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Te main objective of this paper is to analyse investment returns using a stochastic model and inform investors about the best
stock market to invest in. To this efect, a Markov chain random walk model was successfully developed and implemented on 450
monthly market returns data spanning from January 1976 to December 2020 for Canada, India, Mexico, South Africa, and
Switzerland obtained from the Federal Reserves of the Bank of St. Louis. Te limiting state probabilities and six-month moving
crush probabilities were estimated for each country, and these were used to assess the performance of the markets. Te Mexican
market was observed to have the least probabilities for all the negative states, while the Indian market recorded the largest limiting
probabilities. In the case of positive states, theMexicanmarket recorded the highest limiting probabilities, while the Indianmarket
recorded the lowest limiting probabilities. Te results showed that the Mexican market performed better than the others over the
study period, whilst India performed poorly. Tese fndings provide crucial information for market regulators and investors in
setting regulations and decision-making in investment.

1. Introduction

According to Tealab [1], time series is a general problem of
great practical interest in many disciplines, including eco-
nomics and fnance. Tealab [1] acknowledged that time
series allows one to discover future series values from past
values with some margin of error. In the late 70s, Box and
Jenkins did important work in studying linear mathematical
models for time series data [2]. Tese models are autore-
gressive (AR), moving average (MA), and their extensions
(ARMA and ARIMA). However, these linear models are
based on some distributional and dependency assumptions
that most time series data do not often exhibit.Tis led to the
development of GARCH and EGARCH models to account
for error terms’ dependence on time series data.

It has, however, been observed that most real-time series
appear to follow nonlinear behaviour and that the approach
by Box and Jenkins is not sufcient to represent their

dynamics [3, 4]. Hence, in the most relevant literature,
a wide range of models that suggest diferent mathematical
representations of the nonlinear presence in data have been
presented, such as models based on schemes [5] and dif-
ferent types of artifcial neural networks (ANNs) [4, 6–8].
Other researchers have presented hybrid models of ANNs
and others [9–12].

Furthermore, due to challenges of volatility and ran-
domness, which bedevil most statistical time series models,
some researchers have resorted to the stochastic model
presentation of time series, ignoring the randomwalk nature
[12–14]. Tough the theory of random walk was initially
associated with market returns, a lot of stochastic time-series
research [15] does not include the random walk
characteristics.

One of the time series data that have much attention
from researchers is stock market returns. Stock market
returns facilitate the trading of shares of companies or
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organisations in a country [16]. Te strength of the economy
can be determined by looking at the stock market. Increased
investments are correlated with higher share prices, and
decreased investments are correlated with lower share pri-
ces. Earning proft is everyone’s goal when they invest in the
stock market. However, because the stock market is a highly
volatile fnancial market, an investor’s success or failure will
depend greatly on the choices made. Tis depends on his
understanding of the stock market and the strategies or
models used to forecast price fuctuations that may occur as
a result of a wide range of diferent factors. Many models
have been used over the years to attempt to predict the
behaviour of themovement of stock prices tominimise if not
eliminate the risk of sufering losses in the stock market.
Hossain and Ali [17] noticed that the daily stock price ex-
hibits randomness. Terefore, fnding the right model for
prediction and analysis has been a concern for many re-
searchers. For instance, Adesokan et al. [18] claim that the
geometric Brownian motion (GBM) can only be used to
predict prices for a maximum of two weeks, even though
their research focused on small businesses. Also, the GBM
fails to account for periods of constant values [19]. Te
Capital Asset Pricing Model (CAPM) uses a risk-free rate in
determining the expected return, but this risk-free rate is
also susceptible to volatility. All of these shortfalls give fuel to
the debate as to which model is reliable for making decisions
in the stock market. Hence, there is a continuous need to
come up with new models or review and upgrade existing
models to try as much as possible to reduce to the barest
minimum the chances of failure in investing in a stock
market. Te importance of making well-informed decisions
that would enhance the chances of success in the stock
market cannot be overemphasised; one needs to observe the
trend and behaviour of equity before purchasing stakes in it,
as the size of loss which may arise from poor decisions
cannot be overlooked. Since the stock market is a volatile
market which has the random walk property, models which
capture volatility would be expected to inform good pre-
dictions. Terefore, the goal of this paper is to propose
a method for analysing investment returns as a Markov
chain random walk where the assumptions of Markov chain
and randomness are incorporated. In this paper, the Markov
chain is defned as the number of consecutive changes in the
investment return of a stock market with infnite state space.
Te data used were 450 monthly returns from fve randomly
selected countries, and the limiting probabilities and the
mean recurrence times of the Markov chain were estimated
to determine which of the selected countries exhibited the
least risk for investment.

Te rest of the paper is organised as follows. Section 2
reviewed some related literature on the paper. Section 3
involves the theoretical framework, which reviews the rel-
evant defnitions and theorems (with proofs where neces-
sary) based on the methodology developed. Section 3 also
contains a model specifcation, which provides the mathe-
matical basis for estimating the parameters of the model to
be used. Estimation of model parameters which discusses the
estimation procedure then follows. In Section 4, the pro-
posedmodel was applied to real-life data and the results were

presented. Section 5 provides conclusions and recommen-
dations of the study.

2. Review of Literature

Te most prominent feature of the stock market is its
volatility; hence, many researchers have investigated the
risk-return trade-of in various stock markets. For instance,
Fang et al. [20] investigated the risk-return trade-of in the
Vietnam stock market from 2007 to 2014. Tey noticed that
in emerging stock markets, systematic risks continue to
dominate asset returns and that idiosyncratic risk has little
bearing on stock market pricing. Fang et al. [20] focused on
the volatility of one stockmarket (the Vietnam stockmarket)
using idiosyncratic volatility and conditional idiosyncratic
volatility, while this study investigated the volatility of 5
stock markets across the world using a randomwalkMarkov
chain. Amiri et al. [21] investigated the risk-return trade-of
in the stock market by accounting for the presence of noise
traders. Te noise traders present the group of investors who
either base their investment strategies on feelings or hold
unjustifed optimistic/pessimistic views regarding market
prospects. Amiri et al. [21] analysed the volatility of the US
stock market using the Baker and Wurgler sentiment index
and the Michigan Consumer Confdence Index, while this
study analysed the volatility of stock markets using Markov
Chain random walk. Jayawardena et al. [22] used high-
frequency data of related assets traded in other markets
where intraday data are available to examine the risk-return
trade-of in the Australian Securities Exchange (ASX).
Jayawardena et al. [22] focused on risk-return trade-of,
while this study focused on the volatility of stock market
returns.

Another aspect of the stock market that has been in-
vestigated is the efciency of the stock returns [23, 24]. For
example, Zhu et al. [24] examined the efciency of 7 Latin
stock returns using mean-variance analysis, Hurst exponent
and runs, and variance-ratio tests.Te seven Latin American
stock markets include Colombia, Argentina, Brazil, Chile,
Ecuador, Peru, and Mexico’s daily stock returns from
January 2003 to December 2014. Teir results show that the
randomness and efciency of various Latin American
markets have improved after the recent global fnancial crisis
(GFC) in most of the stock markets. Derbali [23] employed
runs, autocorrelation, and unit root analysis to examine the
market efciency in emerging and Frontier markets in the
Middle East and North Africa (MENA). Using daily and
weekly market index returns, their results indicate that both
emerging and frontier markets show a lack of market ef-
ciency. Tese researchers assessed the efciency of the stock
returns using mean-variance analysis, Hurst exponent and
runs, and variance-ratio tests without considering stochastic
models, and this study bridged the gap by using the Markov
chain to assess the efciency of stock markets.

Some researchers have also examined the links between
the stock market index and commodities such as crude oil
and natural gas. Nagayev et al. [25] investigated the re-
lationship between commodities such as gold, gas, agri-
culture, and livestock and the Islamic equity index. Teir
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results revealed that the link between commodities and
Islamic equities is time-varying and volatile. Chebbi and
Derbali [26] use Dynamic Conditional Correlation (DCC) to
examine the dynamics of the correlations between com-
modities (crude oil and natural gas) and Islamic indices. Te
empirical results indicate that the volatilities of commodity
returns are strongly correlated to those of the stock index.
Te articles reviewed under this section focused on the
relationship between stock market indexes and commodi-
ties, while this study assessed the volatility of stock market
returns.

Other researchers have resorted to stochastic models in
analysing the stock market indices [12, 15]. Using the
properties of the time-homogeneous, the Markov chain
model was established by Zhang and Zhang [27] to examine
the daily stock market index of China to avoid the blind and
irrational behaviour of investors. Mettle et al. [15] modelled
share prices as geometrically ergodic Markov chains with
countably infnite states based on ideas about stochastic
processes elsewhere. Some researchers have also used ran-
dom walk-in analysis of the market efciency of countries
based on the stock market. For example, Dias et al. [28] used
a random walk to examine the market efciency of US,
Chinese, and European capital markets within the context of
the global COVID-19 pandemic. However, these studies do
not factor in the random walk nature into stochastic models.

From the literature reviewed, even though all papers
focused on the volatility or the efciency of the stock market,
they do not consider the stock market randomness in the
stochastic models. Hence, this paper contributes to the
literature by adding the random walk characteristics of the
stochastic Markov chain model to enhance good decision-
making in investment.

3. Materials and Methods

Tis section entails a theoretical framework which reviews
the relevant defnitions and theorems (with proofs where
necessary) upon which the methodology is based, followed
by research design, estimation techniques, model specif-
cation, and a detailed explanation of the estimation of model
parameters.

3.1.TeoreticalFramework. Tis section of the paper reviews
relevant defnitions and theorems, most of which are
without proof, to this study. Te proofs of the theorems may
be found in Bhat [29] or any standard textbook on stochastic
processes.

Defnition 1. Stochastic Process.
A stochastic process is a set of random variables

Xt: t ∈ T􏼈 􏼉 T that are known as the parameter space of the
process, and the set of all possible values assumed Xt is called
the state space S of the process. Each of the spaces S T can be
continuous or discrete. Hence, one can talk about four types
of stochastic processes depending on the type of space. Te
study considers the processes with discrete state space and
discrete parameter space.

Defnition 2. Probability Distribution.
Suppose that m, n ∈ T. Ten, the function

Pij
(m,n)

� P Xn � j | Xm � i( 􏼁, (1)

where i, j ∈ S the state space, is called the conditional dis-
tribution function of a stochastic process Xn: n ∈ T􏼈 􏼉. Te
probability in (1) is called transition probability.

Defnition 3. Time-Homogeneous.
Te stochastic process Xn: n ∈ T􏼈 􏼉 is said to be time-

homogeneous if

Pij
(t,n+t)

� P Xn � j | X0 � i( 􏼁. (2)

Tus, the probability depends on the time diference and
not on the points in time. If they do not, the processes are not
time-homogeneous.

Defnition 4. Markov Dependence.
Te stochastic process Xn: n ∈ T􏼈 􏼉 with state space S is

said to exhibit Markov dependence if

P Xn � j | Xn1 � i1, Xn2 � i2, . . . , Xnk � ik􏼂 􏼃

� P Xn � j | Xn1 ∈ i1􏼂 􏼃,
(3)

for n> n1 > n2 > . . . > nk any n> n1 > n2 > . . . > nk ∈ T and
all i, j ∈ S.

Stochastic processes with discrete state space which
satisfy equation (3) are called Markov chains.

Te most powerful equations in the analysis of Markov
chains with discrete parameter space known as the Chap-
man–Kolmogorov equations are discussed presently.

Defnition 5. Te Chapman–Kolmogorov Equations.
For a Markov chain with discrete parameter space.

Pij
(m,n)

� 􏽘
k∈S

P
(m,r)
ik P

(r,n)
kj , (4)

where m, r, n are the time parameters and m< r< n. S is the
state space and i, k, j are the states, i.e., i, k, j ∈ S. P(m,n)

ij is the
probability of moving from state i at time m to state j at time
n. P(m,r)

ik is the probability of moving from state i at time m to
state k at time r. P(r,n)

kj is the probability of moving from state
k at time r to state j at time n.

Defnition 6. One-Step Dependence Assumption.
For a Markov chain with discrete parameter space, the

probability of state j at time t given state i at time t − 1 is

Pij(t) � P Xt� j|Xt− 1 � i􏼂 􏼃. (5)

Te assumption of time homogeneity (stationary) im-
plies, we can write

Pij(t) � Pij ∀ t ∈ T. (6)

If Pj(t) � P(Xt � j), it can be shown by the total
probability rule that
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􏽘
k∈S

Pi(t − 1)Pij; j � 1, 2, . . . ; t � 0, 1, 2, . . . , (7)

with t � 0 being the initial time.
In the matrix form (7) can be written as

P(t) � P(t − 1)P, (8)

where P(t) � (p1(t), p2(t), . . .) and P � (pij) is a square
matrix.

Te result of repeated application of equation (8) is

P(t) � P(0)Pt
, (9)

where Pt is the matrix P raised to the power t. Te elements
of matrix P � (pij) satisfes the following postulates.

(a) 0≤Pij ≤ 1
(b) 􏽐k∈SPij � 1

A square matrix, whether fnite or infnite that satisfes
these two postulates is called a stochastic matrix or a tran-
sition probability matrix or simply a transition matrix.

Similar defnitions exist for nonhomogeneous chains,
which may be obtained from any standard book on sto-
chastic processes.

Defnition 7. n-Step Transition Probability.
For a Markov chain with discrete parameter space, the

probability of state j at time t + n given state i at time t (the
n-step transition probability) is.

P
(n)
ij (t) � P Xt+n� j|Xt � i􏼂 􏼃. (10)

If the process is time-homogeneous, equation (10)
becomes

P
(n)
ij � P Xn� j|X0 � i􏼂 􏼃. (11)

Te following is a theorem that deals with n-step
transition probabilities for time-homogeneous Markov
chains.

Theorem 8. n-Step Transition Probabilities for Time-
Homogeneous Markov Chains.

If a time-homogeneous Markov chain is subject to the
transition matrix P, then the n-step probabilities are the
elements of the matrix Pn (i.e., P raised to power n).

Proof. By using the Chapman–Kolmogorov equations and
acknowledging the Markovian property, the proof can be
established by mathematical induction. □

Defnition 9. Communication Relation (i↔j).
Te state j is said to be accessible from state i, if j can be

reached from i in a fnite number of steps. If two states and j

are accessible to each other, then they are said to com-
municate. Consequently, the communication relation (i↔j)

is an equivalence relation since it exhibits refexivity, sym-
metry, and transitivity [29].

Defnition 10. Irreducible.
A Markov chain is irreducible if all its states belong to

one equivalence class (i.e., all its states communicate).

Defnition 11. Periodicity.
Te period of a state i is defned as the greatest common

divisor of all integers n≥ 1, for which P
(n)
ii > 0. When the

period is 1, the state is said to be aperiodic. States in the same
equivalence class have the same period, which is also the
period of that class.

Defnition 12. Recurrent.
A state i is said to be recurrent if starting from state i,

eventual return to this state is certain.
When state i is recurrent, its mean recurrence time (μi) is

μi � 􏽘
∞

n�1
nf

(n)
ii , (12)

where μi is the mean recurrence time in state i, and f
(n)
ii is the

probability that starting from i the process returns to i for the
frst time in n steps.

Theorem 13. Limit of Markov Chain.

Let P be the transition probability matrix of an aperiodic
and irreducible Markov chain. Ten,

lim
n⟶∞

Pn
� π �

α

α

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (13)

where α � (π1, π2, . . .) with 0< πj < 1; j � 1, 2, . . . , m and
􏽐

m
j�1πj � 1. πj is the limiting probability of the jth column of

the Markov Chain, and m is the number of columns of the
limiting matrix and n represent the steps.

Proof. If P is a transition probability matrix of an aperiodic
and irreducible Markov chain. Ten, the matrix P has no
zero element. Let ϵ be the smallest element of P. Let pj be an
m-component column vector with a 1 in the jth place and 0
elsewhere. Further let an and bn be the minimum and
maximum components of the vector Pnpj. Clearly, a0 � 0
and b0 � 1. We have

Pnpj � P.Pn− 1pj n � 1, 2, . . . . (14)

Writing Pn− 1pj � X in an and bn, we obtain

b0 ≥ b1 ≥ b2 ≥ b3 ≥ , . . . ,

a0 ≤ a1 ≤ a2 ≤ a3 ≤ , . . . ,

bn − an ≤ (1 − 2ϵ) bn− 1 − an− 1( 􏼁 n≥ 1.

(15)

Let dn � bn − an; we then have

d1 ≤ (1 − 2ϵ) b0 − a0( 􏼁 � (1 − 2ϵ)
d2 ≤ (1 − 2ϵ)d1 ≤ (1 − 2ϵ)2

⋮ ⋮
dn ≤ (1 − 2ϵ)dn− 1 ≤ (1 − 2ϵ)n

,

(16)
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which shows that as n⟶∞, dn⟶ 0, and hence bn and an

approach a common limit.
Also, Pnpj is the jth column of Pn approaches a constant,

say πj, as n⟶∞. Further an ≤ πj ≤ bn for all n≥ 1 but
a1 > 0 and b1 < 1 and hence 0< πj < 1.

Clearly, 􏽐
m
j�1P

(n)
ij � 1 for all n, which should be true of

limn⟶∞ Pn. Hence, the theorem is proved. □

Theorem 14. Limiting Distribution of the Process of Markov
Chain

Given the transition probability matrix P of an aperiodic
and irreducible Markov chain, there exists a unique proba-
bility vector α � (π1, π2, . . .) such that 􏽐

∞
j�1πj and

πP � π,

Pπ � π,
(17)

where π is a matrix of identical rows, represented by α. Te
probability vector α is the limiting distribution of the process.

Proof. Te proof is trivial by noting that π � limn⟶∞ Pn �

limn⟶∞ Pn+1 � P limn⟶∞ Pn � Pπ from Teorem 13. □

3.2. Research Design. Tis paper employed a descriptive
research design. A descriptive study is concerned with the
estimations and the relationship between variables [30].Tis
approach is appropriate for this study since we intend to
analyse investment returns for good investment decisions.

3.3. EstimationTechniques. In our paper, we use the Markov
chain random walk to analyse the investment returns of the
countries. First, we defned the Markov chain to exhibit
infnite state space S � 0, ± 1, ± 2, ± 3, . . .{ }. Ten, the
limiting probabilities and the mean recurrence times of the
state space are estimated from the proposed methods
(Markov chain random walk). We then estimate the six-
month moving crush probabilities of the investment returns
to know the performance of the investment returns of the
various selected countries over the period.

3.3.1. Model Specifcation. Defne Xn (n � 1, 2, 3, . . .) to be
the number of consecutive changes in the investment return
of a stock market on the nth market period. Ten Xn so
defned, with emphasis on positive and negative changes, is
a Markov chain with state-space � 0, ± 1, ± 2, ± 3, . . .{ }. If
we let the probabilities of negative change, no major change
and positive change of the investment return of the market
be r, p, and q, respectively; then assuming independence of
price change each market period, the one-step transition
probabilities are given as follows:

pi i− 1 � r, pi i � p,

pi i+1 � q, i � 0, ± 1, ± 2, ± 3, . . . ,
(18)

with pi j � 0 otherwise.
Clearly, the Markov chain Xn exhibits Markov de-

pendence since the current state of the process depends on

the state at the immediate past period; forXn � − 2 or 0 if and
only if the process was at state − 1 (i.e., Xn � k or
k + 2(k � 0, ± 1, ± 2, ± 3, . . .)) if and only if it was at state
k + 1 at the immediate past market period (i.e. Xn− 1 � k + 1).
Figure 1 depicts the directed multigraph of the process.

Obviously, from Figure 1, the chain is irreducible since
all the states communicate and aperiodic because each state
has period one. Hence, the chain is ergodic and has a limiting
distribution.

Assume α� (. . . α− 3, α− 2, α− 1, α0, α1, α2, α3, . . .) is
the limiting distribution and P � (pi j) is the one-step
transition matrix of the chain. Ten, assuming time
homogeneity, equation αP � α which is a consequence of
Teorem 14, results in the following sequence of
equations:

qαk− 1 + pαk + rαk+1 � αk, k � 0, ± 1, ± 2, ± 3, . . . . (19)

Relation (19) is an infnite sequence of equations which is
difcult to solve. However, if it is assumed that at some
number M; αk � 0, k � ± (M + 1), ± (M + 2), ± (M + 3),

. . ., the sequence of equation (19) becomes.

pα− M + rα− (M− 1) � α− M,

qαk− 1 + pαk + rαk+1 � αk, k � 0, ± 1, ± 2, ± 3, . . . , (M − 1),

qα(M− 1) + pαM � αM,

(20)

which can be solved iteratively. In this paper, we take M to
be the number of consecutive negative changes in the in-
vestment return of a market to crush (market failure). If
M � 5, the sequence of equation (20) becomes

pα− 5 + rα− 4 � α− 5,

qαk− 1 + pαk + rαk+1 � αk, k � 0, ± 1, ± 2, ± 3, ± 4,

qα4 + pα5 � α5.
(21)

Now, solving the sequence of equations iteratively in
a backwards manner, we have

α− 5 � b− 5α− 4α5 � b5α4,

α− 4 � b− 4α− 3α4 � b4α3,

α− 3 � b− 3α− 2α3 � b3α2,

α− 2 � b− 2α− 1α2 � b2α1,

α− 1 � b− 1α0α1 � b1α0,

(22)

which results in

α− 5 � h− 5α0α5 � h5α0,

α− 4 � h− 4α0α4 � h4α0,

α− 3 � h− 3α0α3 � h3α0,

α− 2 � h− 2α0α2 � h2α0,

α− 1 � h− 1α0α1 � h1α0,

(23)

where
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h− 5 � b− 5b− 4b− 3b− 2b− 1 �
r
5

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h− 4 � b− 4b− 3b− 2b− 1 �
r
4
(1 − p)

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h− 3 � b− 3b− 2b− 1 �
r
3
[(1 − p)

2
− qr]

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h− 2 � b− 2b− 1 �
r
2

(1 − p)
3

− 2qr(1 − p)􏽨 􏽩

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h− 1 � b− 1 �
r (1 − p)

4
− 3qr(1 − p)

2
+ q

2
r
2

􏽨 􏽩

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

(24)

and

h5 � b5b4b3b2b1 �
q
5

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h4 � b4b3b2b1 �
q
4
(1 − p)

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h3 � b3b2b1 �
q
3
[(1 − p)

2
− qr]

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h2 � b2b1 �
q
2

(1 − p)
3

− 2qr(1 − p)􏽨 􏽩

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

h1 � b1 �
q (1 − p)

4
− 3qr(1 − p)

2
+ q

2
r
2

􏽨 􏽩

(1 − p)
5

− 4qr(1 − p)
3

+ 3q
2
r
2
(1 − p)

,

(25)

with

b− 5 �
r

1 − p
b5 �

q

1 − p
,

b− 4 �
r(1 − p)

(1 − p)
2

− qr
b4 �

q(1 − p)

(1 − p)
2

− qr
,

b− 3 �
r (1 − p)
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− qr􏽨 􏽩
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b3 �
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Figure 1: Te directed multigraph.
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Now, taking h0 � 1 and solving for α0, we have
􏽐

k�5
k�− 5αk � 􏽐

k�5
k�− 5hkα0 � 1, which implies that

α0 � 􏽘
5

k�− 5
hk

⎡⎣ ⎤⎦

− 1

. (27)

Te truncated limiting distribution of the Markov chain
(also a random walk) is

α � α− 5, α− 4, α− 3, α− 2, α− 1, α0, α1, α2, α3, α4, α5( 􏼁. (28)

3.4. Estimation of Model Parameters

3.4.1. Limiting State Probabilities. Suppose Yt (t � 1, 2, 3,

. . . , m + 1) is the all share index of a stock market at time t

and let rt � ln(Yt/Yt− 1)(t � 2, 3, . . . , m + 1) be the in-
vestment return at time t. Defne the indicator functions
δkt (k � 1, 2, 3;   t � 2, 3, . . . , m + 1) as

δ1t �
1, if   rt ≤ − θ,

0, otherwise,
􏼨

δ2t �
1, if   rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< θ,

0, otherwise,

⎧⎨

⎩

δ3t �
1, if   rt ≥ θ,

0, otherwise,
􏼨

(29)

where θ is a value to be determined intuitively based on
empirical data.

It is clear from equation (29) that 􏽐
3
i�1􏽐

m+1
t�2 δit � m. Te

estimates of r, p, and q in equation (18) may be obtained,
respectively, using proportions.

􏽢r �
􏽐

m+1
t�2 δ1t

m
,

􏽢p �
􏽐

m+1
t�2 δ2t

m
,

􏽢q �
􏽐

m+1
t�2 δ3t

m
,

(30)

where 􏽐
m+1
t�2 δ1t is the summation of the number of negative

changes, 􏽐
m+1
t�2 δ2t is the summation of the number of no

changes, and 􏽐
m+1
t�2 δ3t is the summation of the number of

positive changes. m is the number of investment return in
the dataset.

Tese estimates may then be substituted in equation (26)
which will subsequently lead to the estimation of the limiting
distribution in equation (28) represented by the
components.

􏽢αk, k � 0, ± 1, ± 2, ± 3, ± 4, ± 5. (31)

Te pictorial display may be obtained by plotting the
points.

k, 􏽢αk( 􏼁or; k, 􏽢μk( 􏼁; k � 0, ± 1, ± 2, ± 3, ± 4, ± 5, (32)

where 􏽢μk is an estimate of the mean recurrence time of state
k given as

􏽢μk �
1
􏽢αk

, k � 0, ± 1, ± 2, ± 3, ± 4, ± 5. (33)

Te paper proposes that markets with comparably lower
limiting probabilities (or higher mean recurrence times) for
negative states and higher limiting probabilities (or lower
mean recurrence times) for positive states are the best-
performing markets.

3.4.2. Six-Month Moving Crush Probabilities. Suppose the
data resulted in n investment returns rt (t � 1, 2, 3, . . . , n).
Defne r6j+1, r6j+2, · · · , r6j+l(j � 0, 1, 2, · · · ,ω) to be the six-
month sliding vector of l consecutive investment returns of
the original data with ω � (n − l)/6. From the jth sliding
vector of l consecutive investment returns based on equation
(23), we have the jth sliding crush probability α(j)

− 5 of the
given market to be

α(j)
− 5 � h− 5α

(j)
0 . (34)

Substitute equation (24) into equation (34), we have

α(j)
− 5 �

r
5
j

1 − pj􏼐 􏼑
5

− 4qjrj 1 − pj􏼐 􏼑
3

+ 3q
2
jr

2
j 1 − pj􏼐 􏼑

α(j)
0 .

(35)

Again, suppose 􏽢rj, 􏽢pj, and 􏽢qj(j � 0, 1, 2, · · · ,ω) are the
corresponding estimates of r, p, and q in equation (18), then
the jth sliding crush probability of the given market based on
equation (35) is

α(j)
− 5 �

􏽢r
5
jα

(j)
0

1 − 􏽢pj􏼐 􏼑
5

− 4􏽢qj􏽢rj 1 − 􏽢pj􏼐 􏼑
3

+ 3􏽢q
2
j􏽢r

2
j 1 − 􏽢pj􏼐 􏼑

, j � 0, 1, 2, · · · ,ω, (36)

where α(j)
0 is based on the estimates 􏽢rj, 􏽢pj, and 􏽢qj using

equation (27). A pictorial display of the crush probabilities
may be obtained by plotting the points (j, α(j)

− 5 );
j � 0, 1, 2, · · · ,ω. Te best-performing markets are those
with smaller crush probabilities.

4. Results and Findings

Tis section displays the results and fndings of the studies. It
includes descriptive statistics and estimates of the param-
eters of increases, stability, and decreases in stock returns.
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Te long-run distributions of random walk by country and
six-month sliding crush probabilities by country are also
presented in this section. Te empirical results are also
discussed in Section 4.

4.1.Data andEmpirical Tests. Te data used in this study are
450 monthly returns per country, spanning from January
1976 to December 2020 for fve randomly selected countries
(i.e., Canada, India, Mexico, South Africa, and Switzerland).
Te selection of countries was as follows; frstly, countries
with data available from the study spanned time were se-
lected. Ten, out of these selected countries, fve countries
were randomly selected.

Te investment returns were computed from the
monthly all share index with 2015 as the base year for all fve
countries obtained from the Federal Reserve Bank of St.
Louis (https://fred.stlouisfed.org/categories/32264). Te
supplementary material attached contains the stock market
for all the fve countries used for the study. Figure 2 displays
the line graphs of all the countries for the period under
investigation.

As can be observed, the returns from all the countries are
almost stationary and fuctuate around zero. Te fuctua-
tions recorded by Canada, South Africa, and Switzerland are
comparatively minimal, while those of India and Mexico are
comparatively larger, especially in the frst half of the period,
with Mexico recording a prominent negative spike in
November 1987.

4.2. Descriptive Statistics of Investment Returns by Country.
Table 1 presents some descriptive statistics of the 540 in-
vestment returns for each country. Over the study period,
Mexico recorded the highest range (92.8% i.e.36.2% −

(− 56.6%)), spanning from − 56.6% to 36.2%, followed by
India with a range of 62.2% (i.e.34.7% − (− 27.5% )), then
South Africa (44.3%; − 30.2% to 14.0%), Switzerland (42.4%;
− 28.2% to 14.2%), and lastly, Canada with a range of 36.2%
spanning from − 25.0% to 11.2%. Tese culminate in Mexico
recording the highest volatility of approximately 9.0%,
followed by India (6.2%), then South Africa (4.9%), with
Canada and Switzerland recording the least volatility of
approximately 4.0%. Here, the results corroborate the earlier
position from the analysis that the returns of India and
Mexico exhibit larger fuctuations. Analytical observation of
the 95% confdence intervals (CIs) of the mean investment
return of the countries over the period indicates that Mexico
recorded a signifcantly higher mean investment return of
approximately 2.3%, followed by India with a mean return of
approximately 1.2%, then South Africa (0.9%) with Canada
and Switzerland recording the least mean return of ap-
proximately 0.5%.

4.3. Parameter Estimates by Country. One of the major
concerns of this paper is that of analysing the investment
returns as a Markov chain random walk and not too many
descriptive statistics. Tis led to the creation of data vectors
νi (i � 1, 2, 3) each of length 540 and containing the values

observed on the corresponding indicator variables δit (i �

1, 2, 3; t � 1, 2, · · · , 540) in equation (29) with θ � 0.01. Te
paper considers 1% changes in returns to be negligible.
Terefore, we set the parameter theta to be 0.01. Hence,
using equation (30), estimates of the parameters r, p and q

were computed for each country. Table 2 shows the estimates
by country, and the R-codes employed in the estimation
procedure are presented in “Appendix A: R codes 1.”

Te estimates in Table 2 for q show that Mexico (56.3%)
has the highest percentage of investment returns greater
than or equal to 1%, followed by India and South Africa with
the same percentage of approximately 53.7%, while Canada
and Switzerland provided the least percentage of approxi-
mately 50.0% each. Concerning the estimates of p, India
(12.6%) has the least proportion of investment returns in the
neighbourhood of zero (i.e., |rt|< 0.01), followed by Mexico
(14.8%), then South Africa (18.0%), and Canada (19.4%) with
Switzerland having the largest value of approximately 20.9%.
In the case of the estimates of r, South Africa (28.3%)
recorded the lowest percentage of investment returns less
than or equal to 1%, followed by Mexico (28.9%), then
Switzerland (29.1%), and Canada (30.7%) with India re-
cording the largest percentage of 33.7%. Hence, one can infer
that, over the period under investigation, the Mexican
market performed better, while the Canadian and Swiss
markets performed poorly.

4.4. Long-Run Distribution of Markov Chain Random Walk
by Country. Based on the estimates of these parameters and
using equation (23) together with equations (24) through
(27), the long-run probability distributions of the Markov
chain random walk were estimated and are presented in
Table 3, using Excel.

Higher values of limiting probabilities for positive states
represent good stock market returns. It implies that the
likelihood that the stock market price will consecutively
increase is high; hence, investing in such a market is good.
Low values of limiting probabilities for negative states in-
dicate that the possibility that the stock market will decrease
is low. It is clear from Table 3 that Mexico recorded the least
limiting probabilities for all the negative states, followed, on
average, by South Africa, then Switzerland and Canada, with
India recording the largest limiting probabilities. However,
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Figure 2: Historical evolution of monthly investment returns.
Notes. Data frequency is monthly, spanning from Jan 1976 to Dec
2020. Source: Authors’ computation.
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in the case of the positive states, Mexico recorded the highest
limiting possibilities for all the states, followed, on average,
by South Africa, then Switzerland and Canada, with India
recording the lowest limiting probabilities. Tis implies that
the likelihood that the Mexico stock market price index will
increase consecutively is high, and the possibility that the
Mexico stock market price index will decrease consecutively
is very low among the rest of the countries.

Tese go to buttress the point that the Mexican market
performed better over the period under consideration.
Figure 3 presents a better appreciation of these results.

For further assessment of the markets under in-
vestigation, the study estimated the six-month sliding crush
probabilities (from 2016 to 2020) for each country based on
equation (34). Figure 3 displays the sliding crush proba-
bilities by country. Te R codes for the computation of the

sliding crush probabilities are presented in “Appendix B: R
codes 2.”

Low crush probability signifes a good-performing
market for the six-month sliding period (2016–2020).
From Figure 4, it is evident that over the last fve years
(2016–2020) of the study period, the six-month crash
probabilities of India are higher than all the countries,
followed by those of Canada. Next is Switzerland, which
showed a slight negative trend over the fve years, while
Mexico and South Africa presented comparably smaller
crush probabilities. However, South Africa recorded higher
values for the frst three years (2016–2018) of the last fve
years than Mexico, which gave almost stable (no trend)
crush probabilities. Te last two years presented a situation
in which Mexico and South Africa recorded almost the same
crush probabilities, with Mexico (which has an increasing

Table 1: Descriptive statistics of investment returns by country.

Statistic
Country

Canada India Mexico South Africa Switzerland
Mean 0.00536 0.01172 0.02267 0.00880 0.00489
Std. dev. 0.04051 0.06193 0.09035 0.04928 0.04045
Sample variance 0.00164 0.00384 0.00816 0.00243 0.00164
Minimum − 0.24999 − 0.27517 − 0.56547 − 0.30228 − 0.28215
Maximum 0.11187 0.34699 0.36234 0.14036 0.14205
Range 0.36186 0.62216 0.92781 0.44264 0.4242
LL (95% CI) 0.00194 0.00649 0.01505 0.00464 0.00148
UL (95% CI) 0.00877 0.01694 0.03029 0.01295 0.00830
LL (95% CI) represents the lower limit of the 95% confdence interval and UL represents the upper limit of the 95% confdent interval. Source: Authors’
computation.

Table 2: Parameter estimates by country.

Country
Parameter estimate

r̂ p̂ q̂
Canada 0.30741 0.19444 0.49815
India 0.33704 0.12593 0.53704
Mexico 0.28889 0.14815 0.56296
South Africa 0.28333 0.17963 0.53704
Switzerland 0.29074 0.20926 0.50000
Source: Authors’ computation.

Table 3: Long-run distribution of Markov chain random walk by country.

State
Country

Canada India Mexico South Africa Switzerland
− 5 0.00604 0.00644 0.00294 0.00329 0.00482
− 4 0.01584 0.01669 0.00867 0.00952 0.01312
− 3 0.03171 0.03303 0.01984 0.02134 0.02738
− 2 0.05744 0.05907 0.04160 0.04374 0.05192
− 1 0.09912 0.10056 0.08402 0.08620 0.09411
0 0.16667 0.16667 0.16667 0.16667 0.16667
1 0.16062 0.16023 0.16373 0.16338 0.16184
2 0.15083 0.14998 0.15799 0.15714 0.15355
3 0.13495 0.13363 0.14683 0.14533 0.13928
4 0.10923 0.10760 0.12506 0.12293 0.11475
5 0.06755 0.06611 0.08265 0.08047 0.07256
Source: Authors’ computation.
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trend in crush probabilities) having a slightly higher crush
probability during the last two years than South Africa.
Tese show again that the Mexican market performed better
over the period under investigation, followed by South
Africa, with those in Canada and India performing poorly.

4.5. Discussion of Empirical Results. In choosing the right
market to invest in, one should consider the limiting
probability values for each market such that the market with
the highest limiting probability values for positive states and
the lowest limiting probability values for negative states
should be considered. It was recorded that Mexico has the
least limiting probabilities for all the negative states and the
highest limiting possibilities for all the positive states than
the rest of the countries, namely, South Africa, Switzerland,
Canada, and India. Tis implies that the Mexican market
performed better over the period under consideration. Tis
fnding corroborates with Zhu et al. [24], who observed that
the Global Financial Crisis (GFC) positively infuenced Latin
American markets, making them more efcient and ran-
dom. According to López Herrera et al. [31], the Mexican
market was still performing better during COVID-19 than
other markets. According to Dı́az et al. [32], in choosing the
right market to invest in, one has to consider selectivity,
timing, and diversifcation. Tey explained selection as an

analysis of values and focus on the outcome of individual
value price movements. Te timing involves the forecast of
movements in the price of ordinary assets from the values of
fxed income as corporate fertilisers and the treasure letters.
Diversifcation, on the other hand, is the construction of the
portfolio investor that minimizes risk subject to certain
restrictions.Tey explained that using these criteria Mexican
stock market performs well.

5. Conclusions, Practical Implications,
Limitation, and Further Research

As observed earlier, the main objective of this study is to
analyse investment returns as Markov chain random walk,
which was successfully done. Te Markov chain random
walk is also suitable for modelling investment returns to
enhance investment decisions among the stochastic models.
Te model was used to analyse 450 monthly market returns
spanning from January 1976 to December 2020 for each of
fve randomly selected countries, namely, Canada, India,
Mexico, South Africa, and Switzerland.

In the process, limiting state probabilities and crush
probabilities were estimated for each country. Mexican
market recorded the largest limiting probability values for
positive states. Tis means that when investors invest in the
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Mexican market, they can earn more returns than in the rest
of the other markets. Hence, the Mexican market performed
better over the study period, followed by the South African
market, then Switzerland and Canada, with the Indian
market recording less efciency.

Te paper is of the view that investors should consider
the Mexican market in their investment decisions this is
because it exhibits the largest limiting probability values for
positive states. Terefore, just like other stochastic models,
the Markov chain random walk model can also be used to
analyse other time series data for policy decisions using the
limiting probability values of the states.

Te limitation of the study is that of converting the time
series data to suit the Markov chain model, which is la-
borious. However, this is manageable with the use of pro-
gramming software.

For further research, the paper suggests applying the
proposed model to series from other disciplines and analysis
of time series as a Markov chain random walk in a varying
environment.

Appendix

A. R codes 1

dt< -data
v1<-c(rep(NA, 540))
v2<-c(rep(NA, 540))
v3<-c(rep(NA, 540))
for (i in 1 : 540) {

if (dt[i]≤ − 0.01) v1[i]< − 1 else v1[i]<- 0
if (abs(dt[i])≤ 0.01) v2[i]< − 1 else v2[i]< − 0
if (dt[i]≥ 0.01) v3[i]< − 1 else v3[i]< − 0
}

a<-sum (v1)
b< -sum (v2)
c< -sum (v3)
n< -sum (v1, v2, v3)
r� a/n
p� b/n
q� c/n

B. R codes 2

M< -cbind.data.frame (v1, v2, v3)
e< -NA
f< -NA
Y< -c (rep(NA, 3))
M1< -matrix (data� c(rep(NA, 1440)), ncol� 3,
nrow� 480)
X< -matrix (data� c(rep(NA, 30)), ncol� 3, nrow� 10)
for (j in 1 :10) {

e< -NA
f< -NA
e� 6 ∗ (j − 1) + 1
f� 6 ∗ (j − 1) + 480
M1< -matrix (data� c (rep(NA, 1440)), ncol� 3,
nrow� 480)
M1�M[(e : f ),]
Y< -colSums (M1)
X[j, 1]< -Y[1]/sum (Y)
X[j, 2]< -Y[2]/sum (Y)
X[j, 3]< -Y[3]/sum (Y)

}
pcrush< -function (r, p, q){

d< -((1 − p)∧(5)) − ((4 ∗ q ∗ r) ∗ ((1 − p)∧(3)))
3 ∗ q ∗ q ∗ r ∗ r ∗ (1 − p)
hn5< -(r ∧(5))/d
hn4< -((r ∧(4)) ∗ (1 − p))/d
hn3< -((r ∧(3)) ∗ (((1 − p)∧(2)) − (q ∗ r)))/d
hn2< -((r ∧(2)) ∗ (((1 − p)∧(3))− 2 ∗ q ∗ r ∗ (1 − p)))/d
hn1< -(r ∗ (((1 − p)∧(4))− 3 ∗ q ∗ r ∗ ((1 − p)∧(2))q ∗ q
∗ r ∗ r))/d
h0< -1
hp1< -(q ∗ (((1 − p)∧(4))− 3 ∗ q ∗ r ∗ ((1 − p)∧(2))q ∗ q
∗ r ∗ r))/d
hp2< -((q∧(2)) ∗ (((1 − p)∧(3))− 2 ∗ q ∗ r ∗ (1 − p)))/d
hp3< -((q∧(3)) ∗ ((((1 − p)∧(2))− q ∗ r)))/d
hp4< -((q∧(4)) ∗ (1 − p))/d
hp5< -(q∧(5))/d
hp< -c(hn5, hn4, hn3, hn2, hn1, h0, hp1, hp2, hp3,
hp4, hp5)
r0< -1/sum (hp)
pn< -r0 ∗ hp
return (pn)
}
cp< -pcrush (r, p, q)
r< -c(rep(NA, 10))
p< -c(rep(NA, 10))
q< -c(rep(NA, 10))
sx< -matrix(data� c(rep(NA, 110)), ncol� 11,
nrow� 10)
for (i in 1 :10) {
r[i]< -X[i, 1]
p[i]< -X[i, 2]
q[i]< -X[i, 3]
sx[i,]< -pcrush(r[i], p[i], q[i])
}

Data Availability

Te data are included in the Supplemental Files as “Stock
Market Returns Data.docx.”
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Supplementary Materials

Te supplementarymaterial contains the stock returns for all
the fve countries (i.e., Canada, India, Mexico, South Africa,
and Switzerland) used for this study from January 1976 to
December 2020. (Supplementary Materials)
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