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In this paper, the impact of viral illnesses on the predator-prey relationship with an optimal control analysis is studied. An
ecoepidemiological model of four compartments, namely, susceptible prey, susceptible predator, infected prey, and infected
predator populations, in the interaction of the prey-predator system is formulated.Te fundamental tenet of our ecoepidemiology
model is that sick predators do not engage in predation. It is confrmed that the system’s solution exists, is positive, and is
bounded. Te system’s equilibrium points are determined and computed. Lyapunov functions and a linearizing form are used for
local and global stability analysis, respectively. Te next generation matrix approach is used to calculate the threshold value for
diseased predators and prey at the disease-free equilibrium point. Optimal treatment options for vulnerable and infected
populations are established by applying optimal control theory to the ecoepidemiology model of a prey-predator system.
MATLAB software is utilized to obtain numerical simulations that validate the analytical outcomes. Te optimal control problem
simulations demonstrate that the number of infected populations in a given prey-predator system can be decreased by
implementing control measures.

1. Introduction

Mathematical modeling is a vital process to understand and
solve problems in diverse felds of study such as epidemi-
ology, ecology, and ecoepidemiology [1, 2]. Te foundation
of many mathematical models used in population dynamics
is the Malthus economic growth model and the Lot-
ka–Volterra prey-predator models [3]. Te prey-predator
model then rose to fame and developed into a strong feld of
applied mathematics research [2, 4].

Tese days, mathematical ecology and mathematical
epidemiology are integrated applied mathematics subfelds
that have combined to form a new feld of study known as
mathematical ecoepidemiology [2, 5, 6]. In a given eco-
system, regular cycles of prey and predator populations
fuctuate due to external factors like infectious diseases,
secondary predation, or climate changes [7–9]. Interaction

of prey-predator systems is a nonlinear and complex phe-
nomenon; because of its complexity, a number of ecoepi-
demiological studies are conducted by including diferent
assumptions in their interaction [2, 7, 8]. A variety of in-
fectious diseases have plagued prey-predator populations.
Tese include Pasteurella multocida, avian pox, Newcastle
disease, infuenza, and Sarcoptes in foxes and coyotes, as well
as Yersinia pestis in prairie dogs [10–12]. Studying the spread
of infectious diseases plays an important role in regulating
the number of predator-prey populations in a given eco-
system [4, 8, 13].

Anderson and May [14] were the frst that combined
mathematical ecology and epidemiology. Currently, more
researchers are interested to conduct research in the area of
mathematical ecoepidemiology. Many ecoepidemiological
studies consider disease in prey [4–6]; others assumed
predators consume infected preys [15]. Tere are also some
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studies that assumed the disease in predators only [1, 16] and
other studies assuming predators consume both susceptible
and infected preys [8, 9].

A small number of research studies have examined the
use of ideal controls in predator-prey disease models. In [17],
the efect of hunting in both species is added as a control
variable to create an optimum control issue in the Lot-
ka–Volterra model. In a particular prey-predator system,
certain mechanisms will be required to manage the infection
of both prey and predators. One strategy involves preventing
infection and harvesting prey to increase a healthy prey, as
examined in [18, 19].Te authors in [20] took a farming case
study by considering pests as preys and other species
catching pests as a predator. In their study, to remove the
number of both preys and predators, they have used prey
and predator pesticide as controlling measures, and their
result argues that the use of pesticide would be efective to
minimize the number of both prey and predator with
a minimum cost. Some studies are also applied optimal
control analysis to prey-predator interaction by imple-
menting controls such as, the separation and treatment of
diseased prey populations [21], by separation of infected
prey from predators [22], and providing medications to
infected preys in a reaction-difusion prey-predator
model [23].

Tis research studies a mathematical ecoepidemiology
model with disease infection in both the prey and predator
populations, assuming that infected predators will not be
able to catch any prey because of the disease. To reduce
infections, control measures using prevention and treatment
of infected prey and predator populations are also examined
in the extension of the optimal control study.

2. Model Formulation

Te whole population in the predator-prey system is sub-
divided into four classes.Te subdivisions are as follows: s(t)

denote susceptible prey, I(t) denote infected prey, y(t)

denotes susceptible predator, and z(t) denotes infected
predator. As a result, the number of prey and predator
populations is given by N(t) � s(t) + I(t) + y(t) + z(t). In
formulating the present model, the following assumptions
have been used:

(i) Te prey population grows logistically in the ab-
sence of illnesses, with an intrinsic growth rate (r)

and an environmental carrying capacity (k).

(ii) Prey that is vulnerable can only procreate up to the
point of its carrying capacity.

(iii) Because of the illness infection, infected prey and
predators sufer from reduced growth, recovery,
and reproduction rates, with fatality rates of δ1 and
δ2, respectively.

(iv) When susceptible prey comes into contact with
infected prey, it is expected that basic mass action
kinetics with a rate of β will govern the infection
process.

(v) When an infected predator comes into contact
with a susceptible predator, the contact process is
thought to follow basic mass action kinetics with
a convolution rate of α. Te natural death rate of
the susceptible predator is μ.

(vii) When a susceptible predator encounters suscep-
tible and infected prey, the predation functional
response will result in predation coefcients with
efciency p1, p2, and q p1, q p2, where q is the
transformation of eaten prey to predation q

(viii) It is believed that infected predators are feeble and
ill-suited to capture any prey. If a susceptible
predator becomes infected, it either stays diseased
or dies out.

Te descriptions of the state variables and all the pa-
rameters used in our model are provided in Tables 1 and 2,
respectively.

Using the assumptions and descriptions of the param-
eters, we have the following dynamical systems:

ds

dt
� rs 1 −

s + I

k
􏼒 􏼓 − βsI − p1sy, (1)

dI

dt
� βsI − p2Iy − δ1I, (2)

dy

dt
� qp1sy + qp2Iy − αyz − μy, (3)

dz

dt
� αyz − δ2z, (4)

with initial conditions s(0)≥ 0, I(0)≥ 0, y(0)≥ 0, z(0)≥
0, and 0< q≤ 1.

3. Qualitative Analysis of the Model

In order to better understand the dynamical aspects of the
dynamic system (1)–(4), a qualitative analysis of it will be
conducted. Tis will help to shed light on how infectious
diseases afect the prey-predator system. We will discuss the
model’s qualitative analysis in this section, including its
positivity, boundedness, and existence of solutions. Along
with calculating the equilibrium points, we will also de-
termine the equilibrium points’ local and global stability
analyses. Te ensuing subsections cover and discuss each of
these ideas.

3.1. Positivity of Solutions of the Model. It is important to
demonstrate that all solutions of the system with positive
initial data will remain positive for all t≥ 0 in order for the
model to be well stated and epidemiologically signifcant.
Te following theorems will establish this.

Theorem 1 (positivity). If all the initial conditions are
nonnegative, then the solutions of system equations (1)–(4)
s(t), I(t), y(t), and z(t) are all nonnegative for all t≥ 0.
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Proof. Let us start from the positivity of equation (2).
Equation (2) given by (dI/ dt) � βsI − p2Iy − δ1I can be

separated as (dI/ dt) � (βs − p2y − δ1)I. Tis equation can
be written as dI/I � (βs − p2y − δ1)dt. Terefore, I(t) �

I(0)e(βs−p2y−δ1)t is the solution to the diferential inequality
that can be derived by applying the variable separable
technique and integration. Remember that an exponential
function is always positive, regardless of the exponent’s sign.
In light of this, I(t)≥ 0 whenever I(0)≥ 0. Using the same
process, the positivity of the other variables is likewise
demonstrated. □

3.2. Boundedness of the Model. Te dynamical system in the
theoretical ecoepidemiology study is implied to be bi-
ologically valid by its boundedness. By demonstrating the
boundedness and existence of the solution of the dynamical
system (1)–(4) using the following theorem, we frst dem-
onstrate the biological validity of the model.

Theorem 2 (boundedness). Te solutions of the dynamical
system (1)–(4) are all uniformly bounded.

Proof. To show that each number of prey-predator pop-
ulation is bounded, we defne a function N as N(t) � s(t) +

I(t) + y(t) + z(t) for all t. Diferentiating the function N

with time results, (dI/ dt) � (d(s + I + y + z))/(dt).
Hence, from equations (1)–(4), we obtain a simplifed

expression as (dI/ dt)≤ rs(1 − s + I/k) + qp1sy + qp2Iy.
For arbitrary choice of η, this can be expressed as
(dI/ dt) + ηN≤ rs(1 − s + I/k + η/r) + qp1sy + qp2Iy � Λ.
Te foregoing equation can be expressed as (dI/ dt)

≤ (Λ − ηN(t)). Here, 0≤N(t)≤ (Λ/η)(1 − exp(−ηt)) +

N(0) exp(−ηt) is the general solution after solving the
problem. Moreover, N(t)⟶ (Λ/η) can be seen as
t⟶∞. In other words, when time increases to infnity, the

population size N(t) rises from the value N(0) at the be-
ginning time and ends up with the bounded value Λ/η.
Terefore, 0≤N(t)≤Λ/η can be used to argue that N is
bounded. Terefore, the positively invariant region
Ω � (s, I, y, z) ∈ R4

+; N≤ (Λ/η)􏼈 􏼉, where the given dy-
namical system is both mathematically and biologically well
posed. Te solution of the dynamical system of model
equations (1)–(4) remains in this feasible domain. □

Theorem 3 (existence). Solutions of the dynamical system
(1)–(4) together with the initial conditions exist in R4

+, i.e., the
model variables s(t), I(t), y(t), and z(t) exist for all t.

Proposition 4. Let the dynamical system (1)–(4) be denoted
as follows:

f1 � rs 1 −
s + I

k
􏼒 􏼓 − βsI − p1sy,

f2 � βsI − p2Iy − δ1I,

f3 � qp1sy + qp2Iy − αyz − μy,

f4 � αyz − δ2z.

(5)

All the partial derivatives of ((zfi)/(zsj)),∀i, j for 1,

2, 3, 4 with respect to the state variables exist, continuous, and
are bounded in the feasible region Ω. Tus, a unique solution
for the model (1)–(4) exists according to the Derrick and
Grossman theorem.

3.3. Critical Points of the Model. Te critical point of the
dynamical system (1)–(4) is gained by solving
(ds/ dt) � (dI/dt) � (dy/ dt) � (dz/ dt) � 0. Tat is, we
obtain the equilibrium points of the dynamical system by
solving the equations

Table 1: Description of variables.

Variables Descriptions
s(t) Te number of susceptible preys at time t
I(t) Total number of infected preys at time t
y(t) Te number of susceptible predators at time t
z(t) Infected predator population at time t

Table 2: Te model parameter description.

Parameter Description
r Susceptible preys’ growth rate
k Te susceptible prey carrying capacity
α Convolution rate of a vulnerable predator that is prone to infection
β Te pace at which vulnerable prey becomes infected prey
p1 Te rate at which vulnerable prey is eaten by a vulnerable predator
p2 Te rate at which diseased prey is eaten by a vulnerable predator
q Te efciency constant of predation
δ1 Infected preys’ infection-related death rate
δ2 Natural and disease-induced death rate for infected predator
μ Te susceptible predators’ natural death rate
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rs 1 −
s + I

k
􏼒 􏼓 − βsI − p1sy � 0,

βsI − p2Iy − δ1I � 0,

qp1sy + qp2Iy − αyz − μy � 0,

αyz − δ2z � 0.

(6)

Hence, the dynamical system (1)–(4) has the following
six critical points:

(i) Trivial equilibrium point T0 � (0, 0, 0, 0).
(ii) Axial equilibrium point A1 � (k, 0, 0, 0).
(iii) Infection-free equilibrium point E2 � (s−, 0, y−, 0),

where s− � μ/qp1 and y− � (r(kqp1 − μ)/kqp2
1).

(iv) Predator-free equilibrium point E3 � (s, I, 0, 0),
where s � δ1/β, I � (r(βk − δ1))/(β(r + βk)).

(v) Infected predator-free equilibrium point E4 � (s, I,

y, 0), where s � (qk(βδ1 + rp2))/(β2qk + 2rqp2),
I � (μ(β2k + 2rp2) − kqp1 (βδ1 + rp2))/(p2(β2qk+

2qrp2)), y � (βkq(βδ1 + rp2) + βrμ − qδ1(β2k + 2r

p2))/(qp2(β2k + 2rp2)).
(vi) Te coexistence or positive equilibrium point

E∗ � (s∗, I∗, y∗, z∗), where
s
∗

� (kδ2 + αδ1)/(αβ), I
∗

� (r[αβk − αδ1 − p2δ2] − βp1δ2)/(αβ(r + β)), y
∗

� δ2/α,

z
∗

� (qp1(αδ1 + αβδ1 + rp2δ2) + rqp2(αβk − αδ1 − p2δ2))/(β3(r + β)),

and the equilibrium point is nonnegative for αβk −

αδ1 −p2δ2 − βp1δ2 > 0.

3.3.1. Local Stability Analysis of the Critical Points. By
employing the Jacobian matrix to linearize the dynamical
system, the local stability can be achieved. Te partial de-
rivatives with respect to the state variables make up the
components of the Jacobian matrix of the dynamical system
J(s, I, y, z), which is represented by the following matrix.

J(s, I, y, z) �

r 1 −
s + I

k
􏼔 􏼕 −

rs

k
− βI − p1s −

rs

k
−p1y 0

βI βs − p2y − δ1 −p2I 0

qp1y qp2y qp1s + qp2I − μ −αy,

0 0 αz αy − δ2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Te local dynamics of all the critical points listed above
are performed by substituting the values in the Jacobian
matrix (7) and fnding the eigenvalues of the matrix.

(i) Te eigenvalues of the trivial equilibrium point T0
are obtained to be λ1 � r, λ2 � −δ1 , λ3 � −μ, and
λ4 � −δ2. Here three of the eigenvalues are negative
and there is one positive eigenvalue; the trivial
equilibrium point is an unstable saddle point.

(ii) Te eigenvalues of the axial equilibrium pointA1 are
obtained as λ1 � −r, λ2 � βk − δ1, λ3 � qk p1 − μ,
and λ4 � −δ2. Terefore, the axial critical point A1 is

stable, if both βk − δ1 and qk p1 − μ are negative,
otherwise it is unstable.

(iii) Te disease-free equilibrium point E2 has two ei-
genvalues: λ1 � αy− − δ2, λ2 � βs− − p2y

− − δ1. Te
other two eigenvalues are the solutions to the
quadratic equation (λ + a)(λ + b) + c � 0, where
a � 2rs− − rk/k + p1y

−, b � p2y + δ1 − βs−, and
c � qp2

1s
−y−. If (a + b)> 0 and (ab) + c> 0, then the

solutions to the quadratic equation contain negative
real portions according to the Routh–Hurwitz cri-
terion. Terefore, if αy− − δ2 > 0, βs− − p2y

−

−δ1 > 0, (a + b)> 0, and (ab) + c> 0, then the
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disease-free equilibrium point E2 is stable; if one of
the requirements fails, it is unstable.

(iv) Substituting the predator-free critical point E3 �

(s, I, 0, 0) � (δ1/β, (r(βk − δ1))/(β(r + βk)), 0, 0) to
the Jacobian matrix, we have:

J E3( 􏼁 �

r 1 −
s + I

k
􏼔 􏼕 −

rs

k
− βI − p1s −

rs

k
0 0

βI βs − δ1 −p2I 0

0 0 qp1s + qp2I − μ 0

0 0 0 −δ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In this case, λ1 � −δ2 and λ2 � qp1s + qp2I − μ are
two of the eigenvalues.Te equation (λ+ a)(λ + b) +

c � 0 yields the other two eigenvalues where
a � 2rs + rI − rk/k, b � δ1 − βs, and c � rβsI/k. If
qp1s + qp2I − μ> 0, a + b> 0, and ab + c> 0, then
the predator-free critical point is stable using the
two eigenvalues and the Routh–Hurwitz criterion.

3.3.2. Global Analysis of the Positive Critical Point

Theorem  . If the coexistence critical point
E∗ � (s∗, I∗, y∗, z∗) exists and P<N, then the point of the
dynamical systems is globally asymptotically stable.

Proof. Constructing a Lyapunov function L(s, I, y, z),

L �
m1 s − s

∗
( 􏼁

2

2
+

m2 I − I
∗

( 􏼁
2

2
+

m3 y − y
∗

( 􏼁
2

2
+

m4 z − z
∗

( 􏼁
2

2
, (9)

where L≥ 0 for all s, I, y, z and L � 0 if and only if the state
variables are at E∗. Diferentiating the function L with time,
we have

dL

dt
� m1 s − s

∗
( 􏼁

ds

dt
+ m2 I − I

∗
( 􏼁

dI

dt
+ m3 y − y

∗
( 􏼁

dy

dt
+ m4 z − z

∗
( 􏼁

dz

dt
. (10)

Now by substituting the given dynamical system, we
have

dL

dt
� m1 s − s

∗
( 􏼁 rs 1 −

s + I

k
􏼒 􏼓 − βsI − p1sy􏼔 􏼕 + m2 I − I

∗
( 􏼁 βsI − p2Iy − δ1I􏼂 􏼃

+ m3 y − y
∗

( 􏼁 qp1sy + qp2Iy − αyz − μy􏼂 􏼃 + m4 z − z
∗

( 􏼁 αyz − δ2z􏼂 􏼃.

(11)
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Take out s, I, y, z, and we have

dL

dt
� m1 s − s

∗
( 􏼁

2
r 1 −

s + I

k
􏼒 􏼓 − βI − p1y􏼔 􏼕 + m2 I − I

∗
( 􏼁

2 βs − p2y − δ1􏼂 􏼃

+ m3 y − y
∗

( 􏼁
2

qp1s + qp2I − αz − μ􏼂 􏼃 + m4 z − z
∗

( 􏼁
2 αy − δ2􏼂 􏼃.

(12)

Grouping the positive and negative terms together in the
equation, we obtain

dL

dt
� P − N,where (13)

P � m1(s − s∗)2 + m2(I − I∗)2βs + m3(y − y∗)2[qp1s + qp2
I] + m4(z − z∗)2αy and N � m1(s − s∗)2[s + I/k + βI+

p1y] + m2(I − I∗)2[p2y + δ1] + m3(y − y∗)2[αz + μ] + m4
(z − z∗)2δ2. □

Hence, (dL/ dt)< 0 and the positive equilibrium point is
stable whenever P<N.

3.4. Treshold Value R0. Te illness would eventually go
extinct if the threshold value, R0 < 1, which means that each
infected individual produces, on average, less than one new
afected individual. However, if R0 > 1, then several in-
fections are produced by infected individuals, and it is
anticipated that the disease will continue to spread across the
ecology.

Theorem 6 (infected prey threshold). For an infected prey,
the reproduction number for at the disease-free critical point
is given by R01 � (βμkp1)/(p2r(kqp1 − μ) + kqp2

1δ1).

Proof. Consider infected prey equation (dL/dt) � βs

I − p2Iy − δ1I. Te appearance of new infections is given by
F � βsI, and transfer of individuals into and out of the
infected compartments is given by V � p2Iy + δ1I. Dif-
ferentiating both F and V with the disease compartment I

we get F � βs and V � p2y + δ1. Evaluate F and V at disease-
free equilibrium point E1 � (s−, 0, y−, 0), and we have F(E1)

� (βμ/qp1) and V(E1) � p2(r(kqp1 − μ)/kqp2
1) + δ1. By the

next generation matrix method, it is known that
R01 � ρ(FV−1) � (βμ/qp1) ((kqp2

1)/(p2r(kqp1 − μ) + kqp2
1

δ1)), where ρ is the spectral radius (largest eigenvalue).
Hence, R01 � (βμkp1)/(p2r (kqp1 − μ) + kqp2

1δ1) which
proves the theorem. □

Theorem 7 (infected predator reproduction number). Te
infected predator reproduction number at disease-free equi-
librium point takes the form as R02 � (αr(kqp1 −μ)/kqδ2p2

1).

Proof. From the model equation of infected predator
(dL/ dt) � αyz − δ2z, we haveF � αyz andV � δ2z. Ten
diferentiate with respect to z and evaluate F and V at the
disease-free equilibrium point E1 � (s−, 0, y−, 0), and we
have F � α(r(kqp1 − μ)/kqp2

1) and V � δ2. Using the next

generation matrix, R02 � ρ(FV−1) � α(r(kqp1 − μ)/
kqp2

1δ2), and hence R02 � (αr(kqp1 − μ)/kqδ2p2
1). □

4. Optimal Control Analysis

Tis section describes an optimal control issue that aims to
reduce the number of infected predators and prey. In the
given time interval [0, tf], the goal is to minimize the ob-
jective functional and fnd the optimal values of the controls
u � (u1, u2) such that the associated state trajectories
s, I, y, z are solutions of the dynamical system (1)–(4) with
initial conditions as given in the dynamical system (1)–(4).
Treatment, patient tracing, and isolation are examples of
preventive measures that the control function u1 plays in
lowering the rate of interaction with sick people. To improve
the recovery rates of infected prey and predators, the control
u2 denotes providing all infected instances with intensive
medical attention. Assumed to be bounded between 0 and 1
are the controls. We add the two control functions u1 and u2
to the constructed dynamical system (1)–(4) as follows:

ds

dt
� rs 1 −

s + I

K
􏼒 􏼓 − 1 − u1( 􏼁βsI − p1sy + u2I,

dI

dt
� 1 − u1( 􏼁βsI − p2Iy − u2 + δ1( 􏼁I,

dy

dt
� qp1sy + qp2Iy − 1 − u1( 􏼁αyz − μy + u2z,

dz

dt
� 1 − u1( 􏼁αyz − u2 + δ2( 􏼁z.

(14)

4.1. Te Objective Functional in the Control Problem. Our
goal is to identify the best set of controls (u1(t), u2(t)) that
will reduce the number of infected preys and predators
(I(t) + z(t)) as well as treatment costs over a predetermined
amount of time. We take into consideration the optimiza-
tion issue of minimizing the objective functional:

J u1, u2( 􏼁 � 􏽚
tf

0
c1I(t) + c2z(t) +

1
2

􏽘

2

i�1
biu

2
i

⎛⎝ ⎞⎠dt, (15)

where bi, i � 1, 2 are measures of the necessary relative cost
of the interventions related to the controls u1 and u2 and tf is
the fnal time of the treatment, subject to control system (14).
Te weight constants of the infected prey and predator
populations are represented by the coefcients, ci, i � 1, 2,
which can be selected to balance cost factors resulting from
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population size. It is assumed that both u1(t) and u2(t) are
bounded and Lebesgue integrable control functions. Within
the cost functional, the cost associated with infected prey is
denoted by the phrase c1I(t), whereas the cost resulting from
the infected predator population is indicated by the term

c2z(t). Consequently, we will identify the ideal control pair
(u∗1 , u∗2 ) so that

J u
∗
1 , u
∗
2( 􏼁 � min J u1, u2( 􏼁 | u1, u2( 􏼁 ∈ Γ, (16)

where the associated control set Γ is defned by

Γ � u1, u2( 􏼁 | ui ismeasurable with 0≤ ui(t)≤ 1, t ∈ 0, tf􏽨 􏽩, i � 1, 2􏽮 􏽯. (17)

Te upper bounds for u1 and u2 can be seen as the
utmost sums that an infected person may aford, while the
lower bounds of the controls equate to no implementations.

4.2. Existence of Optimal Controls. We investigate the nec-
essary and sufcient circumstances for the optimum control
problem’s solution to exist.

Proposition 8. Te model system (7) has an optimum
control pair (u∗1 , u∗2 ) that minimizes the objective functional
J(u1, u2) over the domain Γ with a corresponding solution of
(s∗, I∗, y∗, z).

Proof. Proposition 8 Fleming and Rishel [24–26] is the
foundation for the proof of Proposition 8. Te following
criteria are listed and confrmed as necessary for existence:

(1) In a region Γ, the set of all solutions to the control
system (7), along with the related control functions
and beginning conditions, is nonempty.

(2) With coefcients based on time and state variables,
the control system is expressed as a linear function
with respect to the control variables.

(3) Te integrand L,

L s, I, y, z, u1, u2( 􏼁 � c1I(t) + c2z(t) +
b1

2
u
2
1 +

b2

2
u
2
2,

(18)

of the objective functional is convex on Γ.

Te solutions to the state equations are bounded since
the right-hand sides of the control system (7) are C1 and
bounded above and below (we have demonstrated this in the
boundedness of the model). Te system is therefore Lip-
schitz with respect to the state variables, which is inferred
from the Picard–Lindelöf theorem [27]. Terefore, condi-
tion (1) is met. Te control system (7) shows that the right-
hand sides rely linearly with respect to u1 and u2. Terefore,
condition (2) is also true. Te integrand L in the objective
functional (7) is convex since it is quadratic in the controls,
and the result comes from this, which helps us show
condition (3). □

4.3. Characterization of the Controls. Te optimal controls
u∗ � (u∗1 , u∗2 ), which provide the ideal levels for the various
control measures and the corresponding states
(s∗, I∗, y∗, z∗), are characterized in this section. Using
Pontryagin’s minimum principle, the required conditions
for the optimal controls are found [28]. According to the
details below, this approach transforms the model system (7)
into a problem of minimizing a Hamiltonian,H, point-wise
with respect to u1 and u2.

Proposition 9. Let V � (s, I, y, z) and u � (u1, u2). If
(V∗(t), u∗(t)) is an optimal control pair, then a nontrivial
vector λ(t) � (λ1(t), λ2(t), λ3(t), λ4(t)) exists which satisfes
the following:

λ1′(t) � − λ1 r 1 −
2s + I

k
􏼒 􏼓 − 1 − u1( 􏼁βI − p1y􏼒 􏼓 + λ2 1 − u1( 􏼁βI( 􏼁 + λ3qp1y􏼒 􏼓,

λ2′(t) � − c1 + λ1
−rs

k
− 1 − u1( 􏼁βs􏼒 􏼓 + λ2 1 − u1( 􏼁βs − p2y − u2 + δ1( 􏼁( 􏼁 + λ3 qp2y( 􏼁􏼒 􏼓,

λ3′(t) � − λ1 −p1s( 􏼁 + λ2 −p2I( 􏼁 + λ3 qp1s + qp2I − 1 − u1( 􏼁αz − μ( 􏼁 + λ4 1 − u1( 􏼁αz( 􏼁,

λ4′(t) � − c2 + λ3 − 1 − u1( 􏼁αy( 􏼁 + λ4 1 − u1( 􏼁αy − u2 + δ2( 􏼁( 􏼁( 􏼁.

(19)

International Journal of Mathematics and Mathematical Sciences 7



Te transversality conditions are

λi tf􏼐 􏼑 � 0, (20)

and optimal controls are characterized as

u
∗
1 � min 1, max 0,

λ2 − λ1( 􏼁βsI + λ4 − λ3( 􏼁αyz

b1
􏼨 􏼩􏼨 􏼩,

u
∗
2 � min 1, max 0,

λ2 − λ1( 􏼁I + λ4 − λ3( 􏼁z

b2
􏼨 􏼩􏼨 􏼩.

(21)

Proof. Te frst part of our argument starts with writing the
Hamiltonian and Lagrangian for optimum control system
(7), which are provided by

L s, I, y, z, u1, u2( 􏼁 � c1I(t) + c2z(t) +
b1

2
u
2
1 +

b2

2
u
2
2, (22)

and

H � c1I(t) + c2z(t) +
b1

2
u
2
1 +

b2

2
u
2
2 + λ1 rs 1 −

(s + I)

k
􏼠 􏼡 − 1 − u1( 􏼁βsI − p1sy + u2I􏼠 􏼡

+ λ2 1 − u1( 􏼁βsI − p2Iy − u2 + δ1( 􏼁I( 􏼁 + λ3 qp1sy + qp2Iy − 1 − u1( 􏼁αyz − μy + u2z( 􏼁

+ λ4 1 − u1( 􏼁αyz − u2 + δ2( 􏼁z( 􏼁.

(23)

Applying Pontryagin’s minimum principle, we thus
obtain (19) from

λ′(t) � −
zH

zV
t, V
∗
(t), u
∗
(t), λ(t)( 􏼁. (24)

Tat is,

λ1′(t) � −
zH

zs
� − λ1 r 1 −

2s + I

k
􏼒 􏼓 − 1 − u1( 􏼁βI − p1y􏼒 􏼓 + λ2 1 − u1( 􏼁βI( 􏼁 + λ3qp1y􏼒 􏼓,

λ2′(t) � −
zH

zI
� − c1 + λ1

−rs

k
− 1 − u1( 􏼁βs + u2􏼒 􏼓 + λ2 1 − u1( 􏼁βs − p2y − u2 + δ1( 􏼁( 􏼁 + λ3 qp2y( 􏼁􏼒 􏼓,

λ3′(t) � −
zH

zy
� − λ1 −p1s( 􏼁 + λ2 −p2I( 􏼁 + λ3 qp1s + qp2I − 1 − u1( 􏼁αz − μ( 􏼁 + λ4 1 − u1( 􏼁αz( 􏼁,

λ4′(t) � −
zH

zz
� − c2 + λ3 − 1 − u1( 􏼁αy + u2( 􏼁 + λ4 1 − u1( 􏼁αy − u2 + δ2( 􏼁( 􏼁( 􏼁.

(25)

Equation (20) provides the transversality conditions
since all states are free at tf. In terms of the controls, the
Hamiltonian is minimized at the optimal control
u∗ � (u∗1 , u∗2 ). Consequently, on Γ, H is diferentiated with
regard to u1 and u2, respectively, to produce

0 �
zH

zu1
� b1u1 + λ1 − λ2( 􏼁βsI + λ3 − λ4( 􏼁αyz,

0 �
zH

zu2
� b2u2 − λ2I − λ4z.

(26)

Terefore, on the interior sets, solving for u∗1 and u∗2
yields

u
∗
1 �

λ2 − λ1( 􏼁βsI + λ4 − λ3( 􏼁αyz

b1
, u
∗
2 �

λ2 − λ1( 􏼁I + λ4 − λ3( 􏼁z

b2
. (27)
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We arrive to the following conclusions using typical
control arguments using the boundaries on the controls:
0≤ u1(t)≤ 1, 0≤ u2(t)≤ 1.

u
∗
1 � min 1, max 0,

λ2 − λ1( 􏼁βsI + λ4 − λ3( 􏼁αyz

b1
􏼨 􏼩􏼨 􏼩,

u
∗
2 � min 1, max 0,

λ2 − λ1( 􏼁I + λ4 − λ3( 􏼁z

b2
􏼨 􏼩􏼨 􏼩.

(28)

□

To summarise, the optimality system is comprised of the
adjoint system (19) and the control system (14), along with
the control characterizations (21) and their transversality
conditions (20). Tat is, the optimality systems are

ds

dt
� rs 1 −

(s + I)

k
􏼠 􏼡 − 1 − u1( 􏼁βsI − p1sy + u2I,

dI

dt
� 1 − u1( 􏼁βsI − p2Iy − u2 + δ1( 􏼁I,

dy

dt
� qp1sy + qp2Iy − 1 − u1( 􏼁αyz − μy + u2z,

dz

dt
� 1 − u1( 􏼁αyz − u2 + δ2( 􏼁z,

λ1′(t) � − λ1 r 1 −
2s + I

k
􏼒 􏼓 − 1 − u1( 􏼁βI − p1y􏼒 􏼓 + λ2 1 − u1( 􏼁βI( 􏼁 + λ3qp1y􏼒 􏼓,

λ2′(t) � − c1 + λ1
−rs

k
− 1 − u1( 􏼁βs􏼒 􏼓 + λ2 1 − u1( 􏼁βs − p2y − u2 + δ1( 􏼁( 􏼁 + λ3 qp2y( 􏼁􏼒 􏼓,

λ3′(t) � − λ1 −p1s( 􏼁 + λ2 −p2I( 􏼁 + λ3 qp1s + qp2I − 1 − u1( 􏼁αz − μ( 􏼁 + λ4 1 − u1( 􏼁αz( 􏼁,

λ4′(t) � − c2 + 1 − u1( 􏼁αy λ4 − λ3( 􏼁 − u2 + δ2( 􏼁( 􏼁􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

with

λ1 tf􏼐 􏼑 � 0, λ2 tf􏼐 􏼑 � 0, λ3 tf􏼐 􏼑 � 0 and λ4 tf􏼐 􏼑 � 0;

(30)

and

u1 � min 1, max 0,
λ2 − λ1( 􏼁βsI + λ4 − λ3( 􏼁αyz

b1
􏼨 􏼩􏼨 􏼩,

u2 � min 1, max 0,
λ2 − λ1( 􏼁I + λ4 − λ3( 􏼁z

b2
􏼨 􏼩􏼨 􏼩.

(31)

We then go ahead and solve the optimal control issue
with the suggested model numerically.

5. Numerical Simulations

Tis section covers the numerical simulations of both the
optimum control problem outlined in Section 4 and the
model (1)–(4). We take into account the parameter selec-
tions provided in Table 3 for our simulation studies, and we
also list the initial conditions in Table 4.

Using the MATLAB built-in routine of ODE45, the
numerical solutions of the suggested model equations along
with the initial conditions of the state system without control
are solved numerically.

It is evident from Figure 1 that susceptible and infected
prey populations are steadily declining, suggesting that
susceptible predators are having an impact on prey. Ten, as
food becomes scarce, there is a gradual decline in the
number of vulnerable predators. In a prey-predator system,
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population fuctuations occur continuously and are repre-
sented by varying amplitude graph oscillations.

Figure 1(b) illustrates how the predator populations
afect preys. Here is an explanation for this. In the long run,
both the prey and predator graphs show fast oscillation,
a decrease in amplitude, and a population decline due to
predation or infectious disease. If the population of sus-
ceptible predators increases, the population of infected prey
decreases, meaning that all populations of susceptible
predators will grow as a result of eating the prey population.

Te forward-backward sweep numerical approach was
utilized to solve the optimality system numerically [30]. An
initial estimate of values for the ideal control pair (u1, u2) is
necessary for the procedure to work. Using the Runge–Kutta

technique of order four procedure, the state system is solved
forward in time using the initial condition for the state
variables.Te adjoint system is then solved backward in time
using the backward Runge–Kutta method of order four,
along with the transversality condition (11) and the ap-
proximated solution of the state system. Next, the control
pairs (u1, u2) are updated by combining the prior and
current values of the characterization. Te control variables’
values are then calculated using the control characterization
in (21).

When we apply the control measures for the prey and
predator population, the number of infected ones is ob-
served less than that without control.Te comparisons of the
solutions with control and without control are given in
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Figure 1: Te dynamics of the state variables s, I, y, and z without applying the optimal control in time intervals [0, 5] and [0, 50].
(a) Solution with t ∈ (0, 5). (b) Solution with t ∈ (0, 50).
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Figure 2: Dynamics of s, I, y, and z with parameter values from Table 3 in the interval [0, 20] with and without applying the control
measures. (a) Without control. (b) With control.
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Figure 3: Te solutions of susceptible and infected prey populations for the cost functional (7) without any control and applying each
control successively with c1 � 0.04, c2 � 0.04, b1 � 500, b2 � 200, and parameter values from Table 3 in the time interval [0, 20].
(a) Susceptible prey. (b) Infected prey.

Table 3: Parameter values of the ecoepidemiology model.

Parameter r k α β p1 p2 q δ1 δ2 μ

Value 1.6 100 0.8 0.7 0.33 0.44 0.525 0.7 0.5 0.2
Source [29] [29] [29] [29] [29] [29] Assumed [29] [29] Assumed

Table 4: Initial values for the state variables of the model.
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Figure 4: Te dynamics of susceptible and infected predator populations for the cost functional (7) without any control and applying each
control successively with c1 � 0.04, c2 � 0.04, b1 � 500, b2 � 200, and parameter values from Table 3 in the time interval [0, 20].
(a) Susceptible predator. (b) Infected predator.
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Figure 2.Te values of the associated costs are assumed to be
b1 � 500, b2 � 200, and the values of the weight constants
take c1 � 0.04 and c2 � 0.04 [18].

For both the susceptible and infected preys, we have
comparatively simulated the impacts of applying control
measures and the results are displayed in Figure 3. We can
observe that reducing the number of infected preys will be
efective by applying the prevention control measures. If no
control intervention is applied, we obtain high number of
infections and low number of susceptible population. On the
other hand, applying only prevention method is more ef-
fective compared with that of applying both controls (see
Figure 3(b)).

For both the susceptible and infected predators, we have
comparatively simulated the impacts of applying control
measures and the results are displayed in Figure 4. We can
observe that reducing the number of infected preys will be
efective by applying the prevention control measures. If no
control intervention is applied, we obtain high number of
infections and low number of susceptible population. On the
other hand, applying only prevention method is more ef-
fective compared with that of applying both controls.

Te control profles for both the prevention and treat-
ment efects of the prey-predator system are displayed in
Figure 5. If there is high number of infections, the efort of
implementing the control measures becomes high, while for
small number of infections, there would be relatively less
control implementations.

 . Conclusions

It is demonstrated that the created dynamical system’s
positivity, boundedness, and existence of solutions suggest
that the system is meaningful and exhibits biologically sound
behavior. Both endemic and disease-free equilibrium points
are calculated.Te Routh–Hurwitz criterion and the concept
of the next generation matrix have been used for local

stability analysis. By using the proper Lyapunov function,
the global stability analysis of the endemic equilibrium point
is demonstrated.

With the exception of diseased predators, whose am-
plitude is constant since we assume that they are not active in
predation, the population of the prey-predator system is
constantly changing, as seen by the oscillation of the graph
with varying amplitudes. Te number of susceptible pred-
ators increases in response to the number of prey, and over
time, the graphs of prey and predators exhibit rapid oscil-
lation, amplitude decrease, and population decline overall as
a result of infectious diseases and predation.

Te optimal control study has been applied in our
ecoepidemiology model to protect the prey-predator pop-
ulation from infection and apply treatments to both the
infected prey and infected predator populations. Tis study
will put a new impact on studying diseases that occurred in
the prey-predator population. Te optimal control theory is
characterized analytically by means of Pontryagin’s maxi-
mum principle. Te solution of the optimal control and the
corresponding state solution are then studied numerically,
and the solutions agree with our theoretical results.

Tis study can be extended by adding further as-
sumptions, such as that the predator grows logistically or
that disease-infected predator-prey heal, or by in-
corporating more variables, such as immunization, im-
migration, and movement on the relationship between prey
and predator.
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