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In literature, several types of join operations of two graphs based on subdivision graph, Q-graph, R-graph, and total graph have
been introduced, and their spectral properties have been studied. In this paper, we introduce a new double join operation based on
(H1, H2)-merged subdivision graph. We compute the spectrum of a special block matrix and then use it to describe the distance
spectra of some double join operations of graphs. At last, we give several families of distance equienergetic graphs of diameter 3.

1. Introduction

Let G be a simple connected graph with vertex set V(G) �

v1, v2, . . . , vn  and edge set E(G) � e1, e2, . . . , em . We
denote the spectrum of the well-known adjacency matrix of
G by Spec(G) � λ1(G), λ2(G), . . . , λn(G) , where λ1(G)≥
λ2(G)≥ · · · ≥ λn(G). Te distance matrix of G is
D(G) � (dij)n×n, where dij is the distance between the
vertices vi and vj in G.Te distance matrix was introduced in
the year 1971 by Graham and Pollack [1] to study data
communication problems. Studies on the eigenvalues of the
distance matrix can be found in the survey article [2].

In spectral graph theory, graph products are used to
construct special classes of graphs. Graph operations include
complement, disjoint union, join, NEPS (particularly the
Cartesian product, the direct product, the strong product,
and the lexicographic product), corona product, edge
(neighborhood) corona product, and subdivision (edge)
vertex join. A survey on spectra of graphs resulting from
various graph operations and products is done in [3].
Computation of distance spectra of some graph composi-
tions can be found in [4–7]. Te subdivision graph of G,
denoted by S(G), is obtained by inserting a new vertex into
every edge of G. Te graph Q(G) is obtained from S(G) by

adding an edge between two new vertices whenever the
corresponding edges are adjacent. Te graph R(G) is ob-
tained by introducing a new vertex corresponding to every
edge of G, and then joining the new vertex to the end vertices
of the corresponding edge. Te total graph of G, denoted by
T(G), is obtained from R(G) by adding an edge between two
new vertices whenever the corresponding edges are adjacent.
See Figure 1 for examples. Te line graph L(G) of G is
a graph with vertex set E(G), and two vertices are adjacent if
there are adjacent edges in G.

Let the new vertices of S(G) be denoted by ei,
i � 1, 2, . . . , m. Let H1 and H2 be two graphs with vertex set
V(H1) � e1, e2, . . . , em  and V(H2) � v1, v2, . . . , vn , re-
spectively. Te (H1, H2)-merged subdivision graph of G [8]
is obtained by taking one copy of S(G) and adding an edge
between vertices vi and vj in S(G) whenever vivj ∈ E(H2),
and also by adding an edge between the new vertices ei and ej

if eiej ∈ E(H1). It is denoted by [S(G)]
H1
H2
. Note that

[S(G)]
Km

Kn

� S(G), [S(G)]
Km

G � R(G), [S(G)]
L(G)

Kn

� Q(G),

and [S(G)]
L(G)
G � T(G). In [8], the authors obtained the

adjacency spectra and Laplacian spectra of [S(G)]
H1
H2

for
some classes of graphs G, H1, and H2. Let F ∈ S, R, Q, T{ }.
Te double join operation of F(G) with graphs G1 andG2 [9]
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is obtained by taking one copies of F(G), G1, and G2, and
joining each vertex of G in F(G) with every vertices of G1,
and also by joining each new vertex of F(G) with every
vertices of G2. It is denoted by GF ∨ G•

1, G2
° . In [9], Tian,

He, and Cui obtained the Laplacian spectrum of GF ∨ when
G is a regular graph. In analogous to the defnition of double
join operation of F(G) (F ∈ S, T, R, G{ }) with graphs G1 and
G2, we defne double join operation of (H1, H2)-merged
subdivision graph of G with graphs G1 and G2 as follows.

Defnition 1. Te double join operation of (H1, H2)-merged
subdivision graph [S(G)]

H1
H2

with the graphs G1 and G2 is the
graph obtained by taking one copy of [S(G)]

H1
H2
, G1, and G2,

then joining each vertex of G in [S(G)]
H1
H2

with all the vertices
of G2, and also joining each new vertex of [S(G)]

H1
H2

with all
the vertices of G1. It is denoted by [S(G)]

H1
H2
∨ G°1, G•

2  (see
Figure 2).

Tis new join operation generalizes several known join
operation based on subdivision graph (see [4, 9]). So, the
new double join operation is interesting and thus makes
sense to study its spectral properties.

Tis paper focuses on the distance spectrum of the
double join graph [S(G)]

H1
H2
∨ G°1, G•

2 . Clearly the graph
[S(G)]

H1
H2
∨ G°1, G•

2  is a generalization of the double join
graph GF ∨ G•

1, G2
° . Te distance energy of a graph G is

denoted by ED(G) and is defned to be the sum of all ab-
solute values of the eigenvalues of the distance matrixD(G).
In analogous to graph energy (ordinary energy of a graph),
the concept of distance energy was put forward in the year
2008 by Indulal et al. [10]. Two graphs of the same order are
distance equienergetic if their distance energies are same. In
[11], Ramane et al. constructed a pair of distance equi-
energetic graphs of diameter 2 on 9 + n vertices for all n≥ 1.
Some other constructions of distance equienergetic graphs
can be found in [4, 5, 7].

Let Mm×n(R) denote the set of all of real matrices of
order m × n and let Sn(r) be the set of all real symmetric
matrices of order n such that each of its row sum is
a constant r. We denote by Jn×m, the matrix of order n × m

whose all entries are equal to 1. Te column vector of order
n × 1, whose i th entry is 1 and all its other entries are 0, is
denoted by ei,n. Let J ′n×m � e1,neT

1,m and let 1n be the column

vector of size n whose all entries are equal to one. As usual,
we denote by Cn the cycle graph, by Kn the complete graph,
and by G the complement graph of G, each on n vertices.Te
paper is organized as follows. In Section 2, we compute the
spectrum of a block matrix whose structure coincides with
the distance matrix of [S(G)]

H1
H2
∨ G°1, G•

2  in many cases. In
Section 3, we give the distance spectra of the double join
graph [S(G)]

H1
H2
∨ G°1, G•

2  for some classes of graphs G, H1,
H2, G1, and G2. As an application of our results, in Section 4,
we give several families of distance equienergetic graphs of
diameter 3.

2. Spectrum of a Partitioned Matrix

Tis section deals with fnding the spectrum of a special
blocked matrix given in Defnition 1.

Defnition 2. Let a, b, c, and d be real numbers. Let
A ∈ Sm(a), B ∈ Sn(b), C ∈ Sp(c), and D ∈ Sq(d) with
m≥ n. For real constants s, k, and l, defne a partitioned
matrix P � P[A, B, C, D, M, s, k, l] as follows:

P �

A M sJm×p kJm×q

M
T

B kJn×p sJn×q

sJp×m kJp×n C lJp×q

kJq×m sJq×n lJq×p D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where M is a real rectangular matrix of order m × n satis-
fying the following condition.

M has a singular value decomposition, M �

Um×mM ′m×nVT
n×n, with singular values m1(≠ 0), m2, . . . , mn

such that if Xi: � Uei,m(i � 1, 2, . . . , m) and Yj: �

Vej,n(j � 1, 2, . . . , n), then Xi’s and Yj’s form a set of

Figure 1: Graphs S[C4], Q[C4], R[C4], and T[C4].

Figure 2: Graph S[C4]
K4

K4
∨ C3, K2 .
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orthonormal eigenvectors of A and B, respectively. Tat is,
AXi � aiXi and BYj � bjYj, where aiSA(i � 1, 2, . . . , m)

and bj (j � 1, 2, . . . , n) are the eigenvalues of A and B, re-
spectively. Also, M1n � t1m and Y1 � (1/

�
n

√
)1n for some

scalar t.

Te matrix P defned above is a real symmetric block
square matrix of order m + n + p + q.

We need the following well-known Schur complement
formula to describe the spectrum of the block matrix P.

Lemma 3 (see [12]). Let A �
P Q

R S
  be a block matrix. Let

P and S be square matrices.

(1) If P is invertible, then det(A) � det(P)det(S −

RP− 1Q)

(2) If S is invertible, then det(A) � det(S)det(P −

QS− 1R)

Let the spectra of the matrices C and D as defned in
Defnition 2 be c1 � c, c2, . . . , cp  and d1 � d, d2, . . . , dq ,
respectively. Te following theorem gives the spectrum of
the block matrix P.

Theorem 4. Let P be a matrix as defned in Defnition 2.
Ten, the spectrum of the matrix P consists of

(i) ci and dj for i � 2, 3, . . . , p and j � 2, 3, . . . , q

(ii) ai for i � n + 1, n + 2, . . . , m

(iii) (1/2)((ai + bi) ±
�������������

(ai − bi)
2 + 4m2

i



) for i � 2,

3, . . . , n

(iv) Te four roots of the polynomial are as follows:

f(x) � x4 − (a + b + c + d)x3 + (a + b)(c + d) + ab + cd − k2(mq + np) − s2(mp + nq) − l2pq − m2
1 x2

+ − cd(a + b) − ab(c + d) + s2(pm(b + d) + nq(a + c)) + k2(np(a + d) + qm(b + c)) + l2pq(a + b)

− 2ks(lpq(m + n) + mt(p + q)) + m2
1(c + d)x

+ npqm s4 + k4  − s2(nacq + bdpm + 2lpqmt) − k2(nadp + 2lpqmt + bcqm)

− 2 nk2pqms2 − l2 abpq − m2
1pq  + 2mkst(cq + dp) + 2kpqsl(na + mb) − cdm2

1 + abcd

(2)

Proof. Since C and D are regular real symmetric matrices,
there exist orthogonal matrices P and Q such that
C � PC′PT and D � QD′QT where C′ � diag(c1 � c, c2, . . . ,

cp), D′ � diag(d1 � d, d2, . . . , dq), Pe1,p � (1/ ��
p

√
)1p, and

Qe1,q � (1/ �
q

√
)1q. By Defnition 2, we get M � UM′VT,

A � UA′UT, and B � VB′VT, where A′ � diag(a1,

a2, . . . , am) and B′ � diag(b1 � b, b2, . . . , bn). Since
M1n � t1m, we must have MT1m � t11n with t1 � (tm/n),
and also since Y1 � (1/

�
n

√
)1n, we get X1 � (MY1/m1) �

(t/m1
�
n

√
)1m. Terefore, MTX1 � m1Y1 implies m1 �

(t
��
m

√
/

�
n

√
), and so X1 � (1/

��
m

√
)1m.

Now,

P �

A M sJm×p kJm×q

M
T

B kJn×p sJn×q

sJp×m kJp×n C lJp×q

kJq×m sJq×n lJq×p D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

UA′UT
UM′VT

sJm×p kJm×q

VM′TU
T

VB′VT
kJn×p sJn×q

sJp×m kJp×n PC′PT
lJp×q

kJq×m sJq×n lJq×p QD′QT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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�

U 0 0 0
0 V 0 0
0 0 P 0
0 0 0 Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A′ M′ sU
T
Jm×pP kU

T
Jm×qQ

M′T B′ kV
T
Jn×pP sV

T
Jn×qQ

sP
T
Jp×mU kP

T
Jp×nV C′ lP

T
Jp×qQ

kQ
T
Jq×mU sQ

T
Jq×nV lQ

T
Jq×pP D′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U
T 0 0 0
0 V

T 0 0
0 0 P

T 0
0 0 0 Q

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

U 0 0 0
0 V 0 0
0 0 P 0
0 0 0 Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A′ M′ s
���
mp

√
J
′
m×p k

���
mq

√
J
′
m×q

M′T B ′ k
���
np

√
J
′
n×p s

��
nq

√
J
′
n×q

s
���
mp

√
J
′
p×m k

���
np

√
J
′
p×n C′ l

���
pq

√
J
′
p×q

k
���
mq

√
J
′
q×m s

��
nq

√
J
′
q×n l

���
pq

√
J
′
q×p D′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U
T 0 0 0
0 V

T 0 0
0 0 P

T 0
0 0 0 Q

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(3)

Terefore,

det(xI − P) � det

xI − A′ − M′ − s
���
mp

√
J
′
m×p − k

���
mq

√
J
′
m×q

− M′T xI − B′ − k
���
np

√
J
′
n×p − s

��
nq

√
J
′
n×q

− s
���
mp

√
J
′
p×m − k

���
np

√
J
′
p×n xI − C′ − l

���
pq

√
J
′
p×q

− k
���
mq

√
J
′
q×m − s

��
nq

√
J
′
q×n − l

���
pq

√
J
′
q×p xI − D′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Expanding det(xI − P) by Laplace’s method [13]
along the columns (m + n + 2), (m + n + 3), . . . , (m + n +

p), (m + n + p + 2), . . . , (m + n + p + q), we get
det(xI − P) � 

p

i�2(x − ci)
q

j�2(x − di)

det

xI − A′ − M′ − s
���
mp

√
e1,m − k

���
mq

√
e1,m

− M′T xI − B′ − k
���
np

√
e1,n − s

��
nq

√
e1,n

− s
���
mp

√
e

T
1,m − k

���
np

√
e

T
1,n x − c − l

���
pq

√

− k
���
mq

√
e

T
1,m − s

��
nq

√
e

T
1,n − l

���
pq

√
x − d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Applying Lemma 3 to the determinant on the right side
of the above equation, we have
det(xI − P) � p0(x)

p
i�2(x − ci) 

q
i�2(x − di)det

xI − A′ − (p1(x)/p0(x))Jm×m
′ − M′ − (p2(x)/p0(x))Jm×n

′

− M′T − (p2(x)/p0(x))Jn×m
′ xI − B′ − (p3(x)/p0(x))Jn×n

′
 , where

p0(x) � (x − c)(x − d) − l2pq, p1(x) � m(s2p(x −

d) + 2skpql + k2q(x − c)), p2(x) �
���
mn

√
(skp(x − d) +

s2pql + k2pql + ksq(x − c)) and p3(x) � n(k2p(x − d) +

2skpql + s2q(x − c)).
Now, employing Lemma 3, we get

det(xI − P) � p0(x) x − a1 −
p1(x)

p0(x)
  

p

i�2
x − ci(  

q

i�2
x − di(  

m

i�2
x − ai( 

× det xI − B′ −
p3(x)

p0(x)
J
′
n×n − M′T +

p2(x)

p0(x)
J
′
n×m  xI − A′ −

p1(x)

p0(x)
J
′
m×m 

− 1
⎡⎣

· M′ +
p2(x)

p0(x)
J
′
m×n .

(5)

Upon evaluating the determinant on the right hand side
of the above equation, we get det(xI − P) � f(x)

n
i�2((x −

ai)(x − bi) − m2
i )

p
i�2(x − ci) 

q
i�2(x − di)

m
i�n+1(x − ai).

Tis completes the proof. □
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Remark 5. Te quotient matrix [14] of the partitioned

matrix P is

a t sp kq

tm/n b kp sq

sm kn c lq

km sn lp d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. It can be verifed that the

polynomial f(x) defned in Teorem 4 is same the char-
acteristic polynomial of the quotient matrix.

3. Distance Spectra of Some Double Join
Graphs S[G]

H1
H2
∨ G°1, G•

2 

In this section, we give the distance spectra of
S[G]

H1
H2
∨ G°1, G•

2  under some conditions on graphs G, G1,
G2, H1, and H2. Te edge-vertex incidence matrix of G is
denoted by M(G) and is defned as the matrix of order m × n

whose ij-th entry is 1 if vj is an end vertex of the edge ei.

Lemma  (see [15]). Let G be an r-regular graph with n
vertices and m edges. Ten,

(a) M(G)MT(G) � L(G) + 2Im and MT(G)M(G) �

A(G) + rIn

(b) Spec(L(G)) � λ1(G) + r − 2, λ2(G) + r − 2, . . . ,

λn(G) + r − 2, 0, 0, . . . , 0}

Remark 7. Let G be a regular graph on n vertices. If M(G) �

U  VT is a singular value decomposition of M(G), then the
columns of the matrix U (resp., V) forms an orthonormal set

of eigenvectors of the matrix aJm + bIm + cL(G) (resp.,
Jn + bIn + cA(G)) for any constants a, b, and c. Also, we can
assume that Ve1,n � 1n/

�
n

√
. Further, it may be noted that

M(G)1n � 21m.

Te following theorem gives the distance spectrum of
[S(G)]Km/Kn ∨ G°1, G•

2  when G1 and G2 are regular
graphs.

Theorem 8. Let G be an r-regular graph with n vertices and
m edges. Let G1 be an r1-regular graph of order p and let G2 be
an r2-regular graph of order q, respectively. Ten, the distance
spectrum of the double join graph [S(G)]

Km

Kn

∨ G°1, G•
2 

consists of

(1) − (λi(G1) + 2) for i � 2, 3, . . . , p and di � − (λi(G2) +

2) for i � 2, 3, . . . , q

(2) − 2 with multiplicity m-n
(3) − 2 ±

��������
λi(G) + r


for i � 2, 3, . . . , n

(4) Te four eigenvalues of the matrix
2(m − 1) 3n − 4 p 2q

3m − 2r 2(n − 1) 2p q

m 2n 2(p − 1) − r1 3q

2m n 3p 2(q − 1) − r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. Te distance matrix D of [S(G)]
Km

Kn

∨ G°1, G•
2  is

2 Jm×m − Im(  3Jm×n − 2M(G) Jm×p 2Jm×q

3Jn×m − 2M
T
(G) 2 Jn×n − In(  2Jn×p Jn×q

Jp×m 2Jp×n 2 Jp×p − Ip  − A G1(  3Jp×q

2Jq×m Jq×n 3Jq×p 2 Jq×q − Iq  − A G2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Let A � 2(Jm×m − Im), B � 2(Jn×n − In), C � 2(Jp×p −

Ip) − A(G1), D � 2(Jq×q − Iq) − A(G2), M � 3Jm×n −

2M(G), s � 1, k � 2, and l � 3. Ten, by Remark 7,
D � P[A, B, C, D, M, s, k, l]. Further, the eigenvalues of A,
B, C, and D are, respectively, as follows:

(1) a1 � 2m − 2 and ai � − 2 for i � 2, 3, . . . , m

(2) b1 � 2n − 2 and bi � − 2 for i � 2, 3, . . . , n

(3) c1 � 2p − r1 − 2 and ci � − (λi(G1) + 2) for
i � 2, 3, . . . , p

(4) d1 � 2q − r2 − 2 and di � − (λi(G2) + 2) for
i � 2, 3, . . . , q

Plugging these values in Teorem 4, we obtain the re-
quired result. □

Theorem 9. Let G be an r-regular triangle free graph with n
vertices and m edges. Let G1 be an r1-regular graph of order p
and let G2 be an r2-regular graph of order q, respectively. If H

is an t-regular graph belonging to the set Km, L(G), L(G) ,
then the distance spectrum of the double join graph
[S(G)]H

G
∨ G°1, G•

2  consists of

(1) − (λi(G1) + 2) for i � 2, 3, . . . , p and di � − (λi(G2) +

2) for i � 2, 3, . . . , q

(2) − (2 + λi(H)) for i � n + 1, n + 2, . . . , m

(3) 1/2(l − k − 3 ±�������������������������������������

(λi(G) + λi(H))2 + 2λi(H) + 6λi(G) + 4r + 1


) for
i � 2, 3, . . . , n

(4) Te four eigenvalues of the matrix
2(m − 1) − t 2(n − 1) p 2q

2m − r n + r − 1 2p q

m 2n 2(p − 1) − r1 3q

2m n 3p 2(q − 1) − r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. Te distance matrix D of [S(G)]H

G
∨ G°1, G•

2  is
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2 Jm×m − Im(  − A(H) 2Jm×n − M(G) Jm×p 2Jm×q

2Jn×m − M
T
(G) A(G) + Jn×n − In 2Jn×p Jn×q

Jp×m 2Jp×n 2 Jp×p − Ip  − A G1(  3Jp×q

2Jq×m Jq×n 3Jq×p 2 Jq×q − Iq  − A G2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Let A � 2(Jm×m − Im) − A(H), B � A(G) + Jn×n − In,
C � 2(Jp×p − Ip) − A(G1), D � 2(Jq×q − Iq) − A(G2),
M � 2Jm×n − M(G), s � 1, k � 2, and l � 3. Ten, by Re-
mark 7, D � P[A, B, C, D, M, s, k, l]. Further, the eigen-
values of A, B, C, and D are, respectively, as follows:

(1) a1 � 2m − 2 − t, ai � − (2 + λi(H)) for i � 2, 3, . . . , m

(2) b1 � n + r − 1, bi � λi(G) − 1 for i � 2, 3, . . . , n

(3) c1 � 2p − r1 − 2, ci � − (λi(G1) + 2) for i � 2, 3,

. . . , p

(4) d1 � 2q − r2 − 2, di � − (λi(G2) + 2) for i � 2, 3,

. . . , q

Plugging these values in Teorem 4, we obtain the re-
quired result. □

Theorem 10. Let G be an r-regular graph with n vertices and
m edges. Let H be an t-regular graph belonging to the set

Kn, Kn, G, G . If G1 is an r1-regular graph of order p and G2
is an r2-regular graph of order q, respectively, then the dis-
tance spectrum of the double join graph [S(G)]

Km

H ∨ G°1, G•
2 

consists of

(1) − (λi(G1) + 2) for i � 2, 3, . . . , p and di � − (λi(G2) +

2) for i � 2, 3, . . . , q

(2) − 1 with multiplicity m-n
(3) 1/2(− 3 − λi(H) ±

�����������������������

(λi(H) + 1)2 + 4 λi(G) + 4 r



)

for i � 2, 3, . . . , n

(4) Te four eigenvalues of the matrix
m − 1 2(n − 1) p 2q

2m − r 2(n − 1) − t 2p q

m 2n 2(p − 1) − r1 3q

2m n 3p 2(q − 1) − r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. Te distance matrix D of [S(G)]
Km

H ∨ G°1, G•
2  is

Jm×m − Im 2Jm×n − M(G) Jm×p 2Jm×q

2Jn×m − M
T
(G) 2 Jn×n − In(  − A(H) 2Jn×p Jn×q

Jp×m 2Jp×n 2 Jp×p − Ip  − A G1(  3Jp×q

2Jq×m Jq×n 3Jq×p 2 Jq×q − Iq  − A G2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Let A � Jm×m − Im, B � 2(Jn×n − In) − A(H), C �

2(Jp×p − Ip) − A(G1), D � 2(Jq×q − Iq) − A(G2), M �

2Jm×n − M(G), s � 1, k � 2, and l � 3. Ten, by Remark 7,
D � P[A, B, C, D, M, s, k, l]. Further, the eigenvalues of A,
B, C, and D are, respectively, as follows:

(1) a1 � m − 1, ai � − 1 for i � 2, 3, . . . , m

(2) b1 � 2n − 2 − t, bi � − (λi(H) + 2) for i � 2, 3, . . . , n

(3) c1 � 2p − r1 − 2, ci � − (λi(G1) + 2) for i � 2, 3,

. . . , p

(4) d1 � 2q − r2 − 2, di � − (λi(G2) + 2) for i � 2, 3,

. . . , q

Plugging these values in Teorem 4, we obtain the re-
quired result. □

Theorem 11. Let G be an r-regular graph with n vertices and
m edges. Let G1 be an r1-regular graph of order p and let G2 be

an r2-regular graph of order q, respectively. If H is an
t-regular graph belonging to the set Km, L(G), L(G) , then
the distance spectrum of the double join graph
[S(G)]H

Kn
∨ G°1, G•

2  consists of

(1) − (λi(G1) + 2) for i � 2, 3, . . . , p and di � − (λi(G2) +

2) for i � 2, 3, . . . , q

(2) − (2 + λi(H)) for i � n + 1, n + 2, . . . , m

(3) 1/2(− 3 − λi(H) ±
�����������������������

(λi(H) + 1)2 + 4 λi(G) + 4 r



)

for i � 2, 3, . . . , n

(4) Te four eigenvalues of the matrix
2(m − 1) − t 2(n − 1) p 2q

2m − r n − 1 2p q

m 2n 2(p − 1) − r1 3q

2m n 3p 2(q − 1) − r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Proof. Te distance matrix D of [S(G)]H
Kn
∨ G°1, G•

2  is

2 Jm×m − Im(  − A(H) 2Jm×n − M(G) Jm×p 2Jm×q

2Jn×m − M
T
(G) Jn×n − In 2Jn×p Jn×q

Jp×m 2Jp×n 2 Jp×p − Ip  − A G1(  3Jp×q

2Jq×m Jq×n 3Jq×p 2 Jq×q − Iq  − A G2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where M(G) is the edge-vertex incidence matrix of G. Let
A � 2(Jm×m − Im) − A(H), B � A(G) + Jn×n − In, C �

2(Jp×p − Ip) − A(G1), D � 2(Jq×q − Iq) − A(G2), M �

2Jm×n − M(G), s � 1, k � 2, and l � 3. Ten, by Remark 7,
D � P[A, B, C, D, M, s, k, l]. Further, the eigenvalues of A,
B, C, and D are, respectively, as follows:

(1) a1 � 2m − 2 − t, ai � − (2 + λi(H)) for i � 2, 3, . . . , m

(2) b1 � n − 1, bi � − 1 for i � 2, 3, . . . , n

(3) c1 � 2p − r1 − 2, ci � − (λi(G1) + 2) for i � 2, 3,

. . . , p

(4) d1 � 2q − r2 − 2, di � − (λi(G2) + 2) for i � 2, 3,

. . . , q

Plugging these values in Teorem 4, we obtain the re-
quired result. □

4. New Families of Distance Equienergetic
Graphs of Diameter 3

In this section, we present families of distance equienergetic
double join graphs of diameter 3 using the distance spectra
of some double join graphs obtained in Section 3. LetPn be
the set of all partitions of the positive integer n into parts of
size greater than or equal to 3, i.e., Pn � (n1, n2,

. . . , nk) | k≥ 1, ni ≥ 3 for i � 1, 2, . . . , k and
k
i�1ni � n}. Let

C(Pn) denote a family of disjoint union of cycles given by
C(Pn) � ∪ s

i�1Cni
| (n1, n2, . . . , nk) ∈ Pn .

Classes of distance equienergetic double join graphs are
presented in the following theorem. Note that the double
join graph defned in Defnition 1 is of diameter 3.

Theorem 12. Let G1 be a graph in C(Pp) and let G2 be an
r2-regular graph of order q.

(i) If G is an r-regular graph with n vertices and m edges,
then the two classes of double join graphs {[S(G)]

Km

Kn

∨

G{ °1, G•
2|G1 ∈ C(Pp)} and {[S(G)]

Km

Kn

∨ G{ °1, G•
2|

G2 ∈ C(Pq)} form two families of distance equi-
energetic graphs

(ii) If G is an r-regular triangle free graph with n vertices
and m edges and also if H ∈ Km, L(G), L(G) , then
the two classes of double join graphs {[S(G)]H

G
∨

G{ °1, G•
2|G1 ∈ C(Pp)} and {[S(G)]H

G
∨ G{ °1, G•

2|

G2 ∈ C(Pq)} form two families of distance equi-
energetic graphs

(iii) If G is an r-regular graph with n vertices and m edges
and if H ∈ Kn, Kn, G, G , then the classes of double
join graphs {[S(G)]

Km

H ∨ G{ °1, G•
2|G1 ∈ C(Pp)} and

{[S(G)]
Km

H ∨ G{ °1, G•
2|G2 ∈ C(Pq)} form two families

of distance equienergetic graphs
(iv) If G is an r-regular graph with n vertices and m edges

and if H ∈ Km, L(G), L(G) , then the two classes of
double join graphs {[S(G)]H

Kn
∨ G{ °1, G•

2|G1 ∈
C(Pp)} and {[S(G)]H

Kn
∨ G{ °1, G•

2|G2 ∈ C(Pq)}
form two families of distance equienergetic graphs

Proof. Let G1 � ∪ k
i�1Cni

and G1′ � ∪ k′
i�1Cni
′ be two graphs in

C(Pp). Ten, λ1(G1) � λ1(G1′) � 2, − 2≤ λi(G1), and

− 2≤ λi(G1′) for i � 1, 2, . . . , p. Let Γ1 � [S(G)]
Km

Kn

∨ G°1, G•
2 

and Γ2 � [S(G)]
Km

Kn

∨ G′°1, G•
2 . Ten, from Teorem 8, we

get

ED Γ1(  − ED Γ2(  � 

p

i�2
λi G1(  + 2


 − 

p

i�2
λi

 G1′(  + 2


� 

p

i�2
λi G1(  + 2(  − 

p

i�2
λi G1′(  + 2( .

(10)

Since 
p

i�1λi(G1) � 
p

i�1λi(G1′) � 0 and λ1(G1) �

λ1(G1′) � 2, the equation (10) simplifes to ED(Γ1) �

ED(Γ2). Tis completes the proof of (i). Similarly, rest of the
proof follows. □

5. Conclusion

Te new double join operation introduced in this paper
generalizes several known join operation based on sub-
division graph (see [4, 9]). So, the new double join operation
is interesting and thus makes sense to study its spectral
properties. Te spectrum of the special block matrix com-
puted here can also be used to describe various other spectra
(like adjacency spectra, Laplacian spectra, signless Laplacian
spectra, and Seidel spectra) of double join graphs.
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