 0.5973 0.0505 <0.0001
cTD − 0.039 0.071 0.584

MC (cTD � 0)

α0 0.8870 0.1053 <0.0001
αHX − 0.4464 0.1021 <0.0001
log(ω) 0.5193 0.0563 <0.0001
α 3.353 0.6439 <0.0001
log(]) 0.193 0.046 <0.0001
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Table 5: Continued.

Parameter Coef. SE p value
log(κ) 4.5971 0.4917 <0.0001
βAGE 0.0222 0.0082 0.0069
δ0 4.1287 1.1157 0.0002
δAGE − 0.0591 0.0155 0.0001
δHX − 0.8564 0.236 0.0003
cMT − 0.2019 0.0454 <0.0001
cMD − 0.6033 0.0489 <0.0001
cTD Zero N.A. N.A.

Te model includes all the parameters on the left, whereas on the right, the parameter cTD � 0 is set to zero.
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Figure 3: Log-minus-log plot for AGE in the prostate cancer study data. Group 1 (AGE <74 years old) and Group 2 (AGE ≥74 years old).
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Figure 4: ROCC/D
1 (q, t;HX,AGE) curves based on the best-ftting parametric Gaussian copula regression model at a time horizon of

60months at three diferent ages. On the left, the plot shows the curves for patients with no cardiovascular disease (HX� 0), and on the right,
the plot shows the curves for patients with cardiovascular disease (HX� 1).
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60months. In this instance, the IPCW estimators of the time-
dependent ROC curves are not considered due to the im-
practicality of incorporating covariates in this nonparametric
approach. Te corresponding AUCC/D

1 (t;HX,AGE) for the
six combinations of predictors at the 60-month horizon are
shown in Table 6. 95% bootstrap confdence intervals (with
biased correction [21]) are estimated using 500 numbers of
runs. Notably, insights reveal that older age and a history of
cardiovascular disease enhance the classifcation performance
of the composite marker MC.

6. Conclusion

Tis study introduces a parametric Gaussian copula re-
gression model for estimating time-dependent predictive
accuracy metrics subject to right-censoring in the presence
of competing risks. Te marginal specifcations encompass
a normal asymmetric distribution for the marker, wherein
a linear component is linked to the location parameter.
Additionally, the model includes a parametric Cox re-
gression model with a Weibull distribution for survival time
and a logistic regression model for event type. Te de-
pendencies among these variables are captured using a tri-
variate Gaussian copula.

Simulation studies demonstrate that the Gaussian copula
regression model exhibits favorable properties in moderate
sample sizes and appears robust to slight deviations from the
data-generating process. To validate the utility of our ap-
proach in a real-world scenario, we apply our proposed
methodology to a well-known prostate cancer dataset. Based
on the linear predictor of a cause-specifc parametric Cox
regression model, the composite biomarker MC demon-
strates moderate predictive performance in identifying pa-
tients at risk of dying from prostate cancer. Interestingly,
older individuals with cardiovascular disease contribute to
an increased discriminatory power of MC.

Te primary contribution of this paper is the straight-
forward incorporation of covariates into the estimation of
ROC curves and AUCs through joint regression modeling.
Considering predictors in the initial Gaussian copula re-
gression model eliminates the need for stratifed analyses or

adjustments through indirect methodologies, enabling
a better understanding of how covariates may afect the
classifcation power of a marker. Te computation of the
models relies predominantly on vector andmatrix operations,
along with readily available functions in the R language.Te R
code that implements the proposed methodology is available
upon request. Furthermore, the introducedmodeling strategy
possesses additional favorable properties, demonstrating
profciency under moderate sample sizes and an ability to
identify parsimonious models through information-criterion
metrics.

Despite the compelling properties of the proposed
methodology, some open questions remain. Te linear de-
pendence structure enforced by the Gaussian copula may be
broadened by utilizing alternative copula models. Vine
copula models are grounded in decomposing dependence
into a series of interdependencies among (conditional) pairs
of variables, afording the capability to manage heavy tails or
asymmetric dependence [22]. We intend to investigate this
approach in forthcoming research work.

Appendix

A. Discrimination Metrics in terms of
Gaussian Copulas

Tis appendix shows how the expressions for the cumulative
true positive rate for cause j and the dynamic false positive
rate are obtained using the trivariate and bivariate Gaussian
copulas.

Using the defnition of conditional probability, TPC
j (m, t)

and FPD(m, t) can be rewritten as

TPC
j (m, t) �

Pr(M>m, T≤ t, D � j)

Pr(T≤ t, D � j)
, (A.1)

FPD
(m, t) �

Pr(M>m, T> t)

Pr(T> t)
. (A.2)

Next, employing the law of total probability, the nu-
merator term in (A.1) can be expressed as

Pr(M>m, T≤ t, D � j) � Pr(T≤ t, D � j) − Pr(M≤m, T≤ t, D � j). (A.3)

Table 6: AUCC/D
1 (t;HX,AGE) for a time horizon of 36months for the composite marker MC segmented by the two combinations of the

categorical variable HX and three values of the variable AGE.

AGE HX AUCC/D
1 Lower limit Upper limit

60 0 0.704 0.643 0.753
60 1 0.757 0.697 0.812
73 0 0.764 0.706 0.813
73 1 0.813 0.763 0.863
85 0 0.819 0.751 0.868
85 1 0.859 0.812 0.907
Bootstrap 95% confdence intervals were estimated using 500 numbers of runs.
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Substituting this last expression in (A.1) leads to

TPC
j (m, t) � 1 −

Pr(M≤m, T≤ t, D � j)

Pr(T≤ t, D � j)
. (A.4)

As the random variable D is discrete, the expression for
the term Pr(M≤m, T≤ t, D � j) in (A.4) can be formulated
as follows:

Pr(M≤m, T≤ t, D≤ j) − Pr(M≤m, T≤ t, D≤ j − 1)

� Φ3 Φ
− 1

FM(m)􏼈 􏼉,Φ− 1
FT(t)􏼈 􏼉,Φ− 1

FD(j)􏼈 􏼉; Γ􏼐 􏼑

− Φ3 Φ
− 1

FM(m)􏼈 􏼉,Φ− 1
FT(t)􏼈 􏼉,Φ− 1

FD(j − 1)􏼈 􏼉; Γ􏼐 􏼑,

(A.5)

where the Sklar theorem [9] is used to represent the joint
distribution function FM,T,D(m, t, j) in terms of a trivariate
Gaussian copula Φ3(Φ− 1 FM(m)􏼈 􏼉,Φ− 1 FT(t)􏼈 􏼉,Φ− 1 FD􏼈

(j)􏼉; Γ).
Te expression Pr(T≤ t, D � j) in (A.4) can be rewritten

as follows:

Pr(T≤ t, D≤ j) − Pr(T≤ t, D≤ j − 1)

� Φ2 Φ
− 1

FT(t)􏼈 􏼉,Φ− 1
FD(j)􏼈 􏼉; cTD􏼐 􏼑 − Φ2 Φ

− 1
FT(t)􏼈 􏼉,Φ− 1

FD(j − 1)􏼈 􏼉; cTD􏼐 􏼑.
(A.6)

Te bivariate Gaussian copula arises through the mar-
ginalization of the trivariate Gaussian copula, leveraging the
property that the multivariate Gaussian copula is closed
under marginalization [11].

Using equations (A.5) and (A.6), TPC
j (m, t) can be

defned in terms of copulas:

TPC
j (m, t)

� 1 −
C FM(m), FT(t), FD(j)( 􏼁 − C FM(m), FT(t), FD(j − 1)( 􏼁

C FT(t), FD(j)( 􏼁 − C FT(t), FD(j − 1)( 􏼁
,

(A.7)

where C(FM(m), FT(t), FD(j)) � Φ3(Φ− 1 FM(m)􏼈 􏼉,Φ− 1

FT(t)􏼈 􏼉,Φ− 1 FD(j)􏼈 􏼉; Γ) and C(FT(t), FD(j)) � Φ2(Φ− 1

FT(t)􏼈 􏼉,Φ− 1 FD(j)􏼈 􏼉; cTD).
Focusing on FPD(m, t), the numerator Pr(M>m, T> t)

in (A.2) corresponds to a bivariate survival distribution
function. Tis function can be expressed in terms of mar-
ginal distribution functions and the associated bivariate
Gaussian copula [8]:

Pr(M>m, T> t) � SM,T(m, t) � 1 − FT(t)

− FM(m) + C FM(m), FT(t)( 􏼁,

(A.8)

where C(FM(m), FT(t)) represents the marginal bivariate
Gaussian copula Φ2(Φ− 1 FM(m)􏼈 􏼉,Φ− 1 FT(t)􏼈 􏼉; cMT).

Finally, expressing the denominator in (A.2) as Pr(T> t)

� 1 − FT(t), the dynamic false positive fraction becomes

FPD
(m, t) �

1 − FT(t) − FM(m) + C FM(m), FT(t)( 􏼁

1 − FT(t)
.

(A.9)

B. Bound Constraints to Guarantee a Positive
Definite Matrix Γ

Given the random vector (M, T, D), the 3 × 3 correlation
matrix Γ is characterized by three dependency parameters,
namely, cMT, cMD, and cTD. A fundamental criterion for
a matrix to be positive defnite is that all of its principal
minors are positive [23], implying that each upper-left
submatrix must have a positive determinant. Concerning the
correlation matrix, the upper 1 × 1 and upper 2 × 2 sub-
matrices consistently exhibit positive determinants, as-
suming cMT < 1. Consequently, the focus shifts to ensuring
that the determinant of the matrix, denoted as det(Γ), re-
mains positive. Te expression for det(Γ) is as follows:

det(Γ) � 1 − c
2
MT − c

2
MD − c

2
TD + 2c

2
MTc

2
MDc

2
TD

� fdet cMT, cMD, cTD( 􏼁.
(B.1)

To construct a three-dimensional region guaranteeing
a positive determinant for all conceivable values of cMT, cMD,
and cTD, we propose the following heuristic algorithm:
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(1) Calculate the initial values cMT ini � corr(Φ− 1􏼈􏽢FM

(m)􏼉, Φ− 1 􏽢FT(t)􏽮 􏽯), cMD ini � corr(Φ− 1 􏽢FM(m)􏽮 􏽯,

Φ− 1 􏽢FD(j)􏽮 􏽯), and cTD ini � corr(Φ− 1 􏽢FT(t)􏽮 􏽯,Φ− 1

􏽢FD(j)􏽮 􏽯).
(2) Add a small amount δ (for instance 0.001) to each

initial value: cMT ini + δ, cMD ini + δ, and cTD ini + δ.
If one of these values is greater than 1, the algorithm
stops. Else, calculate the eight possible combinations
of determinants: fdet(cMT ini, cMD ini, cTD ini), fdet
(cMT ini + δ, cMD ini, cTD ini), fdet(cMT ini, cMD ini +

δ, cTD ini), fdet(cMT ini, cMD ini, cTD ini + δ), fdet
(cMT ini + δ, cMD ini + δ, cTD ini), fdet(cMT ini + δ,

cMD ini, cTD ini + δ), fdet(cMT ini, cMD ini + δ, cTD ini
+ δ), and fdet(cMT ini + δ, cMD ini + δ, cTD ini + δ).
If all the determinants are positive, the functional re-
lationship of equation (B.1) guarantees positive de-
terminants for any point in the cubic region [cMT ini,

cMT ini + δ] × [cMD ini, cMD ini + δ] × [cTD ini, cTD ini
+ δ].

(3) Subtract a small amount δ (for instance 0.001) to
each initial value: cMT ini − δ, cMD ini − δ, and
cTD ini − δ. If one of these values is less than − 1, the
algorithm stops. Else, calculate the eight possible
combinations of determinants: fdet(cMT ini − δ,

cMD ini − δ, cTD ini − δ), fdet(cMT ini + δ, cMD ini − δ,

cTD ini − δ), fdet (cMT ini − δ, cMD ini + δ, cTD ini
− δ), fdet(cMT ini − δ, cMD ini − δ, cTD ini + δ), fdet
(cMT ini + δ, cMD ini + δ, cTD ini − δ), fdet(cMT ini
+δ, cMD ini − δ, cTD ini + δ), fdet(cMT ini − δ,

cMD ini + δ, cTD ini + δ), and fdet(cMT ini + δ, cMD ini
+δ, cTD ini + δ).

If all the determinants are positive, the functional
relationship of equation (B.1) guarantees positive
determinants for any point in the cubic region
[cMT ini − δ, cMT ini + δ] × [cMD ini − δ, cMD ini + δ] ×

[cTD ini − δ, cTD ini + δ].
(4) Add another small amount δ to each initial value:

cMT ini + 2δ, cMD ini + 2δ, and cTD ini + 2δ. If one of
these values is greater than 1, the algorithm stops.
Else, calculate the eight possible combinations of
determinants: fdet(cMT ini − δ, cMD ini − δ, cTD ini
− δ), fdet(cMT ini + 2δ, cMD ini − δ, cTD ini − δ), fdet
(cMT ini − δ, cMD ini + 2δ, cTD ini − δ), fdet(cMT ini
− δ, cMD ini − δ, cTD ini + 2δ), fdet(cMT ini + 2δ,

cMD ini + 2δ, cTD ini − δ), fdet(cMT ini + 2δ, cMD ini

− δ, cTD ini + 2δ), fdet(cMT ini − δ, cMD ini + 2δ,

cTD ini + 2δ), and fdet(cMT ini + 2δ, cMD ini + 2δ,

cTD ini + 2δ).
If all the determinants are positive, equation (B.1)
guarantees positive determinants for any point in the
cubic region [cMT ini − δ, cMT ini + 2δ] × [cMD ini −

δ, cMD ini + 2δ] × [cTD ini − δ, cTD ini + 2δ].
(5) Subtract another amount δ to each initial value: cMT ini

− 2δ, cMD ini − 2δ, and cTD ini − 2δ. If one of these
values is less than − 1, the algorithm stops. Else, cal-
culate the eight possible combinations of determinants:

fdet(cMT ini − 2δ, cMD ini − 2δ, cTD ini − 2δ), fdet
(cMT ini + 2δ, cMD ini − 2δ, cTD ini − 2δ), fdet(cMT ini
− 2δ, cMD ini + 2δ, cTD ini − 2δ), fdet(cMT ini − 2δ,

cMD ini − 2δ, cTD ini + 2δ), fdet(cMT ini + 2δ, cMD ini
+ 2δ, cTD ini − 2δ), fdet(cMT ini + 2δ, cMD ini − 2δ,

cTD ini + 2δ), fdet(cMT ini − 2δ, cMD ini + 2δ, cTD ini
+ 2δ), and fdet(cMT ini + 2δ, cMD ini + 2δ, cTD ini
+ 2δ).
If all the determinants are positive, equation (B.1)
guarantees positive determinants for any point in the
cubic region [cMT ini − 2δ, cMT ini + 2δ] × [cMD ini −

2δ, cMD ini + 2δ] × [cTD ini − 2δ, cTD ini + 2δ].
(6) In this manner, the algorithm iterates n times, in-

crementally expanding the region centered on the
initial values until either of the eight determinants
becomes nonpositive or any of the points exceeds 1
or falls below − 1.

As the arguments above are heuristic, a series of sim-
ulation experiments were conducted to verify whether the
points within three-dimensional region (centered at the
initial values cMT ini, cMD ini, and cTD ini) exhibit a positive
determinant. Te simulation results unequivocally illus-
trated that all points within the cubic region yielded positive
determinants.
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