
Research Article
Almost Existentially Closed Models in Positive Logic

Mohammed Belkasmi

Department of Mathematics College of Sciences, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia

Correspondence should be addressed to Mohammed Belkasmi; m.belkasmi@qu.edu.sa

Received 19 October 2023; Revised 21 November 2023; Accepted 25 February 2024; Published 16 April 2024

Academic Editor: V. Ravichandran

Copyright © 2024 Mohammed Belkasmi. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis paper explores the concept of almost positively closed models in the framework of positive logic. To accomplish this, we
initially defne various forms of the positive amalgamation property, such as h-amalgamation and symmetric and asymmetric
amalgamation properties. Subsequently, we introduce certain structures that enjoy these properties. Following this, we introduce
the concepts of Δ-almost positively closed and Δ-weekly almost positively closed. Te classes of these structures contain and
exhibit properties that closely resemble those of positive existentially closed models. In order to investigate the relationship
between positive almost closed and positive strong amalgamation properties, we frst introduce the sets of positive algebraic
formulas ET and AlgT and the properties of positive strong amalgamation. We then show that if a model A of a theory T is
a ET+(A)-weekly almost positively closed, then A is a positive strong amalgamation basis of T, and if A is a positive strong
amalgamation basis of T, then A is AlT+(A)-weekly almost positively closed.

1. Introduction

Tenotion of strong amalgamation base in the framework of
the general model theory was defned by Bacsich in ([1, 2]).
He proved that every strong amalgamation basis of a uni-
versal theory T with the amalgamation property is alge-
braically closed in the sense of Jonsson ([3]) and Robinson
([4]). In ([5]), Eklof has shown that the converse is true in
general. He established necessary conditions for members of
a special class K to be strong amalgamation basis, even when
K is not an elementary class. Tese conditions are expressed
in terms of a strong notion of algebraically closed structures,
introduced in ([5]), and utilizing the concept of closure
operators.

In the conventional models theory, the strong amal-
gamation property is a characteristic that a structure M can
possess within its class of extensions. Tis essentially means
that, for any extensions A and B ofM, there exists a common
extension C of A and B such that A∩B � M.

Te positive model theory is concerned essentially with
the study of h-inductive theories which are built without the
use of the negation. Considering positive formulas and
homomorphisms instead of embeddings, positive logic

generates new situations beyond the scope of logic with
negation.

Consequently, when examining the property of amal-
gamation, homomorphisms are predominantly utilized in-
stead of embeddings. Terefore, the application of the
principle of strong amalgamation mentioned at the end of
the frst paragraph of this introduction naturally leads to
introduce the concepts of “positive strong amalgamation”
and “h-strong amalgamation.”

In this paper, we will explore one of the specifc aspects
of positive logic which embodies the notions of algebraic
closedness and strong amalgamation and undertake to study
some interactions between these new notions inspired di-
rectly or indirectly from the works of Bacsich ([1]). In the
frst section, after summarising the necessary background of
the positive model theory, we introduce the general form of
symmetric and asymmetric amalgamations. We show that
the model completeness of an h-inductive theory can be
characterized by a form of symmetric amalgamation. Te
second section is devoted to the notions of almost positively
closed models and a special class of positive formulas called
(A, T)-closed formulas. Note that the terminology “closed
formula” here has diferent meaning of the notion of
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formulas without free variables. We analyse the class of
almost positively closed model and present a characteriza-
tion through some properties of the class of the
(A, T)-closed formulas. In the third section, we introduce
the notions of positive strong amalgamation and h-strong
amalgamation properties. We show that the class of almost
positively closed has the positive strong amalgamation
property. Furthermore, we give a syntactic characterization
of positive strong amalgamation bases.

2. Positive Model Theory

2.1. Basic Defnitions and Notations. In this subsection, we
briefy introduce the basic terminology related to the positive
logic. For more details, the reader is referred to ([6–8]).

Let L be a frst order language that contains the symbol of
equality and a constant ⊥ denoting the antilogy. Te
quantifer-free positive formulas are obtained from atomic
formulas using the connectives ∧ and ∨. Te positive
formulas are built from quantifer-free positive formulas
using the logical operators and quantifer ∧ ,∨ and ∃, re-
spectively. Eventually, the positive formulas are of the form
∃y ϕ(x, y), where ϕ(x, y) is quantifer-free formula. Te
variables x are said to be free. Also, a sentence is a formula
without free variables.

A sentence is said to be h-inductive if it is a fnite
conjunction of sentences of the following form:

∀x(φ(x)⟶ ψ(x)), (1)

where φ(x) and ψ(x) are positive formulas. Te h-universal
sentences are the negation of positive sentences.

Let A and B be two L-structures. A map h from A to B is
a homomorphism if for every tuple a ∈ A and for every
atomic formula ϕ; if A ⊨ ϕ(a), then B ⊨ϕ(h(a)). So, we say
that B is a continuation of A.

An embedding of A into B is a homomorphism
h: A⟶ B such that for every a ∈ A and ϕ, an atomic
formula, if B ⊨ϕ(h(a)), then A ⊨ϕ(a). Te homomorphism
h: A⟶ B is said to be an immersion whenever for every
a ∈ A and ϕ a positive formula, if B ⊨ ϕ(h(a)), then A ⊨ϕ(a).

A class of L-structures is said to be h-inductive if it is
closed under the inductive limit of homomorphisms. For
more details on the notion of h-inductive sequences and
limits, the reader is invited to ([7]).

Parallel to the role of existentially closed structures in the
framework of logic with negation, for every h-inductive
theory T, there exists a class of models of T which repre-
sent the theory marvellously, and which enjoy the properties
desired by every structures; namely, the h-inductive prop-
erty of the class, the maximality of types (positive formulas
satisfed by an element), amalgamation property, and others.
Tese modules are called positively closed.

Defnition 1. Amodel A of an h-inductive theory T is said to
be positively closed (in short, pc) if every homomorphism
from A to B, a model of T, is an immersion.

Te following lemmas announce the main properties of
pc models. Tey will be used without mention.

Lemma 2 (Lemma 14, see [7]). A model A of an h-inductive
theory is pc if and only if for every positive formula φ and
a∈ A, if A ⊭φ(a), then there exists a positive formula ψ such
that T ⊢¬∃x(φ(x)∧ψ(x)) and A ⊨ψ(a).

Lemma 3 (Theorem 2, see [7]). Every model on an h-
inductive theory T is continued in a pc model of T.

For every positive formula φ, we denote by CtrT(φ) the set
of positive formulas ψ such that

T ⊢¬∃x(φ(x)∧ψ(x)). (2)

Two h-inductive theories are said to be companion if every
model of one of them can be continued into a model of the
other or equivalently if the theories have the same pc models.

Every h-inductive theory T has a maximal companion
denoted by Tk(T) called the Kaiser’s hull of T. Tk(T) is the
set of h-inductive sentences satisfed in each pc models of T.
Likewise, T has a minimal companion denoted by Tu(T),
formed by its h-universal consequence sentences.

Remark 4. Let T1 and T2 two h-inductive theories. Te
following propositions are equivalent:

(i) T1 and T2 are companion.
(ii) Tk(T1) ≡ Tk(T2).
(iii) Tu(T1) ≡ Tu(T2).

Defnition 5. Let T be an h-inductive theory.

(i) T is said to be model complete if every model of T is
a pc model of T.

(ii) We say that T has a model companion whenever
Tk(T) is a model-complete theory.

Let A be a model of T. We shall use the following
notations:

(i) Diag+(A), the set of positive quantifer-free sen-
tences satisfed by A in the language L(A).

(ii) Diag(A), the set of atomic and negated atomic
sentences satisfed by A in the language L(A).

(ii) We denote by T+(A) the L(A)-theory
T∪ Diag+(A) .

(iv) Ti(A) (resp. Tu(A)) denote the set of h-inductive
(resp. h-universal) L(A)-sentences satisfed by A.

(v) T⋆i (A) (resp. T⋆u(A)) denote the set of h-inductive
(resp. h-universal) L-sentences satisfed by A.

(vi) Tk(A) (resp. T⋆k (A)) denote the Kaiser’s hull of
Ti(A) (resp. of T⋆i (A) ).

(vii) For every subset B of A, we denote by Ti(A, B)

(resp. Tu(A, B)) the set of h-inductive (resp. h-
universal) L(B)-sentences satisfed by A.

Defnition 6. Let A and B be two L-structures and h a ho-
momorphism from A into B. h is said to be a strong im-
mersion (in short s-immersion) if h is an immersion and B is
a model of Ti(A).
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Remark 7. Let A and B two L-structures. We have the
following properties:

(1) If A is immersed in B, then T⋆u(A) � T⋆u(B) and
T⋆i (B)⊆T⋆i (A).

(2) A is immersed in B if and only if Ti(B, A)⊆Ti(A).
(3) A is strongly immersed in B if and only if

Ti(B, A) � Ti(A).
(4) If A and B are two pc models of T, then every ho-

momorphism from A into B is a strong immersion.
Indeed, let φ(a, x) and ψ(a, x) be two positive
formulas and let χ the h-inductive sentence
∀x(φ(a, x)⟶ ψ(a, x)). Suppose that A ⊢ χ and
B⊬χ, then there is b∈ B such that B ⊨φ(a, b) and
B ⊭ψ(a, b). Given that B is a pc model, there exists
ψ′(x, y) ∈ CtrT(ψ(x, y)) such that B ⊨ψ′(a, b).
Since A is immersed in B, then there is a′ ∈ A such
that A ⊨φ(a, a′)∧ψ′(a, a′), which implies
A ⊨φ(a, a′) and A ⊭ψ(a, a′), a contradiction.

(5) Te pc models of the L(A)-theory T+(A) are the pc
models of T that are the continuation of A. Indeed, it
is clear that every pc model of T in which A is
continued is a model of T+(A) and then a pc model
of T+(A). Conversely, let B be a pc model T+(A) and
C a pc model of T in which B is continued by
a homomorphism f. Ten, C is a continuation of A,
so C is a model of T+(A). Tereby, f is an im-
mersion, which implies that B is a pc model of T.

Let A and B two be L-structures and f a mapping from A

into B. We will use the following notations:

(i) Hom(A, B): the set homomorphisms from A into B.
(ii) Emb(A, B): the set embeddings from A into B.
(iii) Imm(A, B): the set immersions from A into B.
(iv) Sm(A, B): the set s-immersions from A into B.

Remark 8. Let A and B be two L-structures and f a mapping
from A into B. Consider B as a L(A)-structure by inter-
preting the elements of A in B by f. We have the following:

(i) f ∈ Hom(A, B) if and only if B is a model of
Diag+(A).

(ii) f ∈ Emb(A, B) if and only if B is a model of
Diag(A).

(iii) f ∈ Imm(A, B) if and only if B is a model of
Diag+(A)∪Tu(A).

(iv) f ∈ Sm(A, B) if and only if B is a model of Ti(A).

2.2. Positive Amalgamation. To abbreviate the nominations
of homomorphism, embedding, immersion, and strong
immersion in the defnition of the notions of amalgamation,
we will use the frst letter of each mapping defned above.

Defnition 9. Let Γ be a class of L-structures and A a member
of Γ. We say that A is [h, e, i, s]-amalgamation basis of Γ, if
for every B, C members of Γ, if A is continued into B by f

and embedded into C by g, there exist D ∈ Γ,
g′ ∈ Imm(C, D), and f′ ∈ Sm(B, D) such that the following
diagram commutes:

A
g

C

f g'

f '
B D

. (3)

By the same way, we defne the notion of
[α, β, c, δ]-amalgamation property for every
(α, β, c, δ) ∈ h, e, i, s{ }

4.
We say that A is an [α]-amalgamation basis of Γ, if A is

an [α, α, α, α]-amalgamation basis of Γ.
We say that A is [α, β]-symmetric amalgamation basis of
Γ whenever A is an [α, β, β, α]-amalgamation basis of Γ.

We say that A is [α, c]-asymmetric amalgamation basis
of Γ, whenever A is an [α, β, α, β]-amalgamation basis of Γ.

Te following remark lists some properties of diver
forms of amalgamation with the notations and terminology
given in the defnition above.

Remark 10

(1) Every L-structure A is an [i, h, s, h]-amalgamation
basis in the class of L-structures (lemma 4, [6]). Since
every strong immersion is an immersion, it follows
that every L-structure A is an [s, h]-asymmetric
amalgamation basis in the class of L-structures.

(2) Every L-structure A is an [s, i]-asymmetric amalgam-
ation basis in the class of L-structures (lemma 5, [6]).

(3) Every L-structure A is an [e, s]-asymmetric amal-
gamation basis in the class of L-structures (lemma
4, [9]).

(4) Every L-structure A is an [i, h]-asymmetric amalgam-
ation basis in the class of L-structures (lemma 8, [7]).

(5) Every pc model of an h-inductive theory T is an
[h]-amalgamation basis in the class of model of T.

Lemma 11. Every L-structure is [s, x]-asymmetric amal-
gamation basis in the class of L-structure, where x is a ho-
momorphism, an embedding, or an immersion.

Proof. Te proof of the lemma directly follows from the
Remark 10. More precisely, the cases where x is a homo-
morphism is addressed in bullet 1 of the Remark 10, while
the case where x is an embedding is covered in bullet 3. Te
case where x is an immersion is addressed in bullet 2. □

Lemma 12. A model of T is pc if and only if it has the
[h, i]-symmetric amalgamation property in the class of models
of T.

Proof. Let A be an [h, i]-symmetric amalgamation basis of
T. Assume that A ⊭φ(a), where a∈ A and φ a positive
formula. Given that A is an [h, i]-symmetric amalgamation
basis, we claim that T∪Diag+(A)∪ φ(a)  is inconsistent.
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Otherwise, we can fnd two continuations of A in which one
of them satisfes φ(a) and the other does not satisfy φ(a),
which contradicts the assumption that A has the
[h, i]-symmetric amalgamation property. □

Proposition 13. An h-inductive theory T has a model
companion if and only if Tk(T) has the [h, i]- symmetric
amalgamation property.

Proof. Suppose that T has a model companion, then every
model of Tk(T) is a pc model. Since the pc models have the
[h]-amalgamation property and the homomorphisms be-
tween the pc models are immersion, it follows from the ffth
bullet of the Remark 10 that Tk(T) has the [h, i]-symmetric
amalgamation property.

Te opposite direction follows easily from Lemma 12. □

3. Almost Positively Closed Structures

In this section, we introduce the notions of almost and
Δ-almost positively closed models, and we give a syntactic
characterization and a characterization via the closed for-
mulas which turns out to be an essential tool in the study of
the notion of Δ-almost positively closedness.

Defnition 14. Let T be an h-inductive theory and A a model
of T. Let Δ be a subset of L-quantifer-free positive formulas
such that for every φ(x) ∈ Δ, the set T∪ Diag+(A)

∪∃xφ(x)} is consistent. Te model A is said to be

(i) Almost positively closed (apc in short), if for every
model B ⊨T, f ∈ Hom(A, B), and φ(x, y) a quan-
tifer-free positive formula, if B ⊨∃yφ(a, y) and
a∈ A, then there is a′ ∈ A such that B ⊨φ(a, a′).

(ii) Δ-almost positively closed (Δ-apc in short), if for
every model B ⊨T, f ∈ Hom(A, B), and
φ(x, y) ∈ Δ, if B ⊨∃yφ(a, y) and a∈ A, then there is
a′ ∈ A such that B ⊨φ(a, a′).

(iii) Weakly almost positively closed (wpc in short), if
for every pc model B ⊨T, f ∈ Hom(A, B), and
φ(x, y) a quantifer-free positive formula if B ⊨∃yφ
(a, y) and a∈ A, then there is a′ ∈ A such that
B ⊨φ(a, a′).

(iv) Δ-weakly almost positively closed (Δ-wpc in short),
if for every pc model B ⊨T, f ∈ Hom(A, B), and
φ(x, y) ∈ Δ, if B ⊨∃xφ(a, x), then there is a′ ∈ A

such that B ⊨φ(a, a′).

Theorem 15. Let A be a model of an h-inductive L-theory T.
Let Δ be a set of L(A)-quantifer free positive formula that
satisfes the condition of Defnition 14. Te model A is Δ-apc
of T if and only if for every φ(a, x) ∈ Δ, there exist n ∈ N and
a quantifer-free positive formula ψ(a, a′, a1, . . . , an) ∈
Diag+(A) such that

T ⊢∀x, y, y1, . . . , yn ψ x, y, y1, . . . , yn( ∧∃zφ(x, z)( ⟶∨ni�1φ x, yi( ( . (4)

Proof. Assume that A is an Δ-apc model of T and let
φ(a, x) ∈ Δ such that T∗ � T∪Diag+(A)∪ ∃xφ(a, x)  is
consistent. Given that A is Δ-apc, then T∗ ∪
¬φ(a, a′)

a′ ∈ A  is inconsistent. Tus, there are a′, a1, a2,

. . . , an ∈ A and ψ(a, a′, a1, a2, . . . , an) ∈ Diag+(A) such that

T∪ ψ a, a′, a1, a2, . . . , an( ,¬ ∨ni�1φ a, ai( ( ,∃xφ(a, x) , (5)

is inconsistent, which implies

T ⊢∀x, y, y1, . . . , yn ψ x, y, y1, . . . , yn( ∧∃zφ(x, z)( ⟶∨ni�1φ x, yi( ( . (6)

For the other direction, letA be amodel ofT that satisfes
the hypothesis of the theorem. Let φ(a, x) ∈ Δ and
f ∈ Hom(A, B), where B is a model of T and B ⊨∃xφ(a, x).
Given that A ⊨ψ(a, a′, a1, . . . , an), then B ⊨ψ(a, a′, a1, . . . ,

an)∧∃xφ(a, x). By the hypothesis of the theorem, we obtain
B ⊨∨ni�1φ(a, ai). So, A is an Δ-apc model of T. □

Corollary 1 . Let A be a model of T and Δ a set of quantifer-
free positive L(A)-formulas. If A is immersed in an Δ′-apc
model B of T and Δ⊆Δ′, then A is an Δ-apc model of T.

Proof. Let φ(a, x) ∈ Δ. Given that φ(a, x) ∈ Δ′ and B is an
Δ′-apc model of T, by Teorem 15, there is ψ(a, b, b1,

. . . , bn) ∈ Diag+(B) such that

T ⊢∀x, y, y1, . . . , yn ψ x, y, y1, . . . , yn( ∧∃zφ(x, z)( ⟶∨ni�1φ x, yi( ( . (7)
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On the other hand, since A is immersed in B, then there
are a′, a1, . . . , an ∈ A such that ψ(a, a′, a1, . . . , an) ∈
Diag+(A). By Teorem 15, A is an Δ-apc of T. □

Lemma 17. Let (Ai, fij)i≤j∈I be an inductive sequence of
models of an h-inductive theory T. Suppose that for every
i ∈ I, the model Ai is Δi-apc where Δi is a set of quantifer-free
positive L(Ai)-formulas such that ∀i≤ j ∈ I,Δi ⊆Δj. Ten, the
inductive limit A of the sequence (Ai, fij)i≤j∈I is ∪i∈IΔi-apc
of T.

Proof. Let B be a model of T and f ∈ Hom(A, B). Let a ∈ A

and φ(a, y) ∈ ∪ i∈IΔi such that B ⊨φ(a, b). Let i ∈ I such
that a ∈ Ai and φ(a, y) ∈ Δi. Given that f°fi ∈ Hom(Ai, B)

where fi is the canonical homomorphism defned from Ai in
A, then there is a′ ∈ Ai such that B ⊨φ(a, a′). So, A is
∪i∈IΔi-apc. □

Remark 18. Let T be an h-inductive L-theory and Δ a set of
quantifer-free positive L-formulas. We have the following
properties:

(1) If A is apc, then A is wpc of T.
(2) Every pc model of T is an apc (resp. Δ-apc) model

of T.
(3) Te classes of apc and wpc (resp. Δ-apc and Δ-wpc)

models of T are h-inductive.

(4) If A is an apc model of T and B a model of T, then
Emb(A, B) � Imm(A, B).

(5) Let Δ⊆D be two sets of free quantifer positive
formulas. If A isD-apc (resp.D-wpc) thenA isΔ-apc
(resp. Δ-wpc).

(6) Every apc model of T has the property of
[e, h]-asymmetric amalgamation (property 4 of
Remark 18, and the property 4 of Remark 10).

Example 1
(1) Let L � f  be a functional language. Let T be the h-

inductive theory.

∀x, y(f(x) � f(y)⟶ x � y) . (8)

Te theory T has a model companion axiomatized by
Tk(T) � T∪ ∀xy(x � y) .Te class of apcmodel of
T is elementary and axiomatized by the h-inductive
theory.

T∪ ∃x, f(x) � x ∪ ∀x∃y(f(y) � x) . (9)

(2) Let L and T be the functional language and the
theory defned in the bullet above. Let T″ the h-
inductive theory T∪ ¬∃x(f(x) � x) . Te class of
apc model of T″ is axiomatized by the h-inductive
theory.

T∪ ∀x∃y(f(y) � x) ∪ ∃xf
p
(x) � x |  p  a prime number . (10)

(3) Let Tf the theory of felds. Since the negation of
equality x � y is defned by the positive formula
∃z(x − y) · z � 1 and every homomorphism is an
embedding then the classes of apc felds, pc felds,
and existentially closed felds are equals.

Defnition 19. Let T be an h-inductive L-theory and A

a model of T.

(i) A positive formula φ(x) is said to be T-algebraic if
φ(x)≢⊥ modulo T (i.e., φ(x) has a realisation in
some model of T ) and there exists a positive for-
mula ψ(y1, . . . , yn) such that φ(x)∧ψ (y1, . . . , yn)

≢⊥ modulo T+(A), and

T ⊢∀x, y (φ(x)∧ψ(y))⟶ ∨
i

x � yi . (11)

We denote by AlT the set of T-algebraic quantifer-
free positive L-formulas.

(ii) For every positive formula φ(x), we denote by
E(φ, T) the set of positive formulas ψ(y) such that
φ(x)∧ψ(y)≢⊥modulo T and satisfy the following
property:

T ⊢ ∀x y (φ(x)∧ψ(y))⟶ ∨
i,j

xi � yj . (12)

(iii) A positive formula φ(x, y) is said to be
(A, T)-closed if φ≢⊥ modulo T, and for every pc
model continuation B of A, if B ⊨φ(a, b) for some
a ∈ A, then b ∈ A.

Remark 20
(1) A quantifer-free positive formula is T-algebraic if

and only if its algebraic is in the sense of Robinson
([4]).

(2) Given that the class of pc models of T+(A) coincides
with the class of pc models of T that are continuation
of A (bullet 5 of Remark 7), then a formula is
(A, T)-closed if and only if it is (A, T+(A))-closed.

(3) Let A be a model of T. Denote by CA the set of
quantifer-free formulas that are (A, T)-closed.Ten,
A is CA-wpc.

(4) If every formula in AlT+(A) is (A, T)-closed, by the
bullet 2 above, the model A is AlT+(A)-wpc, and since
AlT ⊂ AlT+(A), A is also AlT-wpc.
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We denote by ET the set of quantifer-free positive
formulas φ(x) such that E(φ, T)≠∅.

Lemma 21. Let A be an h-amalgamation basis of T. If A is
ET+(A)-wpc (resp. ET+(A)-apc), then every formula in AlT+(A)

is (A, T)-closed.

Proof. Let A be a ET+(A)-wpc and an h-amalgamation basis
of T. Assume the existence of a formula φ(a, y) ∈ AlT+(A)

such that φ(a, y) is not (A, T)-closed. So, there exist a pc
models B of T+(A) and b ∈ B − A such that B ⊨φ(a, b). Let
ψ(a, x) ∈ E(φ, T+(A)), and let C be a pc model of T+(A)

and c ∈ C such that C ⊨ψ(a, c). Given that ψ(a, x) ∈ ET+(A)

and A is an AlT+(A)-wpc model of T, then there is a′ in A

such that C ⊨ψ(a, a′). Let D be a model of T that amal-
gamate commutatively the diagram C←A⟶ B. Tus, B is
immersed in D and so B ⊨φ(a, b)∧ψ(a, a′), which implies
∨ib � ai

′, a contradiction.
Te proof of the case where A is AlT-apc is an

immediate. □

4. Strong Amalgamation

In this section, we introduce the notions of positive strong
amalgamation and h-strong amalgamation. We investigate
their properties and interactions with the notion of almost
positively closedness.

4.1. Positive Strong Amalgamation

Defnition 22. Let T be an h-inductive theory. A model A of
T is said to be a positive strong amalgamation basis (in short
PSA) (resp. h-strong amalgamation basis (in short h-SA)) of
T, if for every pc models (resp. models) B and C of T, if A is
continued into B and C by two homomorphisms f and g,
respectively, then there exist D a model of T and f′, g′, two
homomorphisms, such that the following diagram
commutes:

A

g

C

f

g'

f '

B

D

, (13)

and satisfes the following property (P):
∀(b, c) ∈ B × C, if g′(c) � f′(b), then there is a ∈ A

such that c � g(a) and b � f(a).

Remark 23. Note that in the defnition of PSA basis, we can
reformulate the property (P) as follows:
∀(b, c) ∈ B × C, if g′(c) � f′(b), then there exist

a, a′ ∈ A such that c � g(a) and b � f(a′).
Indeed, let a, a′ ∈ A such that c � g(a) and b � f(a′),

then

f′(b) � f′°f a′(  � g′°g a′(  � g′(c) � g′°g(a). (14)

Given that g′ is an immersion, we have

g a′(  � g(a) � c,

f a′(  � b.
(15)

Example 2

(1) Every h-inductive theory for which the unique pc
model is the trivial model Ae � a{ } has the positive
strong amalgamation property. As examples of these
theories, we have the theory of groups and the theory
of partially ordered sets.

(2) Let L � p, q  where p and q are two unary relation
symbols. Let T be the h-inductive theory
∀x, y((p(x)∧ q(y))⟶ x � y) . Te trivial
structure E � e{ } such that E ⊨p(e)∧ q(e) is the
unique pc model of T; thus, T has the positive strong
amalgamation property. However, the structure A �

a{ } where A ⊭ (p(a)∨q(a)) has no h-strong amal-
gamation property. Indeed, let B � a, b{ }, C � a, c{ },
B ⊨p(b), and C ⊨ q(c), then the diagram
B←A⟶ C cannot be h-strongly amalgamate.

Lemma 24. Let A, B, andC be three L-structures. Let
i ∈ Imm(A, B) and h ∈ Hom(A, C). Ten, there exist D a L-
structure, h′ a homomorphism, and s an s-immersion such
that the following diagram commutes:

A i

sC

h h'

B

D

, (16)

and satisfes the following property:
∀(b, c) ∈ B × C, and if h′(b) � s(c), then there exists

a ∈ A such that c � h(a) and b � i(a).

Proof. Te proof consists in the verifcation that the fol-
lowing set is L(B∪C)-consistent.

T′ � Ti(C)∪Diag+
(B)∪Diag+

(C)∪ b≠ c |  b ∈ B − A, c ∈ C − h(A){ }, (17)

where every elements of A is interpreted by the same
symbols of constant in B and C.
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Assume that T′ is L(B∪C)-inconsistent. Ten, there
exist φ(h(a), c) ∈ Diag+(C), ψ(a, b) ∈ Diag+(B) where
c ∈ C − h(A) and b ∈ B − A such that

Ti(C) ⊢∀y (φ(h(a), c)∧ψ(a, y))⟶ ∨
i,j

yi � cj . (18)

Given that B ⊨ψ(a, b) and A is immersed in B, so there is
a′ ∈ A such that A ⊨ψ(a, a′). Consequently, C ⊨φ(h(a),

c)∧ψ(h(a), h(a′)). Tereby, C ⊨∨i,jh(a′)i � cj, which is
a contradiction.

Let D be a model of T′, then the following digram
commutes:

A

s

i

C

h h'

B

D

, (19)

where h′ is a homomorphism and s a strong immersion. Let
b ∈ B and c ∈ C such that s(c) � h′(b), so there is a, a′ in A

such that c � h(a) and b � i(a′). By the commutativity of the
diagram above, we have

s°h(a) � h′°i a′(  � s°h a′( . (20)

Given that s is an immersion, we obtain

b � i a′( ,

c � h(a) � h a′( .
(21)

□

Corollary 25. Every pc model A of T is a h-strong amal-
gamation basis of T.

Proof. Immediate from Lemma 24. □

Proposition 2 . Let A and B be twomodels of an h-inductive
theory T. If A is immersed in B, a h-SA basis of T, then A is
a h-SA basis of T.

Proof. Let A1 and A2 be two models of T, f ∈ Hom(A, A1),
and g ∈ Hom(A, A2). By applying Lemma 24 to the dia-
grams A1←A⟶ B and A1←A⟶ B, we get the com-
mutative diagrams (1) and (2), where f′, g′ are
homomorphisms and i1, i2 are strong immersions.

Now, given that B has the h-strong amalgamation
property, we get the commutative diagram (3):

A

A2 B2

A1

i1

i

i2

B1

g

C

f 'f

g'

f˝

g˝

B

(1)

(2)

(3) , (22)

where f″, g″ are homomorphisms.

We claim that C makes the diagram A1←A⟶ A2
strongly amalgamate. Indeed, let a1 ∈ A1 and a2 ∈ A2 such
that f″°i1(a1) � g″°i2(a2). By the h-strong amalgamation
property of the diagram (3), there is b ∈ B such that f′(b) �

i1(a1) and g′(b) � i2(a2). Considering the properties of the
diagrams (1) and (2), we get two elements a and a′ from A

such that

f(a) � a1, i(a) � b,

g a′(  � a2, i a′(  � b.
 (23)

Given that i is an immersion, then a � a′ and
f(a) � a1, g(a) � a2. So, A is a h-SA basis of T. □

Lemma 27. An h-amalgamation basis A of T is a PSA basis if
and only if for every pc model of T+(A) and for every
φ(a, x) ∈ ET+(A), we have B ⊭φ(a, b1 · · · bn) for every b1, . . . ,

bn ∈ B − A.

Proof. Let A be a PSA basis of T. Suppose that there are
φ(a, x) ∈ ET+(A) and B a pc model of T+(A) such that
B ⊨φ(a, b1 · · · bn) where b1, . . . , bn ∈ B − A. Let ψ(a, y) ∈ E

(φ, T+(A)) and C a pc model of T+(A) such that C ⊨ψ(a, c).
Given that A is a PSA basis of T, we obtain the following

commutative diagram.

A

g

C

i

i'

f
B

D

, (24)

where i and i′ are immersion, and D a model of T that
satisfes the following property:

∀(b, c) ∈ B × C; i(b) � i′(c)⇒∃a ∈ A, (f(a) � b∧g(a) � c).

(25)

Now, since D ⊨φ(a, i(b))∧ψ(a, i′(c)), then D ⊨∨i,ji(bi)

� i′(cj), which implies the existence of an element a′ ∈ A

such that i(bi) � i′(cj) � i(a′), a contradiction.
For the other direction, let B and C be two pc models of

T, f ∈ Hom(A, B), and g ∈ Hom(A, C) such that the fol-
lowing diagram is not h-strongly amalgamable.

C A B
fg . (26)

Tus, there exist φ(f(a), b1 · · · bn) ∈ Diag+(B),
ψ(g(a), c1 · · · cm) ∈ Diag+(C) where b1, . . . , bn ∈ B − A and
c1, . . . , cm ∈ C − A such that

T
+
(A) ⊢∀y (φ(a, x)∧ψ(a, y))⟶ ∨

i,j
xi � yj . (27)

Ten, φ(a, x) ∈ ET+(A) and B ⊨φ(a, b1 · · · bn). □

Theorem 28. Let A be an h-amalgamation basis of T, then
we have the following properties:

(1) If A is a ET+(A)-wpc model of T, then A is a PSA basis
of T.
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(2) If A is a PSA basis of T, then A is AlT+(A)-wpc.

Proof

(1) Let A be an h-amalgamation basis and a ET+(A)-wpc
model of T. Let B and C be two pc models of T,
f ∈ Hom(A, B), and g ∈ Hom(A, C). Let D a model
of T such that the following diagram commutes:

A

g

i2

i1

C

f
B

D

, (28)

where i1 and i2 are immersions.
We claim that the set T∪Diag+(B)∪Diag+ (C)

∪ b≠ c |  b ∈ B − A, c ∈ C − A{ } is L(B∪C)-consis-
tent (note that the element ofA are interpreted by the
same symbols of constants in B and C). Assume that
the set above is inconsistent. Ten there are
a∈ A, b∈ B − A, c∈ C − A, φ(a, b) ∈ Diag+(B) and
ψ(a, c) ∈ Diag+(C) such that

T
+
(A)∪ φ(a, b),ψ(a, c), ∧

i,j
bi ≠ cj , (29)

is L(B∪C)-inconsistent, thereby

T
+
(A) ⊢ ∀y, z (φ(a, y)∧ψ(a, z))⟶ ∨

i,j
yi � zj .

(30)

Now, since C ⊨ψ(a, c), ψ ∈ ET+(A), and A is an
ET+(A)-wpc model, then there is a′ ∈ A such that
C ⊨ψ(a, a′). Tereby, D ⊨ψ(a, a′), so B ⊨ψ(a, a′)
∧φ(a, b), which implies B ⊨∨i,jbi � aj

′, a contradic-
tion. Tus, A is a PSA basis of T.

(2) Suppose that A is PSA of T. Since AlT+(A) ⊆ET+(A), by
Lemma 27, every formula in AlT+(A) is (A, T)-closed,
which implies that A is a AlT+(A)-wpc model of T by
Remark 20 bullet (4). □
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