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Te advection-difusion-reaction (ADR) equation is a fundamental mathematical model used to describe various processes in
many diferent areas of science and engineering. Due to wide applicability of the ADR equation, fnding accurate solution is very
important to better understand a physical phenomenon represented by the equation. In this study, a numerical scheme for solving
two-dimensional unsteady ADR equations with spatially varying velocity and difusion coefcients is presented. Te equations
include nonlinear reaction terms. To discretize the ADR equations, the Crank–Nicolson fnite diference method is employed with
a uniform grid. Te resulting nonlinear system of equations is solved using Newton’s method. At each iteration of Newton’s
method, the Gauss–Seidel iterative method with sparse matrix computation is utilized to solve the block tridiagonal system and
obtain the error correction vector. Te consistency and stability of the numerical scheme are investigated. MATLAB codes are
developed to implement this combined numerical approach.Te validation of the scheme is verifed by solving a two-dimensional
advection-difusion equation without reaction term. Numerical tests are provided to show the good performances of the proposed
numerical scheme in simulation of ADR problems.Te numerical scheme gives accurate results.Te obtained numerical solutions
are presented graphically. Te result of this study may provide insights to apply numerical methods in solving comprehensive
models of physical phenomena that capture the underlying situations.

1. Introduction

Te ADR equation is a partial diferential equation used to
represent various mathematical models in science and en-
gineering.Te equation describes transport processes driven
by advection, difusion, and reaction. Advection involves the
collective displacement of species propelled by a fow feld.
Difusion, characterized by the movement of species driven
by concentration gradients, serves to homogenize concen-
tration distributions over time. Reaction process occurring
within the system may either generate or deplete the
transported species. In practical scenarios, the coupling of
advection, difusion, and reaction processes results in in-
tricate interactions, leading to temporal and spatial alter-
ations within the ADR system. Te ADR equation is used in
modeling contaminant transport [1, 2], fuid fow [3], mass

and heat transfer [4], chemical reaction process [5], difusion
across a cell membrane [6], tumor cell expansion [7],
population dynamics [8], and so on.

Because of its importance in many felds, obtaining
accurate solution for ADR equation has been the interest of
numerous researchers. Tere have been a large number of
solutions for ADR equations presented in literature using
analytic [1, 9, 10] and numerical [11–15] techniques. Due to
the intricate nature of many advection-difusion-reaction
problems, numerical techniques are commonly employed to
obtain solutions for the ADR equation. Various numerical
techniques have been employed in the literature to compute
numerical solutions for two-dimensional nonlinear ADR
equations. For instance, Mesgarani et al. [16] used radial
basis functions to solve time-dependent nonlinear ADR
equations with variable coefcients. Tey transformed the
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ADR equation into system ordinary diferential equations
and used the fourth-order Runge–Kutta method to compute
solution of the system. Similarly, Ali et al. [17] applied
a fnite diference method incorporating with Lucas and
Fibonacci polynomials to obtain the solution of one- and
two-dimensional nonlinear ADR equations. Ngondiep [18]
employed a six-level time-split Leap-Frog/Crank–Nicolson
approach to approximate solutions of two-dimensional
nonlinear time-dependent ADR equations. He deduced
that the numerical scheme is fast, spatial fourth-order
convergent, and temporal second-order accurate. Zhang
et al. [19] used fourth-order fully implicit fnite diference
scheme to solve unsteady nonlinear ADR equations. Tambue
[20] presented a fnite volume method combined with ex-
ponential time diferencing to solve the ADR equation in-
volving the nonlinear reaction term.

Numerous researchers have solved ADR equations that
model real-realistic problems. Yu et al. [21] utilized the
homotopy analysis method (HAM) to simulate a contami-
nant transport model governed by ADR equations, pre-
senting contaminant concentration profles at various time
points based on simulation outcomes. Para et al. [12] in-
vestigated a water pollution scenario represented by ADR
equations, employing a fnite volume method. Teir nu-
merical solution was compared with results obtained using
a fnite diference method, revealing satisfactory agreement
between the solutions. Gurarslan et al. [22] obtained a nu-
merical solution for contaminant transport described by
a one-dimensional advection-difusion equation, employing
a fnite diference scheme in space and a Runge–Kutta
method in time. Te integrated scheme yielded accurate
solutions. Putri et al. [23] conducted numerical simulations
of advection-difusion equations representing oxygen de-
mand concentration in waste stabilization ponds using
a fnite diference method. Pananu et al. [24] utilized a fnite

diference method scheme to investigate a water pollutant
dispersion problem.

A Crank–Nicolsonmethod is an implicit fnite diference
method for solving partial diferential equations involving
time and space derivatives [25]. In solving partial diferential
equations using the Crank–Nicolson method, both the time
and space derivatives are approximated by central difer-
ences. Te method is unconditionally stable and second-
order accurate both in space and time variables for solving
the difusion equation. However, the method requires more
computing time to solve the resulting system of algebraic
equations. Specially, when the method is applied to solve
nonlinear and multidimensional problems, linearization
techniques like Newton’s method [26] are required. Solving
the system of nonlinear equations introduced through
discretization demands much extra time. Any method
solving system of linear equations (matrix-inversion
method, Gauss–Seidel method, Lu decomposition method,
and so on) can be used to solve the block tridiagonal system
to obtain the error correction vector required in Newton’s
method.

Te objective of this paper is to devise a numerical
scheme based on fnite diference approximation to solve
ADR equations with all of the following properties: (i)
unsteady, (ii) two-dimensional, (iii) nonlinear reaction term,
and (iv) spatially varying velocity and difusion coefcients.
Te intention is to employ the developed numerical scheme
to simulate the distribution of concentration of a contami-
nant within a fowing fuid.

2. Problem Description

In this study, the ADR equation of the following form is
considered [27]:

z

zt
C(x, y, t) + ∇ · (V(x, y)C(x, y, t)) � ∇ · (D(x, y)∇C(x, y, t)) + R(C(x, y, t)), (x, y) ∈ Ω⊆R2

, 0< t≤T, (1)

with initial condition

C(x, y, 0) � C0(x, y), (x, y) ∈ Ω, (2)

and boundary condition

C(x, y, t) � g(x, y, t), (x, y) ∈ zΩ, t> 0, (3)

where C(x, y, t) is contaminant concentration or temper-
ature at position (x, y) and time t, V(x, y) is the advection
velocity vector, D(x, y) is a tensor expressing the difusivity

of C, R(C(x, y, t)) is the reaction term assumed to be
nonlinear function of C making the ADR equation non-
linear, and zΩ is the boundary of a bounded domain Ω in
R2.We assume contaminant is released in an incompressible
fuid so that the continuity equation ∇ · V � ux + uy � 0 is
satisfed. If we consider V(x, y) � (u(x, y), v(x, y)) and
D(x, y) � diag(Dx(x, y), Dy(x, y)), where u, v, Dx, and
Dy are velocity components and difusion coefcients in x-
and y-directions, the ADR equation in (1) can be rewritten as

zC

zt
+ u −

zDx

zx
􏼠 􏼡

zC

zx
+ v −

zDy

zy
􏼠 􏼡

zC

zy
− Dx

z
2C

zx
2 − Dy

z
2C

zy
2 − R(C) � 0. (4)
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For this work, the spatial domain Ω� [0, 1]× [0, 1] and
time domain [0, T] are used.

3. Discretization of ADR Equation

To apply fnite diference discretization of (4), we divide the
spatial domain into uniform meshes of step sizes ∆x and ∆y

in x- and y-directions, as shown in Figure 1, and the time
domain with step size ∆t. Te grid points are defned as

xi � (i − 1)Δx, i � 1, 2, 3, . . . , Nx,Δx �
1 − 0

Nx − 1
,

yj � (j − 1)Δy, j � 1, 2, 3, . . . , Ny,Δy �
1 − 0

Ny − 1
,

tk � (k − 1)Δt, k � 1, 2, 3, . . . , Nt,Δt �
T − 0
Nt − 1

.

(5)

In equation (4), approximating the time derivative by
central diference at point (i, j, k + (1/2)), the derivatives of
the difusion coefcients by central diference, the

derivatives of C by the averages of central diference at kth

and (k + 1)th time levels, and reaction term using the average
values of R at kth and (k + 1)th time levels, we get

C
k+1
i,j − C

k+1
i,j

dt
+ ui,j −

Dxi+1,j − Dxi− 1,j

2Δx
􏼢 􏼣

1
2

C
k
i+1,j − C

k
i− 1,j

2Δx
+

C
k+1
i+1,j − C

k+1
i− 1,j

2Δx
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ vi,j −
Dyi,j+1 − Dxi,j− 1

2Δy
􏼢 􏼣

1
2

C
k
i,j+1 − C

k
i,j− 1

2Δy
+

C
k+1
i,j+1 − C

k+1
i,j− 1

2Δy
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− Dxi,j

C
k
i+1,j − 2C

k
i,j + C

k
i− 1,j

Δx2 +
C

k+1
i+1,j − 2C

k+1
i,j + C

k+1
i− 1,j

Δx2
⎡⎢⎢⎣ ⎤⎥⎥⎦

− Dyi,j

C
k
i,j+1 − 2C

k
i,j + C

k
i,j− 1

Δy2 +
C

k+1
i,j+1 − 2C

k+1
i,j + C

k+1
i,j− 1

Δy2
⎡⎢⎢⎣ ⎤⎥⎥⎦ −

1
2

R C
k
i,j􏼐 􏼑 + R C

k+1
i,j􏼐 􏼑􏼐 􏼑 � 0.

(6)

Note that in discretization (6), the Crank–Nicolson
Method is used. Rearranging equation (6), we obtain

− Pi,j − Si,j􏼐 􏼑C
k+1
i− 1,j + 2 + Si,j + Ti,j􏼐 􏼑C

k+1
i,j − R C

k+1
i,j􏼐 􏼑 + Pi,j − Si,j􏼐 􏼑C

k+1
i+1,j

− Qi,j − Ti,j􏼐 􏼑C
k+1
i,j− 1 + Qi,j − Ti,j􏼐 􏼑C

k+1
i,j+1 + − Pi,j − Si,j􏼐 􏼑C

k
i− 1,j + − 2 + Si,j + Ti,j􏼐 􏼑C

k
i,j

− R C
k
i,j􏼐 􏼑 + Pi,j − Si,j􏼐 􏼑C

k
i+1,j + − Qi,j − Ti,j􏼐 􏼑C

k
i,j− 1 + Qi,j − Ti,j􏼐 􏼑C

k
i,j+1 � 0,

(7)

where Pi,j � (dt/2Δx)(ui,j − (Dxi+1,j − Dxi− 1,j)/(2Δx)), Qi,j

� (dt/2Δy)(vi,j − (Dyi,j+1 − Dyi,j− 1)/(2Δy)), and
Si,j �

dtDxi,j

Δx2 , Ti,j �
dtDyi,j

Δy2 . (8)

y

i=1 2 3 4 5 6

2

3

4

5

6

j=1
x

Figure 1: 2D computational mesh.
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For j � 2  and i � 2, 3, . . . , Nx − 2, j � 3 and i � 2, 3,

. . . , Nx − 2, . . . , j � Ny − 2 and i � 2, 3, . . . , Nx − 2, equa-
tion (7) yields a system of nonlinear equations with (Nx −

2) × (Ny − 2) unknowns Ck+1
2,2 , Ck+1

3,2 , . . . , Ck+1
Nx − 1,2, Ck+1

3,2 , Ck+1
3,3 ,

. . . , Ck+1
Nx− 1,3, . . . , Ck+1

Nx− 1,2, Ck+1
Nx− 1,3, . . . , Ck+1

Nx− 1,Nx − 1.

4. Newton’s Method

For p � 2, 3, . . . , (Nx − 2) × (Ny − 2), defne equations

fp C
k+1
i− 1,j, C

k+1
i,j , C

k+1
i+1,j, C

k+1
i,j− 1, C

k+1
i,j+1􏼐 􏼑 � 0, (9)

where the functions fp include variable terms from (k + 1)th

time level values and reaction terms and constant terms from the
boundary values and kth time level values. Let
f � (f1, f2, f3, . . . , f(Nx− 2)×(Ny− 2))

T be a vector function
whose components are the functions in (9). Let X �

(Ck+1
2,2 , Ck+1

3,2 , . . . , Ck+1
Nx − 1,2, Ck+1

3,2 , Ck+1
3,3 , . . . , Ck+1

Nx− 1,3, . . . , Ck+1
Nx − 1,2,

Ck+1
Nx− 1,3, . . . , Ck+1

Nx − 1,Nx− 1 )T be the vector of unknowns in (7). Let
X0 be the initial approximation of X. Using Newton’s method,
an error correction vector h � (h1, h2, h3, . . . , h(Nx− 2)×(Nx− 2) )T

such that X � X0 + h can be obtained iteratively by solving the
transformed linear system:

Ah � − f X0( 􏼁, (10)

where Ai,j � (zfi(X0)/zXj). Te iterative process for
solving h in (10) at each (k + 1)th time level continues until
we obtain X at this time level with the required accuracy.Te
computation is performed until f(X)<Tol, where Tol is the
tolerance of approximation for Newton’s method. Te
matrix A in (10) is a block tridiagonal matrix. For instance,
for sample mesh indicated in Figure 1 with 6× 6 grid points,
A has the following form:

A =

d1 q1 0 0 t1 0 0 0 0 0 0 0 0 0 0 0
p1 d2 q2 0 0 t2 0 0 0 0 0 0 0 0 0 0

0 p2 d3 q3 0 0 t3 0 0 0 0 0 0 0 0 0

0 0 p3 d4 0 0 0 t4 0 0 0 0 0 0 0 0
s1 0 0 0 d5 q4 0 0 t5 0 0 0 0 0 0 0

0 s2 0 0 p4 d6 q5 0 0 t6 0 0 0 0 0 0

0 0 s3 0 0 p5 d7 q6 0 0 t7 0 0 0 0 0

0 0 0 s4 0 0 p6 d8 0 0 0 t8 0 0 0 0

0 0 0 0 s5 0 0 0 d9 q7 0 0 t9 0 0 0

0 0 0 0 0 s6 0 0 p7 d10 q8 0 0 t10 0 0

0 0 0 0 0 0 s7 0 0 p8 d11 q9 0 0 t11 0

0 0 0 0 0 0 0 s8 0 0 p9 d12 0 0 0 t12
0 0 0 0 0 0 0 0 s9 0 0 0 d13 q10 0 0

0 0 0 0 0 0 0 0 0 s10 0 0 p10 d14 q11 0

0 0 0 0 0 0 0 0 0 0 s11 0 0 p11 d15 q12

0 0 0 0 0 0 0 0 0 0 0 s12 0 0 p12 d16

To avoid computation with zero entries in matrix A, the
Gauss–Seidel iterative method with sparse matrix compu-
tation is used to solve the system in (10). A termination
criterion ‖hiter+1 − hiter‖∞ < tol is used in the Gauss–Seidel
iterative method, where tol is a prescribed number to bound
the error. Te values of X at k+ 2, k+ 3, . . ., Nt time levels
are solved similarly.

5. Convergence and Accuracy of the
Numerical Scheme

Let L and LD be the diferential operator and the fnite
diference operator representing equations (4) and (6), re-
spectively. If the difusion coefcient is constant, the trun-
cation error T.E. of the fnite diference scheme in (6) is
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TE � L(C) − LD C
k
i,j􏼐 􏼑

� −
Δt2

24
z
3
C(x, y, t +(Δt/2))

zt
3 +

Δt4

1920
z
5
C(x, y, t +(Δt/2))

zt
5 +

Δt6

322560
z
7
C(x, y, t +(Δt/2))

zt
7 + · · ·􏼠 􏼡

−
u(x, y)

2
Δx2

6
z
3
C(x, y, t)

zx
3 +
Δx4

120
z
5
C(x, y, t)

zx
5 +
Δx6

5040
z
7
C(x, y, t)

zx
7 + · · ·􏼠 􏼡

−
u(x, y)

2
Δx2

6
z
3
C(x, y, t + Δt)

zx
3 +

Δx4

120
z
5
C(x, y, t + Δt)

zx
5 +

Δx6

5040
z
7
C(x, y, t + Δt)

zx
7 + · · ·􏼠 􏼡

−
v(x, y)

2
Δy2

6
z
3
C(x, y, t)

zy
3 +
Δy4

120
z
5
C(x, y, t)

zy
5 +
Δy6

5040
z
7
C(x, y, t)

zy
7 + · · ·􏼠 􏼡

−
v(x, y)

2
Δy2

6
z
3
C(x, y, t + Δt)

zy
3 +

Δy4

120
z
5
C(x, y, t + Δt)

zy
5 +

Δy6

5040
z
7
C(x, y, t + Δt)

zy
7 + · · ·􏼠 􏼡

+
Dx

2
Δx2

12
z
4
C(x, y, t)

zx
4 +
Δx4

360
z
6
C(x, y, t)

zx
6 +

Δx6

20160
z
8
C(x, y, t)

zx
8 + · · ·􏼠 􏼡

+
Dx

2
Δx2

12
z
4
C(x, y, t + Δt)

zx
4 +

Δx4

360
z
6
C(x, y, t + Δt)

zx
6 +

Δx6

20160
z
8
C(x, y, t + Δt)

zx
8 + · · ·􏼠 􏼡

+
Dy

2
Δy2

12
z
4
C(x, y, t)

zy
4 +
Δy4

360
z
6
C(x, y, t)

zy
6 +

Δy6

20160
z
8
C(x, y, t)

zy
8 + · · ·􏼠 􏼡

+
Dy

2
Δy2

12
z
4
C(x, y, t + Δt)

zy
4 +

Δy4

360
z
6
C(x, y, t + Δt)

zy
6 +

Δy6

20160
z
8
C(x, y, t + Δt)

zy
8 + · · ·􏼠 􏼡

� O Δt2􏼐 􏼑 + O Δx2
􏼐 􏼑 + O Δy2

􏼐 􏼑.

(11)

Te truncation error vanishes as (Δt,Δx,Δy)⟶
(0, 0, 0). Hence, the fnite diference scheme is consistent
with the partial diferential equation.

Let us analyse the stability of the fnite diference scheme
(6) using the Von Neumann analysis method for some cases
[25]. Assume velocity and difusion coefcients are constants
and the reaction term is zero. Suppose the discretization of C
in (6) at grid point (i, j, k) has the form [13]

C
k
i,j � Aξk

e
Iβ1iΔx

e
Iβ2jΔx

, (12)

where I �
���
− 1

√
, A, β1, and β2 are a constants, and ξ is the

amplifcation factor. Substituting (12) in (6) and dividing
both sides of equations by Aξk

eIβ1iΔxeIβ2jΔx, we get

ξ − 1
Δt

+
1
2

u
e

Iβ1Δx − e
− Iβ1Δx

2Δx
+
ξe

Iβ1Δx − ξe
− Iβ1Δx

2Δx
􏼢 􏼣 +

1
2

v
e

Iβ2Δy − e
− Iβ2Δy

2Δy
+
ξe

Iβ2Δy − ξe
− Iβ2Δy

2Δy
􏼢 􏼣

−
1
2

Dx
e

Iβ1Δx − 2 + e
− Iβ1Δx

Δx2 +
ξe

Iβ1iΔx
− 2ξ + ξe

− Iβ1Δx

Δx2􏼢 􏼣

−
1
2

Dy
e

Iβ2Δy − 2 + e
− Iβ2Δy

Δy2 +
ξe

Iβ2Δy − 2ξ + ξe
− Iβ2Δy

Δy2􏼢 􏼣 � 0.

(13)
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Using the facts that eIθ � cos θ + Isinθ and e− Iθ � cos θ −

Isinθ and solving for ξ from (13), we have

ξ �
1 − R

1 + R
, (14)

where

R �
2αΔt sin2 β1Δx/2( 􏼁

Δx2 +
2αΔt sin2 β2Δy/2( 􏼁

Δy2

+
b1ΔtI sin β1Δx( 􏼁

2Δx
+

b2ΔtI sin β2Δy( 􏼁

2Δy
.

(15)

For the stability, we must have |ξ|≤ 1. From (14),
|ξ| � |(1 − R)/(1 + R)|≤ 1.

Hence, the fnite diference scheme (6) is un-
conditionally stable. According to Lax’s equivalence theo-
rem, the fnite diference scheme (6) gives a convergent
solution for the considered cases.

In the proposed numerical scheme, the linearized system
of equations at each iteration is solved using the
Gauss–Seidel Iterative method to obtain error correction
vector. Tus, if A is diagonally dominant, the Gauss–Seidel
iterative method is convergent. A is diagonally dominant if
the following inequality is satisfed for each row in the
matrix:

2 + 2Si,j + 2Ti,j −
zR(C)

zC

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�X0(m)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> − Pi,j − Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Pi,j − Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + − Qi,j − Ti,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Qi,j − Ti,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (16)

whereX0 is the initial guess to be taken for (k + 1)th iteration
and m indicates the mth component of X0. In (16), the
following indexes have to be used: 2≤ i≤Nx − 1 for all terms
in the inequality; 2≤ j≤Ny − 1 for the term in the left side
and for the frst and second terms in the right side;
2≤ j≤Ny − 2 for the third term; and 3≤ j≤Ny − 1 for the
fourth term in the right side.

Te accuracy of the numerical scheme is calculated by
the absolute maximum error formula given by [28]

E � max
1≤i≤Nx,1≤j≤Ny,1≤k≤Nt

C
k
i,j − C xi, yj, tk􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (17)

where Ck
i,j and C(xi, yj, tk) are the approximate and exact

solutions, respectively. Te rate of convergence for the
scheme is calculated using the formula as follows:

r �
ln E1/E2( 􏼁

ln(2)
. (18)

Here, E1 and E2 are maximum absolute errors with sets
of number of grid points S1 � Nx, Ny, Nt􏼈 􏼉 and S2 � 2Nx,􏼈

2Ny, 2Nt}, respectively, where the set S2 is obtained using
half of the spatial and temporal step sizes used in S1. If the
exact solution is not known in (17), the absolute maximum
error can be estimated using two approximate solutions as

E � max
1≤i≤Nx,1≤j≤Ny,1≤k≤Nt

C
k
i,j􏼐 􏼑

S1
− C

2k− 1
2i− 1,2j− 1􏼐 􏼑

S2
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (19)

and the rate of convergence can be computed using (19) and
(18) accordingly.

6. Validation

To validate the convergent, accuracy, and computational
efciency of the proposed numerical scheme, the advection-
difusion equation in [29] with constant difusion coefcient
Dx � Dy � 1 and velocity components u � cos πy and v �

− cos πx is taken. Te equation is

zC

zt
+ u

zC

zx
+ v

zC

zy
−

z
2C

zx
2 −

z
2C

zy
2 � 0, 0< t≤T,Ω � [0, 1] ×[0, 1],

(20)

with initial condition

C(x, y, 0) � sin(πx) + sin(πx), (21)

and boundary conditions

C(x, 0, t) � C(x, 1, t) � sin(πx)e
− π2t

,

C(0, y, t) � C(1, y, t) � sin(πy)e
− π2t

.
(22)

An approximate solution of (20) is obtained by the nu-
merical scheme with spatial step sizes Δx � Δy � 0.02 and
time step size Δt � 0.005 and t � 0.5. A tolerance of 0.000001
is employed for both Newton’s method and the Gauss–Seidel
iterative method. Figure 2 illustrates the comparison between
the approximate and exact solutions. In this computation, the
absolute maximum error of the results obtained using the
numerical scheme for 0≤ x, y≤ 1 and 0≤ t≤ 0.5 is
7.5275 × 10− 5. Furthermore, Figure 3 presents a comparison
of the exact and approximate solutions for 0≤ t≤ 1 at x� 0.5
and y� 0.5 and for 0≤x≤ 1 at y� 0.5 and t� 0.5. Notably,
there is a strong agreement between the numerical and exact
solutions, as evidenced by the fgures. In addition, Table 1
shows the maximum absolute errors, convergence rates, and
CPU time. Te validation process demonstrates that the
proposed numerical scheme yields accurate results and can be
utilized for addressing similar partial diferential equations.
Te scheme requires increased computational time when
employing very small spatial step sizes.

7. Numerical Examples and Discussion

In this section, numerical demonstrations are provided to
illustrate the practical utilization of the proposed numerical
scheme in solving ADR problems. Te computed results are
illustrated in graphs, and the estimated maximum absolute
errors are presented in tabular form. For all examples,
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a tolerance of 0.000001 is used for Newton’s method and
Gauss–Seidel iterative method in the numerical scheme. All
units of quantities in examples are in SI units. Exact solu-
tions are not available for the considered examples.

Example 1. Consider the ADR problem in (4) with
u(x, y) � 0.3 + x, v(x, y) � 0.4 − y (see velocity streamlines
in Figure 4), Dx � 0.1x2, Dy � 0.1y2 [1] (see graphs of Dx
and Dy in Figure 5), R(C) � C(1 − C) [30], initial condition

C(x, y, 0) � 0, 0< x, y< 1, (23)

and boundary condition for x, y ∈ zΩ and t> 0

C(x, y, t) �
1, forx � 0  and 0.4≤y≤ 0.6,

0, otherwise.
􏼨 (24)

Figure 6 displays the solution of Example 1 using the
numerical scheme with spatial step sizes Δx � Δy � 0.02
and time step size Δt � 0.001 and at t � 1 and t � 2. In
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Figure 2: Space-time graph of exact and approximate solutions of (16) with ∆x � ∆y � 0.02 and ∆t � 0.005 at t � 0.5.

Table 1: Te maximum absolute errors, convergence rate, and CPU time for solving (16) (0≤x, y≤ 1, 0≤ t≤ 1).

∆x,∆y Nx, Ny ∆t Nt E r
CPU time
(in sec)

0.1 11 0.02 51 0.00298999882737 2.0055 0.286093
0.05 21 0.01 101 0.00074466360037 2.0017 3.422437
0.025 41 0.005 201 0.00018594563787 2.0052 96.72552
0.0125 81 0.0025 401 0.00004631927399 — 3531.15991

Numerical solution
Exact solution
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Figure 3: Comparison of numerical and exact solutions of (16) for (a) 0≤ t≤ 1 at x� 0.5 and y� 0.5 and (b) 0≤x≤ 1 at y� 0.5 and t� 0.5.
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solving the error correction vector h at each iteration, the
matrix A for this problem is diagonally dominant and hence
the numerical scheme yields convergent solution. Te
maximum absolute error obtained in the computation at
t� 2 using (16) is 0.1459. It is observed that as the maximum
absolute error decreases, we take smaller step sizes. Tere is
a rapid change of concentration distribution profle.

Example 2. Let us take the ADR problem in (4) with dif-
fusion coefcient Dx � 0.1(x + y − x2 − y2) and
Dy � 0.1(1 − xy) (see Graphs of Dx and Dy in Figure 7)
having the same velocity components, reaction term, and
initial and boundary conditions as Example 1.

Te numerical solution of Example 2 at t � 1 and t � 2 is
displayed in Figure 8.Te same grid size is used as Example 1
for the computation. Tis example targets to see the efect of
difusion coefcient on the contaminant concentration
distribution. As we can observe in Figure 8, higher values of
the difusion coefcient in the contamination transport give
wider coverage area of concentration distribution for the
same advection velocity which agrees with situation ob-
served in [12]. Te maximum value of the concentration at
t� 2 is attained near the entrance gate.

Example 3. Consider the ADR problem in (4) with u(x, y) �

e− x coshy and v(x, y) � e− x sinhy (see the velocity
streamline in Figure 4) and having the same difusion co-
efcients, reaction term, and initial and boundary conditions
as Example 1.

Te numerical solution of Example 3 at t � 1 and t � 3 is
depicted in Figure 9.Te same grid sizes are used as Example
1 to obtain the solution. For this problem, the matrix A that
appears at each iteration in solving error correction vector h
is also diagonally dominant. Hence, the numerical scheme is
convergent. Te maximum absolute error obtained in the
computation is 0.2336. Tere is relatively slow change of
concentration distribution profle between t� 1 and t� 3 as
it can be observed from the graphs. Te contaminant
concentration distribution profle follows the advection
velocity streamlines (see Figures 4 and 9).

Example 4. Let u(x, y) � − x2 + y2, v(x, y) � 2xy (see the
velocity streamlines in Figure 4), and R(C) � C(1 − C)(C −

0.001) [29] in (4) having the same difusion coefcient and
initial and boundary conditions as Example 1.

In Example 4, the reaction term is a third degree
polynomial. Te numerical solution of this problem is
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Figure 4: Velocity streamlines for velocities used in examples.
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Figure 6: Tere is a rapid change of concentration distribution profle between t� 1 and t� 2. Te maximum value of contaminate
concentration at t� 2 is attained in the interior of the domain away from the entrance gate.

0
0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

1

0.5y

0.2 0.4 0.6 0.8 10
x

Dy

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

y

0.2 0.4 0.6 0.8 10
x

Dx

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

Figure 7: Graph of difusion coefcients Dx and Dy used in Example 2.
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Figure 8: Numerical solution of Example 2 using Δx � Δy � 0.02 and Δt � 0.005 at t � 1 and t � 2.
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presented in Figure 10 at t� 1 and t� 4. Te same grid sizes
are used as Example 1 in the computation. Te numerical
scheme yields a convergent solution.Temaximum absolute
error obtained in the computation is 0.1615.

For all examples, the maximum absolute errors are
computed for the four sets of number of grid points
S1 � 11, 11, 126{ }, S2 � 21, 21, 251{ }, S3 � 41, 41, 501{ }, and
S4 � 81, 81, 1001{ } for 0≤ x, y≤ 1 and 0≤ t≤ 1 using (16) as
indicated in Table 1. For all problems, the maximum ab-
solute error decreases as grid sizes decrease which shows the
accuracy and the convergent of the proposed numerical
scheme in solving the problems. Figure 4 shows the velocity
stream lines of the three variable velocities in the examples.
Tese streamlines are plotted using the streamline function
of MATLAB. From the numerical results of problems in
Examples 1, 3, and 4, it is observed that the contaminant
concentration distribution profles follow the fuid fow
velocity streamlines which agreed with the condition

realized in [1] for small difusion coefcient. Tis reveals the
applicability of the proposed numerical scheme in simula-
tions of ADR problems.

 . Conclusions

In this study, a numerical scheme is employed to obtain the
solution of two-dimensional unsteady nonlinear advection-
difusion-reaction equations with velocity and difusion
coefcients that vary spatially. By developing and imple-
menting the comprehensive numerical scheme, which in-
tegrates the Crank–Nicolson Method, Newton’s method,
and the Gauss–Seidel iterative method, nonlinear ADR
problems are successfully solved. Te absolute maximum
errors and convergence rate of the numerical scheme are
estimated to investigate the accuracy and efciency of the
numerical scheme. Te fndings demonstrate the scheme’s
capability to accurately approximate solutions for ADR
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Figure 9: Numerical solution of Example 2 using Δx � Δy � 0.02 and Δt � 0.005 at t � 1 and t � 3.
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Figure 10: Numerical solution of Example 3 using Δx � Δy � 0.02 and Δt � 0.005 at t � 1 and t � 4.

10 International Journal of Mathematics and Mathematical Sciences



problems and its suitability for simulating related two-
dimensional nonlinear partial diferential equations. Te
scheme requires substantial CPU time during computation
when a large number of spatial grid points are utilized.
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