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Tis work is an attempt to apply Lambert series in the theory of univalent functions. We frst consider the Hadamard product of
Rabotnov function and Lambert series with coefcients derived from the arithmetic function σ(n) to introduce a normalized
linear operator JRα,β(z). We then acquire sufcient conditions for JRα,β(z) to be univalent, starlike and convex, respectively.
Furthermore, we discuss the inclusion results in some special classes, namely, spiral-like and convex spiral-like subclasses. In
addition, we extend the fndings by incorporating two Robin’s inequalities, one of which is analogous to the Riemann hypothesis.

1. Introduction

A series introduced by JohannHeinrich Lambert, commonly
known as Lambert series is expressed as follows:

S(x) � 􏽘
∞

n�1
an

x
n

1 − x
n. (1)

It is a type of series that is well-known in both number
theory and analytic function theory. Lambert (see [1])
considered it in the context of the convergence of power
series. Lambert series given by (1) converges either every-
where except at x � ±1 when 􏽐

∞
1 an converges, or at every x

such that 􏽐
∞
1 anxn converges.

In number theory (see [2–5]), Lambert series is used for
certain problems due to its connection to the well-known
arithmetic functions such as

􏽘

∞

n�1
σ0(n)x

n
� 􏽘
∞

n�1

x
n

1 − x
n, (2)

where σ0(n) � d(n) is the number of positive divisors of n.
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n�1
σα(n)x

n
� 􏽘
∞

n�1

n
α
x

n

1 − x
n, (3)

where σα(n) is the higher-order sum of divisors function
of n.

We restrict our attention to the series given by (3). In
particular, when α � 1, we write σ1(n) � σ(n), here σ(n) is
the sum of divisors function that appears in one of the el-
ementary equivalent statements to the well-known Riemann
Hypothesis.

We distinguish at the outset between Lambert series and
Lambert W function that appears naturally in the solution of
a wide range of problems in science and engineering [6].

In 1984, Nicolas and Robin [7] proved that

σ(n)< e
c
n log log n +

0.6483n

log log n
, n≥ 3. (4)

Moreover, he proved that Riemann hypothesis is
equivalent to

σ(n)< e
c
n log log n, n> 5040, (5)
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where c � 0.7721 · · ·, is the Euler–Mascheroni constant.
Tis article makes no attempt to prove or refute Robin’s

inequality (5) or the Riemann hypothesis. For more details,
we refer the interested readers to read the articles listed in
references [8–13].

Let A denote the class of analytic functions of the form

f(z) � z + 􏽘
∞

n�2
anz

n
, z ∈ D ≔ z ∈ C : |z|< 1{ }, (6)

and S be the subclass of A consisting of univalent (or one-
to-one) functions on D. Te importance of the coefcients
given by the power series in (6) emerged in the early stage of
the theory of univalent functions. Earlier in 1916, Bieberbach
[14] proved that the second coefcient |a2|≤ 2, with equality
holding if and only if f is a rotation of the Köebe’s function:
f(z) � z + 􏽐

∞
n�2nzn.

In the same work, Bieberbach conjectured the general
coefcient bound that |an|≤ n, n≥ 2, while the equality holds
if and only if f is a rotation of the Köebe’s function. Tis
conjecture came to be known as the famed Bieberbach
Conjecture and resisted a rigorous proof for about seven
decades until Louis de Branges proved it in 1985 [15], and
the result came to be known as de Branges’s Teorem.
Geometrically this amounts to shrinking or expanding the
domain D, and possibly rotating D but does not disturb the
univalence of the function. Later on, new concepts were
introduced in the theory of univalent functions including,
but not limited to, starlike, convex, spiral-like, and uni-
formly starlike (convex).

In fact, the study on introducing new subclasses of
analytic functions goes on by means of various applications,

such as fractional calculus, quantum calculus, or by in-
volving some special functions such as Mittag–Lefer
function and Faber polynomial functions, see for details
[16–24]. Te most common concern in such a study is the
inclusion conditions. Alternatively, it means that for a given
new subclass (say) H, seek a set of useful conditions on the
sequence an􏼈 􏼉 that are both necessary and sufcient for f(z)

to be a member of H.
Te Rabotnov function defned as follows (see [25]):

Rα,β(z) � z
α

􏽘

∞

n�0

βn

Γ((n + 1)(α + 1))
z

n(α+1)
, α, β, z ∈ C.

(7)

Clearly, R0,β(z) � 􏽐
∞
n�0β

n/n!zn � eβz.

Rabotnov function is the particular case of the familiar
Mittag–Lefer function widely used in the solution of
fractional order integral equations or fractional order dif-
ferential equations. Te relation between the Rabotnov
function and Mittag–Lefer function can be written as
follows:

Rα,β(z) � z
α
Eα+1,α+1 βz

α+1
􏼐 􏼑, (8)

where Eα+1,α+1 is the two parametersMittag–Lefer function.
Several properties of Mittag–Lefer function and general-
ized Mittag–Lefer function can be found in [26–30].

It is clear that the Rabotnov function does not belong to
the family A. Tus, it is natural to consider the following
normalization of Rabotnov function:

Rα,β(z) ≔ z
1/α+1 Γ(α + 1)Rα,β z

1/α+1
􏼐 􏼑 � z + 􏽘

∞

n�2

βn− 1Γ(α + 1)

Γ(n(α + 1))
z

n
. (9)

Geometric properties including starlikeness, convexity
and close-to-convexity for the normalized Rabotnov func-
tion were recently studies in [31].

In this study, we aim to utilize the two remarkable special
functions the Lambert series and the Rabotnov function.Te
frst is for its connection to some well-known arithmetic
functions among which the sum of divisors function that we
consider here, and we use its relevant inequalities (4) and (5)
when applicable. Te second is the Rabotnov function that
can be viewed as a generalization of the exponential function
since R0,0(z) � ez and a special case of the two-parameters
Mittag–Lefer function, because R0,1(z) � E1,1(z) . Tus,
the fndings of this study apply to ez and E1,1(z). Fur-
thermore, one can obtain additional conclusions if the sum
of divisors function σ(n) in the Lambert series is replaced by
the higher-order sum of divisors function σα(n).

In general, applying the Lambert series that has not yet
been considered in the theory of univalent functions leads to
introducing new subclasses of analytic functions and

investigating the relevant topics such as the coefcients
bound, the distortion theorems, Hankel determinants,
subordination properties, and Fekete–Szegö inequalities.

Here, we recall the defnition of Hadamard product
(convolution). For a given function f ∈ A of the form (6)
and g ∈ A of the form

g(z) � z + 􏽘
∞

n�2
bnz

n
, z ∈ D, (10)

then the convolution (∗) of the two functions f and g

becomes

(f∗g)(z) ≔ z + 􏽘

∞

n�2
anbnz

n
, z ∈ D. (11)

Subsequently, we utilize the Lambert series whose co-
efcients are the sum of divisors function σ(n). Te
mathematical form is as follows:
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L(z) � 􏽘
∞

n�1

n z
n

1 − z
n

� 􏽘

∞

n�1
σ(n)z

n

� z + 􏽘
∞

n�2
σ(n)z

n
, z ∈ D.

(12)

We defne the linear operator JRα,β(z): A⟶ A as
follows:

JRα,β(z) ≔ Rα,β ∗L􏼐 􏼑(z) � z + 􏽘

∞

n�2

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)z

n
, ∈ D. (13)

Now, for short hand we denote the coefcient of
JRα,β(z) by

an �
βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n). (14)

From Robin’s inequalities, we obtain.

Remark 1. Unconditionally, from Robin’s inequality (3).
For n≥ 3

an <
βn− 1Γ(α + 1)

Γ(n(α + 1))
e

c
n log log n +

0.6483n

log log n
􏼨 􏼩. (15)

Remark 2. If Riemann hypothesis (4) holds true, then for
n> 5040

an <
βn− 1Γ(α + 1)

Γ(n(α + 1))
e

c
n log log n􏼈 􏼉. (16)

Next, we provide sufcient conditions for the operator
(10) to be starlike, convex, and closed-to-convex, re-
spectively. We also evoke the consequence of Robin’s in-
equalities or Riemann hypothesis in each derived result and
vice versa.

Firstly, we recall some relevant defnitions and Lemmas
that we consider in this study.

Defnition 3. Function f ∈ A of the form (6) is said to be
starlike or f ∈ S∗, if

Re
zf′ (z)

f(z)
􏼠 􏼡> 0, z ∈ D. (17)

Defnition 4. Function f ∈ A of the form (6) is said to be
convex or f ∈ C, if

Re
zf″ (z)

f′ (z)
+ 1􏼠 􏼡> 0, z ∈ D. (18)

Defnition 5. Function f ∈ A of the form (6) is said to be
closed-to-convex or f ∈K, if

Re
f′ (z)

g′ (z)
􏼠 􏼡> 0, g ∈ C, z ∈ D. (19)

Te above defnitions have been investigated in diferent
studies; see for example [32–35]. Moreover, Noshir-
o–Warschawski [36, 37] provided the following inclusion
result: C ⊂ S∗ ⊂K ⊂ S .

Lemma 6 (see [38]). Function f ∈ A of the form (6) is
univalent in D, if

1≥ 2a2 ≥ . . . ≥ 2an ≥ . . . ≥ 0, (20)

or

1≤ 2a2 ≤ . . . ≤ 2an ≤ . . . ≤ 2. (21)

Furthermore, f is closed-to-convex with respect to the
convex function − Log(1 − z).

Lemma 7 (see [39]). Function f ∈ A of the form (6) is
starlike in D if an ≥ 0, nan􏼈 􏼉 and nan − (n + 1)an+1􏼈 􏼉 both are
nonincreasing.

2. Geometric Properties of the Linear
Operator JRα,β(z)

Theorem 8. Te operator JRα,β(z) defned in (10) is close-
to-convex with respect to − log(1 − z) and therefore univalent
in D if for every consecutive natural numbers n and n + 1,

with α≥ 0 and β> 0.

(α + 1)σ(n)≥ 2βσ(n + 1) (22)

Proof. We utilize Lemma 6. First, we need to prove by
induction that
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(α + 1)
n− 1

(n − 1)!Γ(α + 1)≤ Γ(n(α + 1)), n � 1, 2, . . . .

(23)

For n � 1, (11) obviously holds true. Assuming (11) is
true for n − 1, we conclude

(α + 1)
n
n!Γ(α + 1) � (α + 1)n(α + 1)

n− 1
(n − 1)!Γ(α + 1)

≤ (α + 1)n Γ(n(α + 1))

� Γ((α + 1)n + 1)

≤ Γ((α + 1)(n + 1)).

(24)

Recall

an �
βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n), n≥ 2, a1 � 1. (25)

From (23) when n � 2, we obtain

(α + 1)Γ(α + 1)

Γ(2(α + 1))
≤ 1. (26)

Using condition (11)

2a2 �
2βσ(2)Γ(α + 1)

Γ(2(α + 1))
≤
2βσ(2)

α + 1
≤ 1. (27)

To verify that the frst condition of Lemma 6 holds, we
need to show that the sequence nan􏼈 􏼉 is decreasing:

nan − (n + 1)an+1 �
nβn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n) −

(n + 1)βnΓ(α + 1)

Γ((n + 1)(α + 1))
σ(n + 1)

≥
nβn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n) −

(n + 1)βnΓ(α + 1)

Γ(n(α + 1) + 1)
σ(n + 1)

�
n
2
(α + 1)βn− 1Γ(α + 1)

Γ(n(α + 1) + 1)
σ(n) −

(n + 1)βnΓ(α + 1)

Γ(n(α + 1) + 1)
σ(n + 1)

�
βn− 1Γ(α + 1)

Γ(n(α + 1) + 1)
X(n),

(28)

where X(n) � n2(α + 1)σ(n) − (n + 1)βσ(n + 1) consider-
ing n2 ≥ n + 1, n> 1, we receive

X(n) � n
2
(α + 1)σ(n) − (n + 1)βσ(n + 1)

≥ (n + 1)(α + 1)σ(n) − (n + 1)βσ(n + 1)

≥ (n + 1)((α + 1)σ(n) − βσ(n + 1))

≥ (n + 1)((α + 1)σ(n) − 2βσ(n + 1))≥ 0.

(29)

From Teorem 8. Using the fact that the coefcients of
a univalent function satisfy the inequality an ≤ n, we derive
the following results. □

Corollary  . If the conditions of Teorem 8 hold true, then

σ(n)≤
nΓ(n(α + 1))

βn− 1Γ(α + 1)
, n≥ 2. (30)

Corollary 10. If the conditions of Teorem 8 hold true and
(Γ(n(α + 1)))/(βn− 1Γ(α + 1))< ec log log n, n> 5040 then
Riemann hypothesis holds true.

Theorem 11. Te operator JRα,β(z) defned in (10) is
starlike in D if for every consecutive natural numbers n and
n + 1, with α≥ 0 and β> 0. (α + 1)σ(n)≥ 2βσ(n + 1)

Proof. In here, we use Lemma 7. We omit the proof that the
sequence nan􏼈 􏼉 is nonincreasing since it is similar to the one
in Teorem 8. Terefore, we need to show that
nan − (n + 1)an+1􏼈 􏼉 is also nonincreasing. For the sake of
simplicity, we let bn � nan − (n + 1)an+1 and we have

bn − bn+1 � nan − 2(n + 1)an+1 +(n + 2)an+2

�
nβn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n) −

2(n + 1)βnΓ(α + 1)

Γ((n + 1)(α + 1))
σ(n + 1) +

(n + 2)βn+1Γ(α + 1)

Γ((n + 2)(α + 1))
σ(n + 2)
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≥
nβn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n) −

2(n + 1)βnΓ(α + 1)

Γ((n + 1)(α + 1))
σ(n + 1)

≥
nβn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n) −

2(n + 1)βnΓ(α + 1)

Γ(n(α + 1) + 1)
σ(n + 1)

�
n
2
(α + 1)βn− 1Γ(α + 1)

Γ(n(α + 1) + 1)
σ(n) −

2(n + 1)βnΓ(α + 1)

Γ(n(α + 1) + 1)
σ(n + 1)

�
βn− 1Γ(α + 1)

Γ(n(α + 1) + 1)
Y(n),

(31)

where Y(n) � n2(α + 1)σ(n) − 2(n + 1)βσ(n + 1). We use
the fact that n2 ≥ n + 1, n> 1,

Y(n) � n
2
(α + 1)σ(n) − 2(n + 1)βσ(n + 1)

≥ (n + 1)(α + 1)σ(n) − 2(n + 1)βσ(n + 1)

≥ (n + 1)((α + 1)σ(n) − 2βσ(n + 1))≥ 0.

(32)

□

Theorem 12. Te operator JRα,β(z) defned in (10) is
convex in D if for every consecutive natural numbers n and
n + 1, with α≥ 0 and β> 0.

􏽘

∞

n�2

n
2βn− 1σ(n)

(α + 1)
n− 1

(n − 1)!
< 1. (33)

Proof. Let

p(z) � 1 +
zJRα,β″ (z)

JRα,β′ (z)
, z ∈ D, (34)

p(z) is analytic in D and p(0) � 1. We need to prove that
|p(z) − 1|< 1,

zJRα,β″ (z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽘
∞

n�2

n(n − 1)βn− 1Γ(α + 1)σ(n)

Γ(n(α + 1))
z

n− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

< 􏽘
∞

n�2

n(n − 1)βn− 1Γ(α + 1)σ(n)

Γ(n(α + 1))

≤ 􏽘
∞

n�2

n(n − 1)βn− 1σ(n)

(α + 1)
n− 1

(n − 1)!

JRα,β′ (z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 1 + 􏽘
∞

n�2

nβn− 1Γ(α + 1)σ(n)

Γ(n(α + 1))
z

n− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

> 1 − 􏽘
∞

n�2

nβn− 1Γ(α + 1)σ(n)

Γ(n(α + 1))

≥ 1 − 􏽘
∞

n�2

nβn− 1σ(n)

(α + 1)
n− 1

(n − 1)!
.

(35)

From equations (13) and (14), we obtain

zJRα,β″ (z)

JRα,β′ (z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

􏽐
∞
n�2 n(n − 1)βn− 1σ(n)/(α + 1)

n− 1
(n − 1)!

1 − 􏽐
∞
n�2 nβn− 1σ(n)/(α + 1)

n− 1
(n − 1)!

< 1. (36)
□

Since the coefcients of a univalent function satisfy the
inequality an ≤ n, we derive the following results.

Corollary 13. If the conditions of Teorem 12 hold true, then

σ(n)≤
Γ(n(α + 1))

βn− 1Γ(α + 1)
, n≥ 2. (37)

Corollary 14. If the conditions of Teorem 12 hold true, and
(Γ(n(α + 1)))/(βn− 1Γ(α + 1))< ecn log log n, n> 5040 then
Riemann hypothesis holds true.

3. Inclusion Results of JRα,β(z) in Spiral-Like
and Convex Spiral-Like Subclasses

Defnition 15. Function f ∈ A of the form (6) is said to
spiral-like if and only if it meets the following conditions
Re(eiξ(zf′ (z))/(f(z))) > 0, z ∈ D, ξ ∈ C but |ξ|< π/2.

Note that a function f ∈ A is said to be a convex spiral-
like if zf′ (z) is spiral-like.

Next, we utilize the linear operator JRα,β(z) to in-
troduce the following two subclasses of spiral-like functions
and convex spiral-like functions.
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Defnition 16. For the real values of ρ, c, λ, ξ such that
0≤ ρ, c􏼈 􏼉< 1 α≥ 0, β> 0 and |ξ|< π/2, a subclass Sη,λ (ξ, c, ρ),
named as spiral-starlike function is defned by

Sη,λ (ξ, c, ρ) ≔ Re e
iξ zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
⎛⎝ ⎞⎠> c cos ξ, z ∈ D

⎧⎨

⎩

⎫⎬

⎭. (38)

Defnition 17. For the real values of ρ, c, λ, ξ such that
0≤ ρ, c􏼈 􏼉< 1 with α≥ 0, β> 0 and |ξ|< π/2, a subclass
Kη,λ (ξ, c, ρ), named as spiral-convex function is defned by

Kη,λ (ξ, c, ρ) ≔ Re e
iξ zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
⎛⎝ ⎞⎠> c cos ξ, z ∈ D

⎧⎨

⎩

⎫⎬

⎭. (39)

Next, we obtain sufcient conditions for function
JRα,β(z) given by (13) to be a member of the classes
Sη,λ (ξ, c, ρ) and Kη,λ (ξ, c, ρ), respectively. Tese conditions
are presented in the following theorems.

Theorem 18. Te operator JRα,β(z) is in the class
Sη,λ (ξ, c, ρ), if

zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1 − σ

|ξ|≤ cos− 1 1 − σ
1 − ξ

􏼠 􏼡,

(40)

where 0≤ ρ, c􏼈 􏼉< 1, α≥ 0, β> 0 and |ξ|< π/2.

Proof. Using the inequality that if |(zJRα,β′ (z))/((1−

ρ)JRα,β(z) + ρJzRα,β′ (z)) − 1|< 1 − σ, then for w(z) ∈ Ω:

TheClass of analytic functions with positive real part, we can
write

zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
� 1 +(1 − σ )w(z). (41)

□

Tus, for spiral properties, we have

Re e
iξ zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
⎛⎝ ⎞⎠ � Re e

iξ
[1 +(1 − σ )]􏽮 􏽯

� cos ξ +(1 − σ )R e
iξ

w(z)􏽮 􏽯

≥ cos ξ − (1 − σ ) e
iξ

w(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

> cos ξ − (1 − σ )

≥ λ cos ξ.

(42)

As long |ξ|≤ cos− 1((1 − σ)/(1 − ξ)), the function f be-
longs to the class Sη,λ (ξ, c, ρ).

Observed that by putting σ � 1 − (1 − λ) cos ξ in
Teorem 18, we deduce a corollary as follows.

Corollary 1 . JRα,β(z) ∈ Sη,λ(ξ, c, ρ) if the following in-
equality holds

zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<(1 − λ) cos ξ. (43)

Theorem 20. Te operator JRα,β(z) belongs to the class
Sη,λ (ξ, c, ρ), if

6 International Journal of Mathematics and Mathematical Sciences



􏽘

∞

n�2
[(1 − ρ)(n − 1)sec ξ +(1 − c)(1 + nρ − ρ)]

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)≤ 1 − c, (44)

where 0≤ ρ, c􏼈 􏼉< 1, α≥ 0, β> 0 and |ξ|< π/2. Proof. By Corollary 14, it is enough to show that the ex-
pressions in (17) are satisfed. Considering the left-hand side
(L.H.S.).

L.H.S �
zJRα,β′ (z)

(1 − ρ)JRα,β(z) + ρJzRα,β′ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
􏽐
∞
n�2(1 − ρ)(n − 1)βn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)z

n

1 + 􏽐
∞
n�2(ρn − ρ + 1)βn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)z

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

<
􏽐
∞
n�2(1 − ρ)(n − 1)βn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)

1 − 􏽐
∞
n�2(1 + nρ − ρ)βn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)

.

(45)

Te last expression is bounded above by (1 − c) cos ξ, if

􏽘

∞

n�2
(1 − ρ)(n − 1)

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)

<(1 − c) cos ξ 1 − 􏽘
∞

n�2
(1 + nρ − ρ)

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)

⎧⎨

⎩

⎫⎬

⎭.

(46)

After some simple work the equivalent form we received
from above expression is

􏽘

∞

n�2
[(1 − ρ)(n − 1)sec ξ +(1 − c)(1 + nρ − ρ)]

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)≤ 1 − c. (47)

Te last expression proves the assertion of
Teorem 20. □

Theorem 21. Te operator JRα,β(z) is in the class
Kη,λ (ξ, c, ρ), if
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zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1 − σ

|ξ|≤ cos− 1 1 − σ
1 − ξ

􏼠 􏼡 hold,

(48)

where 0≤ ρ, c􏼈 􏼉< 1, α≥ 0, β> 0, and |ξ|< π/2.

Proof. Using the inequality that if |(zJRα,β″ (z) + J

Rα,β′ (z))/(JRα,β′ (z) + ρJzRα,β″ (z)) − 1|< 1 − σ, then for
w(z) ∈ Ω, we can write

zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
− 1 � 1 +(1 − σ )w(z),

Re e
iξ zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
− 1⎛⎝ ⎞⎠ � Re e

iξ
[1 +(1 − σ )]􏽮 􏽯

� cos ξ +(1 − σ )R e
iξ

w(z)􏽮 􏽯

≥ cos ξ − (1 − σ ) e
iξ

w(z)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

> cos ξ − (1 − σ )

≥ λ cos ξ,

(49)

□

As long |ξ|≤ cos− 1(1 − σ/1 − ξ), the function JRα,β(z)

belongs to the class Kη,λ (ξ, c, ρ).
Observed that by putting σ � 1 − (1 − λ) cos ξ in Te-

orem 21, we deduce a corollary as follows.

Corollary 22. JRα,β(z) ∈Kη,λ(ξ, c, ρ) if the following in-
equality holds

zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<(1 − λ) cos ξ. (50)

Theorem 23. Te operator JRα,β(z) belongs to the class
Kη,λ (ξ, c, ρ), if

􏽘

∞

n�2
[(1 − ρ)(n − 1)sec ξ +(1 − c)(1 + nρ − ρ)]n

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)≤ 1 − c, (51)

where 0≤ ρ, c􏼈 􏼉< 1, α≥ 0, β> 0 and |ξ|< π/2. Proof. By Corollary 22, it is enough to show that the ex-
pressions in (18) are satisfed; then, by considering the left-
hand side of (6), we obtain

zJRα,β″ (z) + JRα,β′ (z)

JRα,β′ (z) + ρJzRα,β″ (z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

􏽐
∞
n�2(1 − ρ)(n − 1)nβn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)z

n

1 + 􏽐
∞
n�2 n(ρn − ρ + 1)βn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)z

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

<
􏽐
∞
n�2(1 − ρ)(n − 1)nβn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)

1 − 􏽐
∞
n�2(1 + nρ − ρ)nβn− 1Γ(α + 1)/Γ(n(α + 1))σ(n)

.

(52)

Te last expression is bounded above by (1 − c) cos ξ, if
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􏽘

∞

n�2
(1 − ρ)(n − 1)

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)

<(1 − c) cos ξ 1 − 􏽘
∞

n�2
(1 + nρ − ρ)

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)

⎧⎨

⎩

⎫⎬

⎭.

(53)

After some simple calculation, the above inequality
becomes:

􏽘

∞

n�2
[(1 − ρ)(n − 1)sec ξ +(1 − c)(1 + nρ − ρ)]

βn− 1Γ(α + 1)

Γ(n(α + 1))
σ(n)≤ 1 − c. (54)

Te last expression proves the proclamation in
Teorem 23. □

4. Conclusions

Bymeans of Lambert series whose coefcients are the sum of
divisors function, we considered the normalized linear
operator JRα,β(z) by applying the convolution with
Rabotnov function. We provided sufcient conditions for
JRα,β(z) to be univalent, starlike, and convex, respectively.
When applicable, we expand the derived results by applying
two Robin’s inequalities (3) and (4).
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