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In this study, a three-parameter modification of the Burr XII distribution has been developed through the integration of the
weighted version of the alpha power transformation family of distributions. This newly introduced model, termed the modified
alpha power-transformed Burr XII distribution, exhibits the unique ability to effectively model decreasing, right-skewed, or
unimodal densities. The paper systematically elucidates various statistical properties of the proposed distribution. The estimation
of parameters was obtained using maximum likelihood estimation. The estimator has been evaluated for consistency through
simulation studies. To gauge the practical applicability of the proposed distribution, two distinct datasets have been employed.
Comparative analyses involving six alternative distributions unequivocally demonstrate that the modified alpha power-
transformed Burr XII distribution provides a better fit. Additionally, a noteworthy extension is introduced in the form of
a location-scale regression model known as the log-modified alpha power-transformed Burr XII model. This model is sub-
sequently applied to a dataset related to stock market liquidity. The findings underscore the enhanced fitting capabilities of the
proposed model in comparison to existing distributions, providing valuable insights for applications in financial modelling and

analysis.

1. Introduction

The development of novel or new statistical models is a key
area of study in the application of distribution theory. These
distributions’ usefulness has led to much research into their
theory and the development of new distributions. The idea of
generating new continuous distributions by modifying the
existing distributions with one or more shape or scale pa-
rameters has gained attention in recent years. This parameter
introduction has been shown to improve the ability of the
developed distributions to fit varied real-life datasets with
high degrees of skewness and kurtosis. Some of these newly
developed distributions include the modified alpha power
transformed Weibull [1], general two-parameter [2], trun-
cated inverse power Ailamujia [3], half-logistic modified

Kies exponential [4], truncated inverse power Lindley [5],
Marshall-Olkin-Weibull-Burr XII [6], generalised unit
half-logistic geometric [7], Chen Burr-Hatke exponential
[8], modified XLindley [9], arctan power [10], harmonic
mixture Fréchet [11], sine-Weibull geometric [12], bounded
odd inverse Pareto exponential [13], new extended Chen
[14], power XLindley [15], extended Poisson-Fréchet [16],
exponentiated Fréchet loss [17], Gompertz—Makeham [18],
and logistic exponential [19] distributions.

The authors of [20] introduced a new method by adding
an additional parameter called the alpha power trans-
formation (APT) family. The APT family has been used to
develop several modified distributions, including the APT
Fréchet [21], APT extended exponential distribution [22],
APT inverse Lomax distribution [23], APT log-logistic
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distribution [24], APT inverse Lindley distribution [25], and
APT Pareto distribution [26], among others. With the aim of
improving the flexibility of the APT family of distributions,
Alotaibi et al. [27] modified the APT family of distributions
and obtained a new family of distributions called the
modified alpha power transformed method (MAPT).
According to Alotaibi et al. [27], the cumulative distribution
function (CDF) and probability density function (PDF) of
the MAPT are given as follows:

F(x)

-1
G (x) = . a>0,a#1, 1
ARt (oc—l)(1+(x—(xF(x)) )
and
1+F (x)
a log (&) f (x
Imapr (%) = 8(a)f (x) a>0,a#1.  (2)

(a— 1)(1 +a- ocF(x))Z)

This study proposes a modification of the Burr XII
distribution using the MAPT proposed byAlotaibi et al. [27].
The Burr XII distribution introduced by Burr [28] is widely
used in reliability analysis, actuarial studies, medicine, and
agriculture. The PDF and CDF of the Burr XII distribution
can be expressed, respectively, as follows:

Flaby) =g (1427

and

x>0,£>0,y>0, (3)

F(x;f,y)zl—(1+x€)_y, x>0,£>0,9>0. (4)

We are motivated to contribute to the ongoing efforts to
enhance the versatility of statistical distributions, thus
providing researchers with a powerful tool to analyse and
model diverse data scenarios effectively as no single dis-
tribution is omnibus. Specifically, our motivations for de-
veloping the modified alpha power transformed Burr XII
(MAPTBXII) distribution are as follows:

(i) Develop an extension of the Burr XII distribution
that provides a good parametric fit to data with
complex traits

(ii) Propose a new Burr XII distribution with closed
form CDF and tractable quantile function that fa-
cilitates easy generation of random observations for
simulation experiments

(iii) Formulate a location-scale regression model using
the proposed distribution

The subsequent sections of the paper are organised as
follows. In Section 2, we develop the MAPTBXII distribu-
tion. Section 3 is devoted to deriving various statistical
properties of the MAPTBXII distribution. The parameters of
the MAPTBXII distribution are estimated through the
maximum likelihood estimation method, as detailed in
Section 4. Section 5 delves into the discussion of the
MAPTBXII regression model. A comprehensive simulation
study is presented in Section 6. Real-world applications of
the MAPTBXII distribution on two datasets are presented in
Section 7. Finally, the paper is concluded in Section 8.

2. Modified Alpha Power Transformed Burr
XII Distribution

If a random variable X follows the MAPTBXII, then the PDF
can be obtained by substituting equation (3) into equation
(2), while the CDF can be obtained by substituting equation
(4) into equation (1). The CDF and PDF of the MAPTBXII
can then be expressed, respectively, as follows:

al—(1+xf)‘y 1
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where >0, £>0, y>0, and a# 1.

The hazard function of the MAPTBXII is obtained by
finding the ratio of the PDF and complement of the CDF.
The hazard function is given by the following equation:

Imapr (%) =

o0 Jog (@)Eyxt Mrexf)" :
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The various shapes (decreasing, right-skewed, left-
skewed, or unimodal) of the densities of the MAPTBXII
distribution are shown in Figure 1.

The various shapes (decreasing or upside down bathtub)
of the hazard function are displayed in Figure 2.

The PDF of the MAPTBXII distribution in linear form is
given as follows:

o0 00 OO

g(x) = Z Z Z Wijmf)/xf_l(l + xf)‘Y(M+1>-1’ o
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where 7, = ((x(—l)m(i + 1)/t (loga)j”( rJn )/(a -1)
(o + 1)”2]'!), x>0,&>0,9y>0, and a>0.

The asymptotic nature of the CDF, PDF, and hazard
function is as follows:

Gpapr (x) — 0, as x —> 0 and Gyapyp (x) — 1, as
X — OO

Gmapt (X) — 0, as x — 0 and gyupr(x) — 0, as
X — 0
hyapr (x) — 0, as x —> 0 and Ay upr (x) — 00, as
X — 0

The quantile function of MAPTBXII distribution is given
as follows:

log(p(a? 1)+ 1/1+p(a—1))]"" .
x,=1|1- 1 -1 ,
oga

(8)

where p € (0, 1) and Q (p) = x, is the quantile function.



International Journal of Mathematics and Mathematical Sciences 3

154 ! .
| "N
\ [\
A
| [
A
P !
P !
1.0 H ] !
P |
] !
Ch P \
et L \
G [ .
. \
(. |
V! . LTS
05 _ ‘l’ \ 7/ AN
i i X AN
. /
/\ | / AN
; \ ( // \\
\ / N
I\ \ / N
; . \ e AN
. N
/ N AN S~o
| </ x
/ A
004 L— 1= = e —— ]
T T T T T
0 1 2 3 4
X

a=85£=41y=15
e a=99.6E=08y=42
a=86£=31y=15
- a=42E=19y=58
—- a=018=09y=038

FiGure 1: Densities of the MAPTBXII distribution.
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FIGURE 2: The hazard function plots of the MAPTBXII.

3. Statistical Properties

3.1. Moments. Moments are a crucial component of sta-

tistical theory, and they allow for the examination of many

essential characteristics of any distribution.
Mathematically, the " moments of X are given by

pr=E(X") = Jto X' f (x)dx. (9)

We substitute equation (7) into equation (9), in order to
obtain

, o0 0 00 o0 r+571 f _y(m+1)_1
y,zfyZZZqijmJ x (l+x) dx.
i=0 j=0 m=0 0
(10)
Letting v=x% which implies x=v" and
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Utilising the identity used in [29],
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0
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It follows that the ™ moment of the MAPTBXII dis-
tribution can be expressed as follows:
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where 9B (-,-) is given as the beta function and r=1, 2, .. ..

Metrics such as variance (¢?), coefficient of variation
(CVAR), skewness (CSK), and kurtosis (CKUR) can be
derived by utilizing moment-based computations. y, o2,
CVAR, CSK, and CKUR, respectively, are obtained using the
following expression:

o’ =y — ()’

[4,—([1)2
CVAR =12 77
U
! 3 ! 2 3 (15)
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Table 1 displays the o2, CVAR, CSK, and CKUR of the
MAPTBXII distribution, calculated using noncentral mo-
ments for specific parameter values. The results suggest that
the MAPTBXII distribution exhibits a varying degree of
skewness, ranging from highly skewed to moderately
skewed. It is noteworthy that the skewness of the distri-
bution may differ depending on the chosen parameter
values. Some combinations lead to a positively skewed
distribution, while others result in a negatively skewed
distribution. This variability underscores the distribution’s
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flexibility in capturing different skewness patterns based on
the specified parameters. The MAPTBXII distribution is
leptokurtic (CKUR>3) and thus has heavier tails and
a sharper peak.

3.2. Incomplete Moments. The incomplete moments can be
used to calculate the Lorenz curve, the Bonferroni curve, the
mean deviation, and the median deviation, among others.

Mathematically, the incomplete moment is given as
follows:

m,(z) =E(X" | X<z)= r x' f (x)dx. (16)
0

We substitute equation (7) into equation (16), in order to
obtain

m, (z) = Yi OZO: i Nijm J f+571<1 + xf)_Y(MH)_ldX‘

i=0 j=0 m=0

(17)

Letting v=x% which implies x=v"" and
dx = (1/&)v"$~1dv, we obtain the following expression:
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It follows that the r™ incomplete moment of the
MAPTBXII distribution is given by the following expression:

m, (z) = ii i ﬂiij'%(zE: T+ Ly(m+1) -t))
i=0 j=0 m=0 5 E
(21)

where % (-: -,-) is given as the incomplete beta function and
r=1,2,3,....

3.3. Moment Generating Function. The moment generating
function (MGF) is used to determine the distribution’s
moments, if any. Mathematically,

B(e)= 3 5

r=0

M(t) = Z ,ur (22)

When we substitute equation (14) into equation (22), we
obtain the MGF of the MAPTBXII distribution. Hence, the
MGEF of the MAPTBXII distribution is given by the fol-
lowing expression:

[ce I

MO =355 5wty 85+ 1y 0 -7) |

i=0 j=0 m=0r=0
(23)

4. Estimation of Parameters

The maximum likelihood estimation (MLE) method is used
as an estimator. The log-likelihood function is therefore
given as

C(x,0,8p) = Z( (1 + X ) >log(oc) +nlog (a) + nlog(&y) + (£ - 1)Zlog x;

i=1

i=1 (24)

—(y+1) Zn:(l + X; ) nlog(a—1) - 2Zn:10g<1 i~ al‘(lﬂf)ﬁ).
i=1 i=1

By maximising equation (24), we obtain the parameter
estimates.

2 (1+exp ((y—w/0))

5. Modified Alpha Power Transformed Burr XII
Regression Model

Suppose X follows the MAPTBXII distribution and
=log(BX). The PDF of Y can be derived by substituting
¢ =1/0 and f = exp (y).

((log(a)y)/a)eXp((;v w)/o) (1 +exp((y — wlo) """

(oc—l)(1+(x— a

1-(1+exp ((y—p)/0))” V) ’ (25)
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TaBLE 1: First five moments varying parameter values.

. a=10.1, £=10.9, a=9.5, £€=6.0, a=7.0,¢&=21, a=152, £€=8.5, a=0.5,¢=55,
y=5.38 y=15 y=9.9 y=38.5 y=1.05
ptl' 0.9693 1.4281 0.5907 0.9285 0.8634
!42, 0.9439 2.1384 0.3825 0.8666 0.8334
s 0.9230 3.3650 0.2662 0.8129 0.9209
yzi 0.9060 5.5974 0.1973 0.7655 1.2436
Hsl 0.8926 9.9600 0.1553 0.7240 2.6232
o? 0.0043 0.0991 0.0335 0.0045 0.0879
CVAR 0.0673 0.2204 0.3099 0.0723 0.3435
CSK -0.9618 0.9027 0.0936 -1.0168 1.8945
CKUR 5.9696 6.6343 3.5312 6.2421 16.0123

where y € R, 6> 0 is the scale parameter, y >0 is the shape
parameter, « >0, and y € R is the location parameter.

Equation (25) is referred to as the log-MAPT Burr XII
(LMAPTBXII) distribution. If X ~ MAPTBXII(«, ¢, y), then
Y =log(BX) ~ LMAPTBXII(«, ¢, y, ).

Figure 3 shows various shapes of the densities of the
LMAPTBXII distribution.

The survival function of the LMAPTBXII distribution
can be expressed as follows:

1-(1+exp (y- /o))" _ 1

(= 1)(1+a - HrepGo) Ty

S(y)=1- (26)

The proposed location-scale regression model is defined
with the dependent variable y; and predictor variables
zi= (1, Zj1>---»Zjp), where 1 is the intercept and expressed

j
as follows:

yj=Zp+oW,, (27)

where j=1,2,3,...,n B= (8,555 ./SP), are the re-
gression parameters, and W ; denotes the random error.

The log-likelihood function of the LMAPTBXII model is
given by the following expression:

Z = Z(Z —(1 + exp(yj ;ﬂj»i?)log(oc) + nlogz((x) + nlog(%) + ) <#>
=1

Jj=1

j
(28)

—(y+1) i(l + exp(%)) -nlog(a-1)-2 i log<1 +a- (xlf(”exl’((yf"f)/o))iy>.

Jj=1

The parameter estimates of the model are obtained by
maximising the log-likelihood function. An assessment of
the Cox-Snell residuals to ascertain if they behave as
a standard exponential distribution would help determine
the adequacy of the model. We then diagnose the model
using the goodness-of-fit measures (Cramér-von Mises,
Anderson-Darling, and Kolmogorov-Smirnov) of the
Cox-Snell residuals.

6. Monte Carlo Simulations

In this section, we ascertain the consistency of the estimators
of the MAPTBXII distribution through a simulation study.
The results were obtained using sample sizes of 50,
100, 200, 250, 300, 350, 500, and 600 with parameter values
a = (6.85, 10.65, 1.65), ¢ = (0.1, 6.10, 1.90), and k = (0.5,
10.5, 6.50), respectively. It can be observed that the average
biases (AB) and root mean square error (RMSE) decrease as
the sample size increases as shown in Tables 2.

Jj=1

7. Applications

In this section, we provide the applications of the
MAPTBXII distribution using two uncensored datasets.

The precipitation (in inches) in the Minneapolis dataset
was used in [30, 31]. The second dataset represents runoff
amounts at Jug Bridge, Maryland, and was used by
Makubate et al. [32]. The performance of the MAPTBXII
distribution is compared with the Topp-Leone Burr-XII
distribution (TLBXII) [33], Weibull Burr XII distribution
(WBXII) [29], inverse Weibull distribution (INW) [34],
exponentiated exponential Burr XII distribution (EEBXII)
[35], Cauchy [36], and inverse Gompertz distribution
(IGD) [37].

Analytical measures such as Kolmogorov-Smirnov (K-
S) test, Anderson-Darling test (AD), and Cramér-von Mises
test (CVM), Akaike Information Criterion (AIC), Consis-
tent Akaike Information Criterion (AICc), and Bayesian
Information Criterion (BIC) are considered in evaluating the
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FiGure 3: The PDF plot of the LMAPTBXII distribution.

goodness of fit of the proposed distribution and the other
fitted models.

The maximum likelihood estimates and other goodness-
of-fit statistics for the two datasets are presented in Tables 3
and 4.

The MLEs of the MAPTBXII model for datasets 1 and 2
are both unique and represent real maxima, as demon-
strated by the profile log-likelihood plots shown in Fig-
ures 4 and 5.

The fitted densities are presented in Figures 6 and 7,
whereas the fitted CDFs are shown in Figures 8 and 9. It can
be observed from these results that the MAPTBXII provides

a better fit to the two datasets than the other competing

lifetime distributions.

7.1. Application of Modified Alpha Power Transformed Burr
XIT Regression Model. The LMAPTBXII model was
employed in the analysis of a dataset related to stock market
liquidity. Dataset can be retrieved from https://instruction.
bus.wisc.edu/jfrees/jfreesbooks/Regression20Modeling/
BookWebDec2010/data.html (accessed on 8 January 2023).
The competing models are the log-harmonic mixture Burr
XII (LHMBXII) distribution [31] and the log-Gumbel Burr
XII (LGBXII) distribution [38]. The response variable y jis
the total number of shares that were traded on an exchange
during a specific period (volume), while the covariate is the
number of shares outstanding as of December 31, 1984,
expressed in millions of shares (shares) (Zjl)' The fitted
model is given by the following expression:

yi=PBo+hizj (29)

The response variable data are 16.221, 5.693, 11.965,
3.834, 13.235, 0.658, 13.794, 2.009, 27.600, 18.515, 23.466,
18.192, 28.163, 4.428, 4.912, 9.802, 15.513, 10.781, 11.149,
7.561, 14.969, 2.726, 17.275, 14.570, 11.967, 4.155, 3.072,
5.872, 17.744, 4.351, 16.995, 1.902, 19.727, 12.986, 2.823,
27.106, 46.832, 2.584, 18.056, 9.180, 7.999, 27.070, 8.914,
7.141, 28.574, 5.992, 2.118, 37.720, 13.080, 12.249, 19.874,
15.006, 4.503, 6.110, 12.238, 6.268, 5.810, 16.576, 33.565,
64.572, 3.000, 3.842, 16.242, 34.453, 21.718, 25.377, 8.317,
15.255, 4.971, 4.277, 2.473, 6.798, 10.848, 2.908, 3.695,
12.074, 37.923, 10.646, 19.624, 15.165, 4.054, 21.249, 8.726,
8.409, 34.073, 14.464, 8.903, 11.556, 5.067, 14.148, 4.712,
14.855, 6.180, 9.457, 6.170, 7.238, 9.877, 13.001, 12.967,
30.597, 15.134, 1.365, 39.273, 19.387, 15.505, 6.810, 18.001,
7.093, 3.791, 2.638, 18.960, 6.927, 19.436, 5.098, 16.257,
2.805, 10.961, 6.299, 5971, 13.477, 11.716, 40.585, and
20.430.

The covariate’s data are 81.141, 27.088, 189.680, 13.492,
72.600, 6.736, 107.743, 20.851, 220.776, 79.964, 97.225,
151.508, 141.309, 21.433, 27.309, 50.338, 137.269, 73.200,
46.544, 29.718, 38.301, 19.683, 92.775, 72.127, 83.009, 16.049,
13.689, 15.161, 176.210, 13.524, 39.761, 8.724, 190.192,
20.232, 26.879, 155.600, 172.200, 12.402, 46.600, 78.946,
46.870, 126.268, 67.662, 43.206, 454.876, 50.366, 20.402,
315.451, 70.039, 35.408, 108.496, 34.787, 280.173, 49.342,
46.713, 40.222, 55.816, 96.849, 256.478, 612.686, 36.720,
26.756, 49.942, 139.747, 182.845, 125.229, 52.777, 130.825,
41.947, 23.261, 27.168, 29.495, 87.213, 16.209, 30.065,
116.298, 407.704, 72.103, 189.167, 78.281, 9.121, 99.637,
46.101, 62.933, 87.766, 115.561, 21.716, 19.896, 29.574,
95.962, 22.525,93.908, 30.959, 16.399, 44.673, 86.376, 38.180,
103.353, 84.354, 361.610, 59.854, 11.217, 300.702, 271.429,


https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression20Modeling/BookWebDec2010/data.html
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression20Modeling/BookWebDec2010/data.html
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TaBLE 5: Parameter estimates and selection criteria.
Parameter Estimates p values
Bo 2.3975 (1.1464) 0.0365
B, 0.0574 (0.0070) 2.2000 x 10716
LMAPTBXII o 0.8959 (0.3582) 0.0124 £ =-394.1776
k 0.2272 (0.0853) 0.0077 AIC=798.3552
o 1.5234 (0.4471) 0.0007 BIC =812.4162
Bo ~2.2341 (1.9840) 0.2601
B 0.0794 (0.0134) 3.2610 x 107°
LGBXII /3 5.7279 (2.2123) 0.0096 ¢ =-394.6443
k 8.2028 (5.7446) 0.1533 AIC=2801.2887
o 7.5979 (3.3597) 0.0237 BIC=818.1618
T 4.2309 (1.8388) 0.0214
/30 1.8535 (0.7882) 0.0187
B, 0.0550 (0.0063) 2.2000 x 10716
0 0.2648 (0.3633) 0.4661 ¢ =-394.5351
LHMBXII o 5.2756 (2.1225) 0.0129 AIC=801.0701
v 0.0447 (0.0179) 0.0123 BIC =817.9432
o 1.4440 (0.4401) 0.0010
LMAPTBXII LGBXII LHMBXII
1.0 - 1.0 -
0.8 0.8 -
?.; 0.6 — fg _{; 0.6 —|
[ [ I
= oy oy
3 04 - k5 B 04
g 8 8
£ E E
0.2 0.2 -
0.0 - 0.0 -

0.0 0.4 0.8
Empirical probability

0.0 0.4
Empirical probability

0.8

0.0 0.4 0.8
Empirical probability

FiGure 10: Cox-Snell residuals (P-P plots).

250.052, 53.415, 54.348, 32.016, 17.147, 19.276, 53.827,
24.616, 34.743, 30.653, 121.370, 13.610, 60.899, 25.436,
34.305, 139.916, 129.852, 783.051, and 95.704.

Table 5 presents the maximum likelihood estimates,
standard errors (in parentheses), and p values for the fitted
model. The model selection criteria clearly indicate that the
LMAPTBXII model is the most suitable. Leveraging the
parameter estimates derived from the LMAPTBXII model,
we formulate the following equation:

;= 23975 +0.0574z;,. (30)

We can deduce that the effect shares had on the total
number of shares that were traded on an exchange during
a specific period was positively significant.

To assess the appropriateness of the LMAPTBXII,
LGBXII, and LHMBXII models, Cox-Snell residuals were
generated. Upon examination of the probability-probability
(P-P) plot illustrated in Figure 10, it is evident that the
residuals of the LMAPTBXII model exhibit closer alignment
to the diagonal line in comparison to those of the LGBXII
and LHMBXII models. This observation signifies that the
LMAPTBXII model provides a better fit to the data.
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TaBLE 6: Diagnostics results for residuals.

KS statistic

CVM statistic AD statistic

LMAPTBXII 0.0492 (0.9268)
LGBXII 0.0954 (0.2133)
LHMBXII 0.0576 (0.8088)

0.0493 (0.8814)
0.2572 (0.1795)
0.0742 (0.7267)

0.4142 (0.8343)
1.5908 (0.1562)
0.4960 (0.7506)

Table 6 summarises the diagnostics results (p values in
parentheses), which affirm the conclusions made using the
P-P plots.

8. Conclusion

In this study, we thoroughly investigated the tractability,
performance, and flexibility of a novel three-parameter
modified alpha power transformed Burr XII distribution.
One notable feature of this model is the discovery of
a closed-form expression for its quantile function, adding to
its analytical convenience. The parameter estimation for the
proposed model was carried out through the rigorous
maximum likelihood estimation method. This approach
ensures that the model parameters are optimised to best
capture the characteristics of the data under consideration.
To assess the performance and flexibility of the new model,
a comprehensive simulation study was conducted, and the
model’s applicability was demonstrated through its appli-
cation to two lifetime datasets. The robust results obtained
from both the simulation study and the practical applica-
tions convincingly validate the enhanced flexibility of the
proposed modified alpha power transformed Burr XII
distribution. Building upon the original model, we in-
troduced a logarithmic transformation to create a new log-
modified alpha power transformed Burr XII model. Through
thorough development and rigorous validation, we dem-
onstrated the viability of this new model, offering an al-
ternative perspective for researchers working with diverse
data patterns. It is worth noting that the motivation behind
introducing modifications to existing distributions, such as
the Burr XII, is rooted in the need for increased flexibility.
Recognising that no single distribution can perfectly fit all
datasets, these modifications empower researchers to ac-
count for a broader range of data patterns. In this context,
the modified alpha power transformed Burr XII stands out
as a valuable addition, capable of accommodating de-
creasing, skewed, and near-symmetric datasets. In summary,
our study makes a significant contribution to the continuous
endeavour of improving the versatility of statistical distri-
butions. As we continue to refine and expand our toolkit in
statistical modelling, the MAPTBXII distribution stands out
as a valuable addition, empowering researchers to address
a wide range of data challenges with increased precision and
adaptability. The modified alpha power transformed Burr
XII distribution, along with its log-transformed counterpart,
represents a valuable asset for researchers seeking a flexible
and robust framework for data analysis and modelling.
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