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An unsteady two-dimensional magnetized Casson nanofuid fow model is constructed over a wedge under the efect of thermal
radiation and chemical reaction.Te multiple slip efects are also assumed near the surface of the wedge along with the convective
boundary restrictions. Tis study investigates the application of soft computing techniques to address the challenges posed by the
complexity of problem modeling and numerical methods. Traditional approaches incorporating various model factors may
struggle to provide accurate solutions. To resolve this issue, Gaussian process regression (GPR) is employed to predict the solution
of the proposed fow model. With the help of the numerical shooting method together with Runge–Kutta–Fehlberg fourth-ffth-
order (RKF-45) reference data, the GPRmodel is trained.Te numerical simulation illustrated that the Casson fuid parameter (β)

and the unsteadiness parameter (S) strengthen the friction factor, and the heat transfer rate is enhanced as the radiation parameter
(Rd) becomes larger. In addition, the Biot numbers (Bi1 &Bi2) lead to strengthen nanoparticle temperature; an opposite behavior
is noticed with the skin friction coefcient (􏽥SfxRe0.5

x ), heat transfer rate ( 􏽥Htx Re0.5
x ), and nanoparticle transfer rate (􏽥CtxRe0.5

x ). Te
GPRmodel with the exponential Kernel function provided better performance than other functions on both training and checking
datasets to predict 􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and 􏽥CtxRe0.5

x . Statistical metrics including RMSE, MAE, MAPE, MSE, R2, and R are
employed to check the accuracy and convergences of the predicted and numerical solutions obtained through GPR and RKF-45. It
is observed that all three GPR models had an R2 value of higher than 0.9. Te proposed study demonstrates the advantages of
employing soft computing methods (GPR) to efectively analyse the behavior of complex fow models.

1. Introduction

Aerospace engineering and fuid mechanics both beneft
signifcantly from the study of fuid fow over a wedge be-
cause they ofer important insights into how fuids behave
when they interact with solid surfaces. Tis knowledge aids
in the comprehension of boundary layer dynamics, aero-
dynamic phenomena, and the design of airfoil shapes for
efective lift and drag characteristics in a variety of engi-
neering applications. Recently, the study of MHD boundary
layer slip fow of heat and mass transfer performance over
a wedge-shaped geometry has been extensively explored due

to its wide applications in science and engineering. It is used
in industrial processes, including geothermal systems, nu-
clear reactors, nuclear waste storage, thermal insulation in
aircraft cabins, and heat exchangers. Earlier in 1931, Falkner
and Skan [1] investigated the fow over a static wedge im-
mersed in a viscous fuid and developed the Falkner–Skan
equation. Awaludin et al. [2] discovered the repercussions of
a magnetic feld on the fow of an incompressible and
electrically conducting fuid past a stretching/shrinking
wedge. Te viscous dissipation efects on the MHD
boundary layer stream of nanofuid across a wedge em-
bedded in porous medium were examined numerically via
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the spectral quasilinearization method (SQLM) by Ibrahim
and Tulu [3]. A few inquiries involving the Falkner–Skan
fow with various types of physical characteristics past
a wedge can be found in the studies of Kudenatti and
Amrutha [4], Haq et al. [5], and Butt et al. [6].

Te study of non-Newtonian fuid model has gained an
incredible position among researchers because of their ap-
plications in industries and chemical engineering process,
such as petroleum and polymer industries, food technology,
heat exchangers, paper production, and electronic cooling
system. Biological fuids (blood, salvia, etc.) and foodstufs
(honey, jellies, jams, soups, etc.) are examples of non-
Newtonian fuids because of their physical nature. Casson
fuid is a type of non-Newtonian fuid that behaves like an
elastic solid. Casson model constitutes a fuid model that
exhibits shear thinning characteristics, yield stress, and high
shear viscosity [7]. Tese fuids are applied in technical
processes, such as biomedical and industrial engineering,
energy generation, dynamics, and geophysical fuid me-
chanics. Hussanan et al. [8], Khan et al. [9], Ullah et al. [10],
Ullah et al. [11], and Guadagni et al. [12] have scrutinized the
consequence of magnetic feld, Soret–Dufour, viscous dis-
sipation, and chemical reactions on the Casson fuid in
diferent fow settings. Mukhopadhyay and Mandal [13]
developed a numerical study of the boundary layer forced
convection fow of a Casson fuid over a symmetric porous
wedge. Tey found that the Casson fuid parameter tends to
control the fow separation. El-dabe et al. [14] used the
numerical method (fnite diference method) to obtain the
solution of the MHD boundary layer fow of Casson fuid on
a moving wedge with heat and mass transfer. Mahdy [15]
illustrated the impact of slip at the boundary of unsteady
two-dimensional MHD fow of a Casson fuid over
a stretching surface using the very robust computer algebra
software MATLAB. From their results, it was observed that
the velocity increases and the thermal boundary layer be-
comes thinner with the increasing slip parameter. Raju and
Sandeep [16] used the Runge–Kutta and Newton’s methods
to obtain the solution of MHD slip fow of a dissipative
Casson fuid over a moving wedge with heat source/sink.
Recently, researchers focused on investigating the sundry
fow features of Casson nanofuid in diferent frames
[17–20].

One of the massive challenges within the modern science
and technology panorama is attaining concrete enhance-
ments regarding the rate of heat transfer of ordinary fuids
such as water, lubricants, oils, ethylene glycol, biological
fuids, and toluene. Tese fuids have low thermal con-
ductivity. To enhance the thermal conductivity of regular
fuids, Choi[21] were the frst who award a novel cohort of
heat transfer fuid that is developed by dissolving non-
metallic or metallic tiny particles with a size of under 100 nm
in an ordinary fuid. Te components of the nanoparticles
include chemically stable metals (gold and copper), metal
oxides (alumina, zirconia, titania, and silica), metal carbides
(SiC), oxide ceramics (Al2O3, CuO, TiO2, and SiO2), metal
nitrides (SiN and AIN), carbon in various forms (fullerene,
diamond, graphite, carbon nanotubes, and graphene), and

other functionalized nanoparticles. Te nanofuids can
augment the thermal conductivity and upgrade the heat
transfer efciency of ordinary fuids. Nanofuids are used in
diferent felds, including generator cooling, engine and
transformer cooling, solar heating, nuclear system cooling,
electronic cooling, vehicle thermal management, lubrica-
tion, refrigeration, thermal storage, defense, space, bio-
medical, heat pipe, ships, and drug reduction. A two-phase
model with the roles of Brownian difusion and thermo-
phoresis as slip mechanisms was proposed by Buongiorno
[22]. Mustafa [22] demonstrated the insignifcant impact of
Brownian movement on heat transfer while illuminating the
slip infuence for rotating fow using the Buongiorno
model. A few studies involving the consequence of Brownian
and thermophoresis on diferent types of nanofuid have
been specifed in Makkar [23], Song et al. [24], and
Ragupathi et al. [25].

In today’s world, artifcial intelligence (AI) techniques,
such as artifcial neural network (ANN), adaptive neuro-
fuzzy inference system (ANFIS), multiple adaptive neuro-
fuzzy inference system (MANFIS), group method of data
handling (GMDH), category and regression tree (CART),
support vector machine (SVM), genetic algorithm (GA), and
particle swarm optimization (PSO), play a vital role for
solving system of nonlinear complex models in every do-
main of science and engineering. Recently, numerous re-
searchers have explored these new computational methods
(AI technology) to predict the output responses of nonlinear
complex systems. Among those, Gaussian process regression
(GPR) is one of the AI techniques to forecast the result
responses of nonlinear complex systems. Tese models have
widespread application due to their outstanding perfor-
mance in practice and attractive analytical features, such as
machining optimization, machining optimization, analytical
sensor calibration, and rehabilitation engineering. Sharma
et al. [26] developed an artifcial neural network (ANN)
model to investigate Darcy–Forchheimer hybrid nanofuid
fow heat transfer through a rotating Riga disk. Te efect of
chemical reaction is also included, and a high-performance
accurate ANN model was trained to predict thermal energy
transfer performance. Raja et al. [28] investigated the 3D
hybrid nanofuid fow over biaxial porous stretching/
shrinking sheet with heat transfer, radiative heat, and mass
fux solved through Bayesian regularization technique based
on backpropagation neural networks. Computational fuid
dynamic (CFD) AI techniques were employed for Casson
nanofuid [29], MHD Carreau nanofuid fow containing
gyrotactic microorganisms [30], biomagnetic ternary hybrid
nanofuid [31], MHD Sutterby hybrid nanofuid fow with
activation energy [32], and nonlinear radiative magnetized
Carreau nanofuid [33].

From the above literature survey, no attempt has been
discussed before on the presented physical model for
multiple slip fow of magnetized Casson nanofuid over
a wedge. Te following signifcant characteristics can be
used to highlight the goals, novelty, contributions, and
insights of the research analysis that have been
introduced:
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(i) Te present study introduces an innovative ap-
proach to investigate heat transport in fuid models
by combining soft computing techniques with
numerical computing through the GPR model

(ii) An unsteady, incompressible, laminar, viscous, and
magnetized Casson nanofuid fow model over
a wedge under the efect of thermal radiation,
chemical reaction, and multiple slip features with
frst-order relations is considered

(iii) A dataset is constructed through mathematical
simulation (Runge–Kutta–Fehlberg fourth-ffth-
order method along with shooting technique) for
analyzing dimensionless quantities of engineering
interest

(iv) Convergence of the developed GPR results is ex-
amined through statistical metrics, including root
mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE),
mean square error (MSE), coefcient of de-
termination (R2), and correlation coefcient (R)

(v) Considering statistical metrics such as RMSE, MAE,
MAPE, and MSE , the developed GPR models are
more accurate in predicting 􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and

􏽥CtxRe0.5
x values

1.1.Applications. Te study of magnetized Casson nanofuid
fow along a wedge using Gaussian process regression (GPR)
combines the concept of fuid dynamics, nanotechnology,
and machine learning. Tis study is potential contributions
to optimizing processes and systems in various industries,
ranging from material processing and energy systems to
biomedical applications and environmental engineering.
Also, this study provides valuable insights that can be lev-
eraged to improve the efciency and efectiveness of diverse
applications where complex fuid dynamics play
a crucial role.

2. Modeling

MHD Casson nanofuid fow model over a wedge-shaped
geometry with thermal radiation, chemical reaction, and slip

efects is considered. Te fow over the wedge with velocity
􏽥u∗w(x, t) � 􏽥U

∗
w􏽥xm/1 − 􏽥εt and the free stream velocity 􏽥u∗e (x,

t) � 􏽥U
∗
fs􏽥xm/1 − 􏽥εt is the free stream, where 􏽥U

∗
w, 􏽥U
∗
fs, 􏽥ε, m are

positive constants and t is the time. Here, m � β1/(2 −β1), β1
is the wedge angle parameter that corresponds to β1 � 􏽥Ω∗/π
for the total wedge angle 􏽥Ω∗. Temperature and nanoparticle
fraction at the wall are 􏽥Tw and 􏽥Cw, respectively, and these are
greater than that of free stream 􏽥Tfs and 􏽥Cfs, respectively.
Te variable magnetic feld B(x, t) � 􏽥B

∗
0x0.5(m− 1)/(1 − 􏽥εt)0.5

was applied to the fow direction. Figure 1 depicts the
mechanism of fow structure.

Cauchy stress tensor 􏽥τ∗1/q for the Casson fuid model is
defned by Raju and Sandeep [16]:

􏽥τ∗1/q � 􏽥τ∗1/q0 + μ􏽥c
∗1/q

, (1)

􏽥τ∗ij �

2 μb +
Py
���
2π

√􏼠 􏼡􏽥e
∗
ij, if π > πc,

2 μb +
Py
���
2πc

􏽰􏼠 􏼡􏽥e
∗
ij, if π < πc,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where

􏽥e
∗
ij �

1
2

z 􏽥ui

zxj

+
z 􏽥uj

zxi

􏼠 􏼡, (3)

in which μb � plastic dynamic viscosity,
Py � μb

���
2π

√
/β �yield stress of the fluid, π � 􏽥e∗ij􏽥e

∗
ij � product

of the rate of strain tensor with itself, 􏽥e∗ij �deformation rate,
πc � critical value based on Casson non-Newtonian model,
and 􏽥ui � velocity components. Following Song et al. [25],
Animasaun et al. [34],and Cao et al. [35], the modifcation of
Buongiorno’s nanofuid model was considered in the energy
equation and concentration equation since thermomigra-
tion and haphazard motion of nanoparticles occur due to
variation in the concentration. Based on the aforesaid de-
liberation, the fuid transport equations become (Hussanan
et al. [8], Khan et al. [9], and Ullah et al. [11])

z􏽥u
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+

z􏽥v

zy
� 0, (4)
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+ 􏽥u
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zy
� DB

z
2 􏽥C
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2􏼠 􏼡 +

DT∆C
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zy
2􏼠 􏼡 − kc(x, t) 􏽥C − 􏽥Cfs􏼐 􏼑, (7)
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where ϑ � μ/ρ, kp(x, t) � k1(1 − 􏽥εt)/xm− 1, kc(x, t) � ak1
xm− 1/(1 − 􏽥εt), β⟶∞ and β> 0, β< 0 indicates the New-
tonian and non-Newtonian fuid models, respectively.

Te corresponding boundary restrictions with slip
conditions are as follows:

t< 0; 􏽥u � 􏽥v � 0, 􏽥T � 􏽥Tfs,
􏽥C � 􏽥Cfs for any x, y, (8)

t≥ 0; 􏽥u � 􏽥uw(x, t) + N1(x, t)c 1 +
1
β

􏼠 􏼡
z􏽥u

zy
,

􏽥v � 0, −kf

z􏽥T

zy
� hf(x, t) 􏽥Tw − 􏽥T􏼐 􏼑, −kf

z􏽥C

zy
� hs(x, t) 􏽥Cw − 􏽥C􏼐 􏼑,

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

at y � 0, (9)

􏽥u⟶ 􏽥ue(x, t), 􏽥T⟶ 􏽥Tfs,
􏽥C⟶ 􏽥Cfs as y⟶∞, (10)

where N1(x, t) � N0x
− 0.5(m− 1)(1 − 􏽥εt)0.5, hf(x, t) � h0

x0.5(m− 1)(1 − 􏽥εt)− 0.5, and hs(x, t) � h1x
0.5(m− 1) (1 − 􏽥εt)− 0.5

with N0, h0, and h1 being constants. Suitable similarity
variables are introduced as follows:

Bacterial motility Biotechnology

Heat Exchanger Solar collector

Applications

Porous MediumRadiation

u*w (x, t) = U*wxm/1 – εt~ ~~~

u*e (x, t) = U*fs xm/1 – εt~ ~~~

B (x, t) =
 B*0 x

0.5(m–1) /(1 – εt)0.5~

~

y, v~

Tw , Cw
~~

Tfs , Cfs
~~

x, u~

Figure 1: Physical diagram for the fow system.
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ψ �
2ϑ􏽥Ufs

(m + 1)(1 − 􏽥εt)
􏼢 􏼣

0.5

x
0.5(m+1)

f(ζ),

ζ �
(m + 1) 􏽥Ufs

2ϑ(1 − 􏽥εt)
􏼢 􏼣

0.5

x
0.5(m− 1)

y, 􏽥u �
􏽥Ufs

(1 − 􏽥εt)
x

m
f
′
,

􏽥v �
(m + 1)ϑ􏽥Ufs

2(1 − 􏽥εt)
􏼢 􏼣

0.5

x
0.5(m− 1)

f(ζ) + ζ
m − 1
m + 1

􏼒 􏼓f
′
(ζ)􏼔 􏼕,

θ(ζ) �
􏽥T − 􏽥Tfs

􏽥Tw − 􏽥Tfs

,φ(ζ) �
􏽥C − 􏽥Cfs

􏽥Cw − 􏽥Cfs

, 􏽥u �
zψ
zy

, 􏽥v �
−zψ
zx

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (11)

Te stream function ψ satisfes equation (1). Under the
transformations, equations (5)–(10) yield

1 +
1
β

􏼠 􏼡f
‴

+ ff
″

+
2m

m + 1
1 − f
′2

􏼒 􏼓 + S
2

m + 1
1 − f
′
− 0.5ζf

″
􏼒 􏼓 −

2
m + 1

M − 1 +
1
β

􏼠 􏼡K􏼢 􏼣 f
′
− 1􏼒 􏼓 � 0, (12)

1
Pr

1 +
4
3
Rd􏼔 􏼕θ″ + fθ′ −

4m

m + 1
f
′θ + 1 +

1
β

􏼠 􏼡Ecf″
2

− S
4m

m + 1
θ +

1
m + 1

ζθ′􏼔 􏼕 + Nbφ′θ′ + Ntθ′
2

� 0, (13)

φ″

Le
+ fφ′ −

4m

m + 1
f
′φ − S

4m

m + 1
φ +

1
m + 1

ζφ′􏼔 􏼕 +
Nt

Nb
θ″ −

2
m + 1

Rφ � 0, (14)

and the associated boundary restrictions become

f(ζ) � 0, f
′
(ζ) � c + δ

m + 1
2

􏼒 􏼓
0.5

1 +
1
β

􏼠 􏼡f
″
(ζ), θ′(ζ) � −Bi1

2
m + 1

􏼒 􏼓
0.5

(1 − θ(ζ)),

φ′(ζ) � −Bi2
2

m + 1
􏼒 􏼓

0.5
(1 − φ(ζ)) at ζ � 0,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (15)

f
′
(ζ) � 1, θ(ζ) � 0,φ(ζ) � 0 at ζ⟶∞, (16)

where the governing parameters are as follows:
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S �
􏽥εx1− m

􏽥Ufs

, M �
σB

2
0

ρ􏽥Ufs

, K �
ϑφ

k1
􏽥Ufs

,Pr �
μcp

κ
, Rd �

4σ∗ 􏽥T
3
fs
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∗
1

R �
ϑak2
􏽥Ufs

,
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􏽥u
2
e
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􏽥Tw − 􏽥Tfs􏼐 􏼑
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τDB

􏽥Cw − 􏽥Cfs􏼐 􏼑

ϑ∆C
, Nt �

τDT
􏽥Tw − 􏽥Tfs􏼐 􏼑

􏽥Tfsϑ
, Le �

ϑ
DB

,

c �
Uw

Ufs

, δ � N0

�����
Ufsc

􏽱
, Bi1 �

h0
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���
c

Ufs

􏽳
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h1

kf

���
c

Ufs

􏽳

,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17)

where Le, c, δ, Bi1, andBi2 are, respectively, Lewis number,
moving wedge parameter, slip parameter, and Biot numbers.
Skin friction coefcient 􏽥Sfx � 􏽥τw/ρ􏽥u2

e , heat transfer rate
􏽥Htx � 􏽥xqw/k(􏽥Tw − 􏽥Tfs), and nanoparticle transfer rate
􏽥Ctx � 􏽥xdw/DB(􏽥Cw − 􏽥Cfs) at the wall ((ie)ζ � 0) are defned
as follows:

􏽥SfxRe
0.5
x �

�����
m + 1
2

􏽲

1 +
1
β

􏼠 􏼡
z
2
f

zζ2
,

􏽥Htx Re
−0.5
x � −

�����
m + 1
2

􏽲

1 +
4
3
Rd􏼔 􏼕

zθ
zζ

􏽥CtxRe
−0.5
x � −

�����
m + 1
2

􏽲
zφ
zζ

,

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)

where Rex � 􏽥ue􏽥x/ϑ is the Reynolds number.

3. Methodology

In this study, two methodologies, namely, shooting tech-
nique together with Runge–Kutta–Fehlberg 4-5th order
(RKF-45) and Gaussian process regression (GPR), have been
used to perform the mathematical and soft technique
simulation for the fow of magnetized Casson nanofuid over
a wedge. Te numerical approach of RFK-45 and the
background of the GPR model were explained briefy in this
section.

3.1. Mathematical Simulation

3.1.1. Explanation of the RKF-45 Scheme. Te system of
nonlinear diferential equations (12)–(14) with the boundary
restrictions equations (15) and (16) are solved mathemati-
cally with the assistance of shooting technique together with
Runge–Kutta–Fehlberg fourth-ffth-order integration
scheme.Temathematical simulation of the RKF-45 scheme
is presented in Figure 2. Initially, we reduce the order of the
equation by using the following procedure:

f � u1, f
′

� u2, f
″

� u3, f
‴

� u3′,

θ � u4, θ
′

� u5,φ � u6, φ
′

� u7,

u3′ �
−1

(1 + 1/β)
u1u3 +

2m

m + 1
1 − u

2
3􏼐 􏼑 + S

2
m + 1

1 − u2 − 0.5ζu3( 􏼁 −
2

m + 1
M − 1 +

1
β

􏼠 􏼡K􏼢 􏼣 1 − u2( 􏼁􏼨 􏼩,

u5′ �
−Pr

1 + 4/3Rd􏼂 􏼃
u1u5 −

4m

m + 1
u2u4 + 1 +

1
β

􏼠 􏼡Ecu23 − S
4m

m + 1
u4 +

1
m + 1

ζu5􏼔 􏼕 + Nbu7u5 + Ntu25􏼨 􏼩,

u7′ � −Le u1u7 −
4m

m + 1
u2u6 − S

4m

m + 1
u6 +

1
m + 1

ζu7􏼔 􏼕 +
Nt

Nb
u5′ −

2
m + 1

Ru6􏼚 􏼛,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)

with the boundary restrictions
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u1(ζ) � 0, u2(ζ) � c + δ
m + 1
2

􏼒 􏼓
0.5

1 +
1
β

􏼠 􏼡u3(ζ), u3(ζ) � a1, u4(ζ) � 1 +
1

Bi1

m + 1
2

􏼒 􏼓
0.5

u5(ζ),

u5(ζ) � a2, u6(ζ) � 1 +
1

Bi2

m + 1
2

􏼒 􏼓
0.5

u7(ζ), u7(ζ) � a3 at ζ � 0,

u2(ζ) � 1, u4(ζ) � 0, u6(ζ) � 0 at ζ⟶∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (20)

Te numerical simulation is performed until the result is
corrected up to the desired accuracy of 10−6 level.

3.1.2. Value of 􏽥SfxRe0.5
x and 􏽥Htx Re0.5

x with Variation of
m and Pr. Owing to this validity of solution, a compara-
tive investigation of 􏽥SfxRe0.5

x for various values of m and
􏽥Htx Re0.5

x for various values of Pr with earlier published
results (Ishak et al. [36] and Ullah et al. [37]; Kuo [38] and
Raju and Sandeep [16]) is reported in Tables 1 and 2 which
validate the current code.

3.2. Soft Technique Simulation

3.2.1. Explanation of the GPR Model. Gaussian process
regression (GPR) is one of the nonparametric learning al-
gorithms which can model highly complex systems. Every
fnite subset of data produced by the Gaussian process in
a certain domain can adhere to a multidimensional Gaussian
distribution. For a given set of n observations training
samples, S � (xi, yi)|i � 1, 2, . . .n􏼈 􏼉, where xi ∈R

n is the
input vector and yi ∈R is the corresponding output. Tus,

a Gaussian process (GP) is a collection of random variables
G(x) and is defned as follows:

G(x) ∼ GP m(x),k x, x
′

􏼒 􏼓􏼒 􏼓, (21)

wherem(x) � Ε[G(x)] represents the mean function of the
prior knowledge about the latent function for variable x and
K(x, x′) � Ε[(G(x) − m(x))(G(x′) − m(x′))] denotes
the covariance or kernel function of the confdence level for
m(x). Usually, the value of the mean function of the
equation is considered to be 0 in most applications. Te
relation between the input vector (xi) of each data point and
its output (yi) value in the GP is defned as follows:

yi � G xi( 􏼁 + ϵ, (22)

where ϵ denotes the Gaussian distribution noise value that
has 0 mean and σ2 variance (ie)ϵ ∼ N(0, σ2).

Moreover, G � [G(x1),G(x2) . . . ..G(xn)]T also dis-
plays Gaussian behavior, defned as p(G|xi) � N(0,K).

Here, the covariance matrix K has Kij � k(xi, xj)

components.

K(x, S) �

k x1, x1( 􏼁 k x1, x2( 􏼁 k x1, x3( 􏼁 · · · k x1, xn( 􏼁

k x2, x1( 􏼁 k x2, x2( 􏼁 k x2, x3( 􏼁 · · · k x2, xn( 􏼁

⋮ ⋮ ⋮ ⋱ ⋮

k xn, x1( 􏼁 k xn, x2( 􏼁 k xn, x3( 􏼁 · · · k xn, xn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

y conditioned distribution on G is represented by
p(y|G, xi) � N(G, σ2n I). Here, I is the unit matrix of n

dimensions.
To estimate the eventual quantity y∗ and its covariance

cov(G∗) for a new input X∗, the joint distribution of y and
G∗ is shown as follows:

y

G∗
􏼢 􏼣 ∼ N

0

0
􏼢 􏼣,

K(X, X) + σ2I K X, X∗( 􏼁

K X∗, X( 􏼁 K X∗, X∗( 􏼁
⎡⎣ ⎤⎦⎛⎝ ⎞⎠,

(24)

where K(X, X) and K(X∗, X∗) denote the training and
checking data phases of a covariance (n × 1) matrix of test
samples X∗, respectively.

Te conventional method for conditioning Gaussian is
used to generate the predictive distribution and is defned as
follows:

p G∗|X, y, X∗( 􏼁 ∼ N G∗, cov G∗( 􏼁􏼐 􏼑, (25)

where G∗ � K(X∗, X)[K(X, X) + σ2I]− 1G, cov(G∗) �

K(X∗, X∗) − K(X∗, X)[K(X, X) + σ2I]− 1 K(X, X∗).

3.2.2. Kernel Functions. A kernel (or covariance function)
describes the covariance cov(G∗) of the GPR variables.
Kernel function calculates the closeness and similarity de-
gree among the actual datasets. Terefore, it determines the
analyses of GPR in handling systematic prediction error.

International Journal of Mathematics and Mathematical Sciences 7



Nonlinear PDEs

Casson nanofluid
MHD
Thermal radiation
Chemical reaction
Multiple slip effect
Moving wedge

Dimensionless ODEs

RKF-45 scheme.

Reduce the coupled nonlinear ODEs
into first order ODEs.
Initial guesses are formed for the
unknown initial values.
Numerical simulation is
accomplished using RKF-45.
The procedure is repeated until
convergence with an error of <
10–5 is obtained.

Compute

Velocity, temperature, and
concentration distributions

SfxRex
0.5, Htx Rex

0.5 and CtxRex
0.5~ ~ ~

Similarity variables

ψ, ζ, θ (ζ), φ (ζ),

u~ v~= =y
ψ

x
ψand –

Figure 2: Flowchart procedure of RKF-45.

Table 1: Comparison of values for 􏽥SfxRe0.5
x for various values of m.

m Ishak et al. [36] Ullah et al. [37] Current outcome
0 0.4696 0.4696 0.4696
0.0141 0.5046 0.5046 0.5046
0.0435 0.5690 0.5690 0.5690
0.0909 0.6550 0.6550 0.6550
0.1429 0.7320 0.7320 0.7320
0.2000 0.8021 0.8021 0.8021
0.3333 0.9277 0.9277 0.9277
0.5000 — — —
1 1.2326 1.2326 1.2326
5 1.5504 1.5505 1.5505
100 1.6794 1.6794 1.6794
∞ 1.6872 1.6872 1.6872

Table 2: Comparison of values for 􏽥Htx Re0.5
x for various values of Pr.

Pr Kuo [38] Raju
and Sandeep [16] Current outcome

1000 4.7901 4.7901 4.7901
100 2.2229 2.2229 2.2229
30 1.4873 1.4873 1.4873
10 1.02974 1.02974 1.0297
1 0.46960 0.46960 0.4696
0.72 0.41809 0.41786 0.4181
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Tere are several types of Kernel functions that can be used
in GPR. For example, exponential (E), squared exponential
(SE), rational quadratic (RQ), Matérn class (MT),

ardexponential (ardE), ardsquared exponential (ardSE), and
ardrational quadratic (ardRQ), which are defned as follows:

KEx X, X
′

􏼒 􏼓 � σ2 exp −
X − X

′
�����

�����

2L
2

⎛⎝ ⎞⎠,

KSE X, X
′

􏼒 􏼓 � σ2 exp −
X − X

′
�����

�����
2

2L
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

K X, X
′

􏼒 􏼓 � 1 +
X − X

′
�����

�����
2

X − X
′

�����

�����
2

+ c

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

KMa X, X
′

􏼒 􏼓 �
21− ξ

Γ(ξ)

��
2ξ

􏽰 X − X′
����

����

L
􏼠 􏼡

ς

Kς

��
2ξ

􏽰 X − X′
����

����

L
􏼠 􏼡

ς

,

(26)

where σ, L, c, ξ, Γ, and Kς indicate the standard deviation,
parameter of length scale, the signal, intercept constant,
smooth factor, Gamma, and Bessel function, respectively.

4. Results and Discussion

In this section, the important features of the fow, heat
transfer, and mass transfer are achieved using Casson fuid
fow over a moving wedge with slip efects and also the GPR
technique was developed to predict the skin friction co-
efcient (􏽥Sfx), heat transfer rate ( 􏽥Htx), and nanoparticle
transfer rate (􏽥Ctx).

4.1. Analysis of Physical Quantities. Tis section visualizes
the physical description of engaged parameters developing
in equations (12)–(16). Te sixteen distinct nondimensional
parameters, such as m, M, c, β, S, K, δ, Rd, Pr , Ec, Nb,

Nt, Bi1, Bi2, Le, and R, and the corresponding ranges of
constraints of the research are exhibited in Table 3. Te
numerical illustration for 􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and 􏽥CtxRe0.5

x is
shown in Tables 4–6. A prominent variation in 􏽥SfxRe0.5

x has
been noticed for β and S. However, 􏽥Htx Re0.5

x is enhanced for
more tremendous values of Rd, Ec, Nb, Nt, whereas 􏽥CtxRe0.5

x

decreases with Nb, Le, R, andBi2 and increases with
Nt andBi2.

4.2. Discussion of Results

4.2.1. Velocity Distribution. Figure 3 presents the signifcant
impact of β and m on f′(ζ). Decreasing completion is
perceived in f′(ζ) for greater values of β. Because they
inversely correlate to the yield stress and fuid viscosity rate,
the velocity feld f′(ζ) declines as β upturns. Viscous force,
a resistive force, is created and is what causes this distortion.
Tis force’s energy grows as the Casson nanofuid param-
eter’s strength is enhanced with a decrease in the surface’s

thickness in response to fuid movement within the
boundary layer. Te velocity feld f′(ζ) tends to improve
when Hartree pressure gradient m credits are enhanced
because they exert an intensity force on the fow and also
inverse variation is performed between m and the velocity
boundary layer thickness. Figure 4 refects the efect of S and
M on f′(ζ). A raised velocity distribution is examined with
unsteadiness parameter. It provides that the velocity
boundary layer thickness imperceptibly increases with an
increment in S. Also, the broadening magnetic parameter is
taking over the force to dwindle the velocity component.
Physically, this occurs due to the fact that by boosting the
values ofM, the Lorentz force diminishes, which leads to the
retarding force on the movement of the fuid. Figure 5 shows
the efects of K and c on f′(ζ). In both cases, a widening of
the momentum boundary layer is inspected. As is evident,
the greatest levels of c cause greater force on the fow of the
velocity feld f′(ζ). Te infuence of δ on f′(ζ) is depicted
in Figure 6. With an increase of δ, the velocity distribution
grows up. Terefore, the slip at the wedge surface ener-
getically leads to the closeness of the boundary layer.

4.2.2. Temperature Distribution. To examine the variation in
θ(ζ) against various fow parameters, Figures 7–13 are de-
veloped. From Figures 7 and 8, it is noticed that the in-
creasing values of β andM result in an augmentation of both
the rate of heat transfer and the temperature profle. It can be
attributed to alterations in the fuid’s rheological properties,
fow dynamics, and the infuence of the magnetic feld.Tese
changes collectively impact the thermal behavior of the
system, leading to enhanced heat transfer and temperature
profles. A reverse phenomenon is perceived for growing
values of m and S on θ(ζ). Figures 9 and 10 point out that
upon increasing K, c, and δ, the decline is made in the heat
transfer rate and θ(ζ). Enhancing Ec strengthened the in-
ternal energy of nanoliquid which in turn augmented the
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Table 3: Nondimensional parameters on the physical features.

SI. no. Nondimensional parameters Range
1 Hartree pressure gradient parameter (m) 0.1–0.5
2 Magnetic parameter (M) 0.0–1.5
3 Casson fuid parameter (β) 0.1–1.0
4 Unsteadiness parameter (S) 0.0–0.4
5 Porosity parameter (K) 0.0–1.0
6 Moving wedge parameter (c) −0.5–0.5
7 Radiation parameter (Rd) 0.0–2.5
8 Prandtl number (Pr) 1.0–10.0
9 Eckert number (Ec) 0.0–1.0
10 Brownian motion parameter (Nb) 0.3–2.0
11 Termophoresis parameter (Nt) 0.2–2.0
12 Lewis number (Le) 1.0–3.0
13 Slip parameter (δ) 0.0–2.0
14 Biot number (Bi1) 0.5–5.0
15 Biot number (Bi2) 0.5–2.0

16 Chemical reaction parameter (R) (R> 0 corresponds to calamitous chemical
reaction R< (progressive chemical reaction)

−0.5–0.5

Table 4: Numerical outcome of skin friction coefcient (􏽥SfxRe0.5
x ).

β m S M K c δ 􏽥SfxRe0.5
x

0.1 0.2762
0.3 0.4361
1 0.5587

0.1 0.5074
0.3 0.5204
0.5 0.5258

0.1 0.5038
0.2 0.5152
0.3 0.5262

0.5 0.5152
1.0 0.4210
1.5 0.2544

0.2 0.4131
0.4 0.5152
0.6 0.5868

−0.5 0.9085
0.2 0.5152
0.5 0.3293

0.5 0.3728
1.0 0.2533
1.5 0.1913

Table 5: Numerical outcome of heat transfer rate ( 􏽥Htx Re0.5
x ).

Pr Rd Ec Nb Nt 􏽥Htx Re0.5
x

1 −0.3099
3 −0.3615
5 −0.3920

0.5 −0.3099
1.0 −0.2910
1.5 −0.2763

0.4 −0.2922
0.8 −0.2567
1.0 −0.2389
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heat transfer rate. Physically, the ?? is employed to simulate
a relationship between the boundary layer enthalpy difer-
ence and kinetic energy. A liquid is only warmed internally
by friction between its particles when a wedge expands,
converting mechanical energy to thermal energy. Te en-
hancement in Ec at the wedge surface raises the thermal

energy associated with fuid motion by raising the tem-
perature of the fuid and producing a thicker boundary layer.
Te response of θ(ζ) to the variation of PrandRd is illus-
trated in Figure 11. Te detected results show that the
amount of θ(ζ) is impeded for greater values of Pr. When Pr
increases, the momentum difusivity outweighs the thermal

Table 5: Continued.

Pr Rd Ec Nb Nt 􏽥Htx Re0.5
x

0.5 −0.3066
1.0 −0.2982
1.5 −0.2898

1.0 −0.2953
1.5 −0.2863
2.0 −0.2775

β = 0.1, 0.2, 0.3, 0.6, 1.0
m = 0.5, 0.4, 0.3, 0.2, 0.1

S = 0.2, M = 0.5, K = 0.4, γ = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

β : Solid
m : Dash

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f ′

1 2 4 50 63 7
ζ

Figure 3: Impact of β and m on f′(ζ).

Table 6: Numerical outcome of nanoparticle transfer rate (􏽥CtxRe0.5
x ).

Nb Nt Le R Bi1 Bi2
􏽥CtxRe0.5

x

1.0 −0.4596
1.5 −0.4617
2.0 −0.4627

0.5 −0.4211
1.0 −0.3934
1.5 −0.3793

1.5 −0.4269
2.0 −0.4448
2.5 −0.4580

−0.5 −0.1218
0.2 −0.4215
0.5 −0.4539

1.0 −0.4368
2.0 −0.4307
3.0 −0.4281

0.5 −0.4448
1.0 −0.6960
1.5 −0.9698
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β = 0.6, m = 0.2, K = 0.4, γ = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

S = 0.4, 0.3, 0.2, 0.1, 0.0
M = 0.0, 0.2, 0.5, 1.0, 1.5

S : Solid
M : Dash

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f ′

1 2 4 50 63 7
ζ

Figure 4: Impact of S and M on f′(ζ).

S = 0.2, M = 0.5, β = 0.6, m = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

K = 1.0, 0.6, 0.4, 0.2, 0.0
γ = 0.5., 0.2, 0.0, –0.3, –0.5

K : Solid
γ : Dash

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

f ′

1 2 3 4 50 6 7
ζ

Figure 5: Impact of K and c on f′(ζ).

S = 0.2, M = 0.5, β = 0.6, m = 0.2, K = 0.4, γ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

δ = 0.0, 0.5, 01.0, 1.5, 2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1

1.1

f ′

1 2 3 4 50 6 7
ζ

Figure 6: Impact of δ on f′(ζ).

12 International Journal of Mathematics and Mathematical Sciences



S = 0.2, M = 0.5, K = 0.4, γ = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

β = 1.0, 0.6, 0.3, 0.2, 0.1
m = 0.1, 0.2, 0.3, 0.4, 0.5

β : Solid
m : Dash

0

0.1

0.2

0.3

0.4

0.5

0.6

θ

1 2 3 4 50 6 7
ζ

Figure 7: Impact of β and m on θ(ζ).

β = 0.6, m = 0.2, K = 0.4, γ = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

S = 0.0, 0.1, 0.2, 0.3, 0.4
M = 1.5, 1.0, 0.5, 0.2, 0.0

S : Solid
M : Dash
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0.6

θ

1 2 3 4 50 6 7
ζ

Figure 8: Impact of S and M on θ(ζ).

S = 0.2, M = 0.5, β = 0.6, m = 0.2, K = 0.4,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
γ = 0.2, Pr = 1, Rd = 0.5, Nb = 0.3, Nt = 0.2,

δ = 0.0, 0.5, 01.0, 1.5, 2.0
Ec = 1.0, 0.8, 0.4, 0.2, 0.0

δ: Solid
Ec : Dash
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Figure 9: Impact of δ and Ec on θ(ζ).
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difusivity, resulting in a decrease in the fow region’s
temperature feld θ(ζ). Augmentation performance is per-
ceived in θ(ζ) for higher values of Rd, since increasing Rd

spawns more heat which in turn boosts the fuid temper-
ature. Figure 12 witnesses that increasing Nb increases the
kinetic energy of the particles due to the collision; hence,
temperature is made immense. An identical confguration is
perceived for cultivating values Nt. From Figure 13, the
observations reveal that θ(ζ) is larger with the increasing
values of Bi1 and Bi2. Termal Biot numbers play an im-
portant portrayal in the enhancement of nanoparticles
temperature, as it is directly associated with the coefcient of
heat transfer.

4.2.3. Concentration Distribution. Te infuence of peculiar
fow parameters such as β, m, M, S, δ, Ec, K, c, Rd, Nb,

Nt, Bi1, Bi2, Le, and R on the concentration of nanoparticles
feld φ(ζ) is highlighted in Figures 14–21. Figures 14–18
elucidates the increasing nature in φ(ζ) due to increasing
values of β, M, and Pr. Inverse variations are seen for the
growing values of m, S, δ, Ec, K, c, andRd. Figure 19 shows
the behavior of Nb andNt on φ(ζ). Te increasing value of
Nb reduces φ(ζ), and this is due to the fact that Brownian
motion makes the fuid mild within the frontier and the
absence of particle removal from the fuid regime to the
surface results in a reduction in φ(ζ) while increasing (Nt)

augmented φ(ζ). Boosting (Nt) enhances the motion of
nanoparticles from higher to lower temperature gradient
which in turn exploits the concentration of nanoparticles.
Figure 20 illustrates the behavior on φ(ζ) for signifed Bi1
and Bi2. It is discerned that φ(ζ) is improved for greater
evaluation of Bi1 and Bi2. Because the Biot numbers of
nanoparticle concentration are directly correlated with the
coefcient of mass transfer, they play a signifcant role in the
enhancement of nanoparticle concentration. Figure 21
demonstrates the infuence of Le and R on φ(ζ). It is
depicted that the improving credits of Le cause a decline in
φ(ζ) because Le has an inverse relationship with the

S = 0.2, M = 0.5, β = 0.6, m = 0.2, δ = 0.2,

Le = 2, R = 0.4, Bi1 = 0.5, Bi2 = 0.5
Pr = 1, Rd = 0.5, Ec = 0.2, Nb = 0.3, Nt = 0.2,

K = 0.0, 0.2, 0.4, 0.6, 1.0
γ = –0.5, –0.3, 0.0, 0.2, 0.5

K: Solid
γ : Dash

0
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Figure 10: Impact of K and c on θ(ζ).

S = 0.2, M = 0.5, β = 0.6, m = 0.2, δ = 0.2,

Nb = 0.3, Nt = 0.2, Le = 2, R = 0.4
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Figure 12: Impact of Nb and Nt on θ(ζ).
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Figure 14: Impact of β and m on φ(ζ).
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Figure 16: Impact of δ and Ec on φ(ζ).
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Figure 17: Impact of K and c on φ(ζ).
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Figure 18: Impact of Pr and Rd on φ(ζ).
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Figure 19: Impact of Nb and Nt on φ(ζ).
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Brownian dispersion factor. As Le grows, a Brownian factor
of dispersion falls, resulting in a reduction in nanoparticle
concentration φ(ζ) and boundary layer thickness. Also,
boosting R infuences φ(ζ), which in turn afects mass
transport rates, chemical rates, and nanoparticle concen-
trations, and subsequently, temperature and humidity felds.
Te consequences include detrimental efects on yields, such
as freezing damage, and a shift in energy distribution to-
wards a rainy cooling tower.

4.3. Mathematical Model Using GPR. In this section, we
proposed a novel data-driven model based on Gaussian
process regression (GPR) technique to predict
􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and 􏽥CtxRe0.5

x based on numerical output.
Tis model is more fexible and can handle uncertainty in
data. GPR is rooted in a Bayesian framework, which allows
for the incorporation of prior knowledge or domain ex-
pertise into the model. Tis can improve its performance,

especially when we have relevant prior information. In the
present study, the developed GPR model uses
m, M, c, β, S, K, δ, Rd,Pr , Ec, Nb, Nt, Bi1, Bi2, Le, and R as
the input parameters. Te data have been collected from the
numerical results using RKF-45. Here, 70% of the dataset is
used in the training phase and 30% is used in the checking
phase. Figure 22 gives the workfow of the proposed GPR
model for estimating the skin friction coefcient (􏽥Sfx), heat
transfer rate ( 􏽥Htx), and nanoparticle transfer (􏽥Ctx).

GPR model depends on the choice of kernel function
and hyperparameters, which should be carefully selected
through cross-validation and grid search. Tis practice
helps avoid overftting, where the model performs well on
the training data but fails to generalize to new, unseen
data. Table 7 represents the prediction error of the de-
veloped GPR model for diferent kernel functions. Te
lower error levels and the highest R2 indicate a superior
model. From Table 7, we noticed that the exponential
Kernel function has better prediction of 􏽥SfxRe0.5

x ,
􏽥Htx Re0.5

x , and 􏽥CtxRe0.5
x results for both training and

checking phases of magnetized Casson nanofuid. Also,
the determined R2 values for the exponential kernel
function have better performance than other functions in
both training and checking phases.
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Figure 20: Impact of Bi1 and Bi2 on φ(ζ).
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4.3.1. Performance Assessment. Evaluating the model’s
performance using various statistical metrics is a standard
practice in machine learning and regression analysis. Hence,
the performance assessment of error between the GPR

model and the numerical data of magnetized Casson
nanofuid was employed and compared using statistical
metrics including root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error
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Figure 23: Predicted vs. numerical values of training f″(0) dataset.
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Figure 24: Predicted vs. numerical values of checking f″(0) dataset.
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Figure 25: Predicted vs. numerical values of training θ′(0) dataset.
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Figure 26: Predicted vs. numerical values of checking θ′(0) dataset.
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(MAPE), mean square error (MSE), coefcient of de-
termination (R2), and correlation coefcient (R). Te
mentioned metrics are defned as follows:

RMSE �
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where nds, ynumerical
i , y

predicted
i , μ, ynumerical

i , andy
predicted
i in-

dicate the number of datasets, the target value, the predicted
value, the measured average and mean of targeted and
predicted values, respectively.

4.3.2. GPR Model Validation with Numerical Simulation.
For better judgement about the developed GPR model, the
simultaneous demonstration of numerical and predicted
results of 􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and 􏽥CtxRe0.5

x is depicted in
Figures 23–28. Te symmetrical straight lines are targeted
values from these fgures, and the predicted values are
represented near and far away from the straight lines. In all
the fgures, the numerical and measured values of f″(0),
θ′(0), and ϕ′(0) for training and checking phases showed
superior predictive performance. Te R2 values taped for
training and checking phases of f″(0) are 0.999999 and
0.999999, of θ′(0) are 0.99997 and 0.999999, and of ϕ′(0) are
0.999823 and 0.999999, respectively. Tese fgures state the
high accuracy prediction of engineering physical interest
quantities of magnetized Casson nanofuid using GPR
models.

 . Conclusions

Te fow behavior of magnetized Casson nanofuid over
a wedge subject to multiple slip efects, thermal radiation,
and chemical reaction was addressed and discussed in
detail. Te RKF-45 together with the shooting technique

was utilized to simulate the numerical steady similarity
solutions. Te computational outcomes are obtained
through the GPR (Gaussian process regression) intelligent
soft computing technique for estimating the dynamic be-
havior of Casson nanofuid models. Te computations are
shown as follows:

(i) From the mathematical simulation, the addition of
β and M devaluates the momentum boundary
layer thickness.

(ii) Te distribution of velocity attains maximum for
higher values of K, c, and δ.

(iii) Te nanoparticle temperature enhances with the
increase of Rd, Ec, Nb, Nt, Bi1, and Bi2.

(iv) As Le increases, both the nanoparticle temperature
and concentration decrease.

(v) When R< 0, the nanoparticle concentration rises.
Conversely, when R> 0, the nanoparticle con-
centration decreases.

(vi) All three employed GPR models have an R2 value
higher than 0.9. An R2 value of 0.9 indicates a very
strong correlation between the predicted and ac-
tual values.

(vii) Considering statistical metrics such as RMSE,
MAE, MAPE, and MSE, the developed GPR
models are more accurate in predicting
􏽥SfxRe0.5

x , 􏽥Htx Re0.5
x , and 􏽥CtxRe0.5

x values.
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(viii) Tis study suggests that the GPR models are ef-
fective in simulating and predicting heat and mass
transfer coefcients of complex physical fow
problems.

Nomenclature

􏽥u∗w, 􏽥u∗e : Stretching and free stream velocity (m/s)
􏽥U
∗
w, 􏽥U
∗
fs,􏽥ε: Positive constants

m: Hartree pressure gradient
􏽥B
∗
0 : Magnetic induction parameter (T)

B: Magnetic feld
t: Time
􏽥Tw, 􏽥Tfs: Temperature near and far away from the wedge

wall (K)
􏽥Cw, 􏽥Cfs C: Concentration near and far away from the

wedge surface
DB, DT: Brownian and thermophoresis difusion

coefcient (m2/s)
π: Product of the rate of strain tensor
Py: Yield stress of the fuid
􏽥e∗ij: Deformation rate
πc: Critical value based on Casson non-

Newtonian model
T: Temperature (K)
C: Nanoparticle concentration (moles/kg)
N0, h0, h1: Constants
kc: Rate of chemical reaction (1/s)
􏽥u, 􏽥v: Velocity components of x andy directions (m/s)
x: Distance along the surface (m)
y: Distance normal to the surface (m)
f: Dimensionless velocity
M: Magnetic parameter
Pr: Prandtl number
Rd: Radiation parameter
K: Porosity parameter
S: Unsteadiness parameter
R: Chemical reaction parameter
Nb: Brownian motion parameter
Nt: Termophoresis parameter
Ec: Eckert number
Le: Lewis number
Bi1, Bi2: Biot numbers
􏽥Sfx: Skin friction coefcient (Pascal)
􏽥Htx: Heat transfer rate
􏽥Ctx: Nanoparticle transfer rate
Rex: Reynolds number
n: Observations
K(x, x′): Covariance or kernel function
L: Parameter of length scale
c: Signal, intercept constant

Greek Symbols

ζ: Similarity variable
􏽥τ∗: Cauchy stress tensor
μb: Plastic dynamic viscosity
τ � (ρc)p/(ρc)f: Ratio of heat capacity of the nanoparticle
ψ: Stream function

σ: Electrical conductivity (S/m)
σ∗: Stefan–Boltzmann constant (W/m2 K4)
k∗: Mean absorption coefcient (1/m)
θ: Dimensionless temperature
φ: Dimensionless concentration
c: Moving wedge parameter
δ: Slip parameter
􏽥Ω∗: Total wedge angle
β1: Wedge angle parameter
β: Casson nanofuid parameter
􏽥τw: Surface shear stress
qw: Radiative heat fux
dw: Radiative mass fux
ϑ: Kinematic viscosity (m2/s)
ρ: Density (kg/m3)
cp: Specifc heat
κ: Termal conductivity (W/m K)
ρcp: Heat capacity (kg/m3K)
μ: Dynamic viscosity (kg/m s)
Γ: Gamma function
Kς: Bessel function
ξ: Smooth factor
ϵ: Gaussian distribution noise value

Subscripts
w: Quantities at wall
fs: Quantities at free stream.

Data Availability

All the data andmaterial used in this research are included in
the study.
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