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Te SEIQHRmodel, introduced in this study, serves as a valuable tool for anticipating the emergence of various infectious diseases,
such as COVID-19 and illnesses transmitted by insects. An analysis of the model’s qualitative features was conducted,
encompassing the computation of the fundamental reproduction number, R0. It was observed that the disease-free equilibrium
point remains singular and locally asymptotically stable when R0 < 1, while the endemic equilibrium point exhibits uniqueness
when R0 > 1. Additionally, specifc conditions were outlined to guarantee the local asymptotic stability of both equilibrium points.
Employing numerical simulations, the graphical representation illustrated the infuence of model parameters on disease dynamics
and the potential for its eradication across diferent noninteger orders of the Caputo derivative. In essence, the adoption of
a fractional epidemicmodel contributes to a deeper comprehension and enhanced biological insights into the dynamics of diseases.

1. Introduction

In December 2019, an enigmatic pneumonia outbreak traced
back to a market in Wuhan caught global attention,
prompting swift action from theWorld Health Organization
(WHO) [1–4]. By January 7, 2020, scientists identifed
a novel strain within the coronavirus family as the culprit
behind the outbreak, dubbing it COVID-19 [5]. Tis dis-
covery marked the beginning of a tumultuous journey as the
virus swiftly spread, culminating in WHO declaring it
a pandemic on March 12, 2020. Te symptoms of COVID-
19, ranging from fever to breathing difculties, captured the
world’s concern. What intrigued scientists even more was
the fact that some carriers showed no symptoms yet could
unknowingly spread the virus [6–8].

As the world grappled with the unfolding crisis, mathe-
matical models emerged as indispensable tools in un-
derstanding and managing infectious diseases [9–11].
Researchers worldwide rushed to develop and refne com-
partmental models to dissect the dynamics of the COVID-19

epidemic [12, 13]. Notably, Yang and Wang [14] presented
a comprehensive model that accounted for various trans-
mission pathways of the coronavirus. Teir fndings under-
scored the critical role of environmental factors in shaping
disease transmission dynamics, emphasizing the need for
sustained intervention eforts and preventive measures.

In China, Li et al. [15] crafted an SEIQR model tailored
to the COVID-19 epidemic, ofering insights into the impact
of timely lockdowns on controlling case counts. Meanwhile,
Ngonghala et al. [16] focused their attention on America,
particularly New York, to evaluate the efectiveness of
mitigation strategies such as social distancing and mask-
wearing. Eikenberry et al. [17] explored the community-
wide efects of mask-wearing among asymptomatic in-
dividuals, shedding light on its potential in curbing
transmission rates.

While existing studies primarily relied on integer-order
diferential equations to model epidemic dynamics, recent
advances have highlighted the promise of fractional-order
models [18, 19]. Tese models ofer a broader perspective by
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incorporating nonlocal behaviors, potentially revolutioniz-
ing our understanding of complex phenomena [20–22].

Te structure of our paper is as follows: section 1 lays the
groundwork, while section 2 outlines the model formulation.
Sections 3 and 4 delve into foundational and stability analyses,
respectively. Sections 5 and 6 explore sensitivity analysis,
followed by bifurcation analysis and optimal control strategies
in sections 7 and 8. In section 8, we elucidate the concept of
fractional derivatives. Finally, sections 9 and 10 present nu-
merical simulations, validating our analytical fndings and
concluding with a discussion and fnal remarks.

2. Model Framework

In the SEIQHR model, the population is categorized into six
groups: susceptible (S), exposed (E), infected (I), quar-
antine (Q), hospitalised (H), and recovered (R).

_S � Λ − βIS − μS,

_E � βIS − (π + μ)E,

_I � πE − (μ + c + ψ + η)I,

_Q � (1 − δ)cI − (ϕ + τ + μ)Q,

_H � τQ + ψI − (μ + κ + σ)H,

_R � δcI + ϕQ + κH − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Starting from the subsequent initial conditions: S(0) �

S0 > 0, E(0) � E0, I(0) � I0, Q(0) � Q0, H(0) � H0, R(0) �

R0 ≥ 0.
Table 1 shows the descriptions of the parameter, while

the dynamics of COVID-19 transmission are illustrated in
the fowchart depicted in Figure 1.

COVID-19 spreads among susceptible individuals at a rate
denoted by β due to contact with infected individuals. Exposed
individuals transition to the infected group at a rate represented
by π. Upon infection, individuals either enter quarantine or
recover. A portion (1 − δ) of infected individuals moves to the
quarantine category at a rate of c, while the remaining δc

transition to the recovered category upon recovery.

3. Analysis of the Model

In this section, we look at some of the most noteworthy results
from the model (1) analysis. By summing all of their equations,
we may get the complete dynamics of the system (1) given by

dN

dt
� Λ − μN − ηI − σH≤Λ − μN. (2)

We obtain the following conclusion after solving the
preceding (2):

N(t) � N0e
− μt

+
Λ
μ

1 − e
− μt

􏼐 􏼑. (3)

Te (3) converges to Λ/μ as t approaches infnity.
Moreover, it asserts the nonnegativity of variables within the
model (1) for all t≥ 0. Consequently, the initial solution (1)
of the model will maintain positivity for any t≥ 0.

3.1. Positivity and Boundedness. Next, we attempt to dem-
onstrate the model’s solution positivity and boundedness of
the model (1).

Theorem 1. Te compartments of the model (1) at
t � 0 (S0 > 0, E0 > 0, I0 > 0, Q0 > 0, H0 > 0, R0 > 0), and then,
the solution for t> 0 of all the variables in the model will be
nonnegative.

Proof. To demonstrate the outcome, begin with the models
(1),

dS

dt
� Λ − φ(t) − μS

≥ − (φ(t) + μ)S,

(4)

where φ(t) � βI. We get the following result after
integrating:

S(t)≥ S0e
− 􏽒

t

0(φ(τ)+μ)dτ > 0. (5)

We can simply continue the preceding technique to
demonstrate the positivity of the model (1) remaining
variables.

To demonstrate the boundedness of the system’s solution
(1), we noted in the preceding theorem that the solution is
nonnegative, and we can use (3) to show that the solution is
bounded when t⟶∞ is Λ/μ. □

3.2. Disease-Free Equilibrium Points and Basic Reproduction
Number. We can readily express our E0 by just setting the
disease classes and derivatives to zero in model (1); it would
take the form E0 � (Λ/μ, 0, 0, 0, 0, 0).

To calculate the model’s basic reproduction number, we
propose utilising a next-generation matrix. For that, we take
the disease classes from our model as follows:

_E(t) � βIS − (α + μ)E,

_I(t) � αE − (μ + c + ψ + η)I,

_Q(t) � c(1 − δ)I − (ϕ + τ + μ)Q,

_H(t) � τQ + ψI − (κ + σ + μ)H.

(6)

From system (6), we develop matrix F and V as follows:

F �

βSI

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and,

V �

− (μ + π)

πE − (c + μ + η + ψ)I

c(1 − δ)I − (ϕ + τ + μ)Q

τQ + ψI − (κ + σ + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7)
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Te Jacobian matrices corresponding to F and V at the
disease-free equilibrium (DFE) are denoted by F∗ and V∗,
respectively.

F
∗

�

0
Λβ
μ

0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V
∗

�

μ + π 0 0 0

π c + μ + η + ψ 0 0

0 − c(1 − δ) ϕ + τ + μ 0

0 − ψ − τ σ + κ + μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

Hence, F∗V∗− 1 represents the next-generation matrix of
the system (1). Terefore, R0 � ρ(F∗V∗− 1), where ρ denotes
the spectral radius of the next-generation matrix F∗V∗− 1.

So, ρ(F∗V∗− 1) � πβΛ/μ(μ + π)(μ + c + η + ψ) � R0.
Terefore,

R0 �
πβΛ

μ(μ + π)(μ + c + η + ψ)
. (9)

Figure 2 represents the dynamics of R0 with respect to
the transmission rates π and c.

4. Local and Global Stability Analyses

Theorem  . When R0 < 1, the disease-free equilibrium ex-
hibits local asymptotic stability.

Proof. Te Jacobian matrix associated with the system (1) at
the disease-free equilibrium (Eo) is outlined as follows:

JE0 �

− μ 0 −
βΛ
μ

0 0 0

0 − (π + μ)
βΛ
μ

0 0 0

0 π − (μ + c + η + ψ) 0 0 0

0 0 (1 − δ)c − (μ + τ + ϕ) 0 0

0 0 ψ τ − (μ + κ + σ) 0

0 0 δc ϕ κ − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Table 1: Parameters and their descriptions of the system (1).

Variable Interpretation
Λ Te recruitment rate of susceptible individuals
β Te efectual contact rate among susceptible and infectious individuals
μ Death rate of individuals (natural)
π Te rate of exposed individuals becoming infectious
τ Te rate of quarantined individuals becoming hospitalised
(1 − δ) Te portion of infected individuals
c Te recovery rate of infected ones

π
μ γ

τ

κ

ψ

σ+ μ

μ+ η

ϕ

μ

μ

β

Λ μ

S (t)

I (t) Q (t)

R (t)
H (t)

E (t)

Figure 1: Flow diagram of the COVID-19 model (1).
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Te eigenvalue of the above Jacobian matrix at Eo is

λ1 � − μ,

λ2 � − (μ + π),

λ3 � − (μ + c + η + ψ),

λ4 � − (τ + ϕ + μ),

λ5 � − (κ + σ + μ),

λ6 � − μ.

(11)

So, all the eigenvalues are negative which complete
the proof. □

Theorem 3. If R0 < 1, the disease-free equilibrium demon-
strates global stability.

Proof. We partition system (1) into two compartments:
uninfected and infected individuals, represented as follows:

dX

dt
� F(X,F),

dF
dt

� M(X,F), M(X, 0) � 0.

(12)

Te point E0 � (N0, 0) is globally asymptotically stable
equilibrium of system (1) if the following conditions are
satisfed:

L1: E0 is globally asymptotically stable for

dX

dt
� F(X, 0) L2: M(X,F)≥ 0, (X, Z)εΩ, (13)

where M(X,F) � AF − M(X,F), A � DFM(N0, 0) is
a Metzler matrix.

Tus, we have

dX

dt
�

Λ − βSI − μS

ϕQ + δcI + κH − μR

⎛⎜⎜⎝ ⎞⎟⎟⎠.

F(X, 0) �

Λ − βSI − μS

ϕQ + δcI + κH − μR

⎛⎜⎜⎝ ⎞⎟⎟⎠.

dF
dt

� M(X,F) �

βSI − (μ + α)E

πE − (μ + c + η + ψ)

c(1 − δ)I − (ϕ + τ + μ)Q

tauQ + psiI − (κ + σ + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

Terefore, given M(X, 0) � 0, the equilibrium
N0 � (Λ/μ, 0) is globally asymptotically stable for
dX/ dt � F(X, 0).

L1:
dX

dt
� F(X, 0)

�

βSI − (μ + π)E

πE − (μ + c + η + ψ)

(1 − δ)cI − (ϕ + τ + μ)Q

τQ + ψI − (κ + σ + μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

When solved for L2, it results in

1 1.50.5

2

1

0

R 0

0.1
0.05

0 0 0.1 0.2 0.3 0.4
β γ

(a)

1 1.5 2 2.50.5

R 0

3

4

2

0
0.09 0.07

0.05 0.03 0.01π 0
0.1 0.2 0.3 0.4

β

(b)

Figure 2: Te dynamics of R0 with respect to the transmission rates β, π, and c. (a) Te change in the value of R0 concerning the
transmission rates β and c. (b) Impact of β and π on R0.
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A � F
∗

− V
∗

�

− (μ + π)
Λβ
μ

0 0

π − (μ + η + c + ψ) 0 0

0 (1 − δ)c − (τ + ϕ + μ) 0

0 ψ τ − (κ + μ + σ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

with AF is given by

AF � − (μ + π)E +
βΛI
μ

πE − (μ + c + η + ψ)Ic(1 − δ)I − (τ + ϕ + μ)QψI + τQ − (κ + σ + μ)􏼠 􏼡. (17)

Tus,

(M(X,F)) �

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

M1(X,F)

M2(X,F)

M2(X,F)

M4(X,F)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(18)

Since M1(X,F) � 0, M2(X,F) � 0, M3(X,F) � 0,
and M4(X,F) � 0, we have G(X,F)≥ 0 for (X,F)εΩ.

Terefore, E0 is globally asymptotically stable if
R0 < 1. □

4.1. Existence of Endemic Equilibrium Point. In this section,
we investigate the potential existence of an endemic equi-
librium denoted as E∗ � (S∗, E∗, Q∗, I∗, H∗, R∗).

Tis endemic equilibrium is

S
∗

�
Λ

βI
∗

+ μ
,

E
∗

�
βΛI∗

(μ + π) βI
∗

+ μ( 􏼁
,

I
∗

�
μ
β

R0 − 1( 􏼁,

Q
∗

�
cμ(1 − δ)

β(τ + ϕ + μ)
R0 − 1( 􏼁,

H
∗

�
(τ + ϕ + μ)ψI

∗
+ τc(1 − δ)I

∗

(κ + σ + μ)(τ + ϕ + μ)
,

R
∗

�
g1 ϕg3I

∗
+ g2cδI

∗
􏼈 􏼉 + κ g2ψI

∗
+ τg3I

∗
􏼈 􏼉

g1g2μ
,

(19)

where g1 � κ + σ + μ, g2 � τ + ϕ + μ, and g3 � c(1 − δ).

4.2. Local and Global Stability of E∗

Theorem 4. Te local asymptotic stability of the endemic
equilibrium E∗ occurs when R0 > 1.
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Proof. Te Jacobian matrix corresponding to the system (1)
is outlined as follows:

J �

− βI
∗

− μ 0 − βS
∗ 0 0 0

βI
∗

− (μ + π) βS
∗ 0 0 0

0 π − (μ + c + η + ψ) 0 0 0

0 0 c(1 − δ) − (ϕ + τ + μ) 0 0

0 0 ψ τ − (κ + σ + μ) 0

0 0 δc ϕ κ − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Te eigenvalues of the above matrix at E∗ are given as
follows:

λ1 � − μ,

λ2 � − (ψ + c + μ + η),

λ3 � − (ϕ + τ + μ),

λ4 � − (σ + κ + μ).

(21)

Te quadratic expression λ2 + μ(μ + π)R0(λ + 1) con-
sists solely of nonnegative terms, ensuring that all its roots
are negative, i.e., λ5,6 < 0. Tis concludes the proof. □

Theorem 5. Te endemic equilibrium state E∗ � (S∗, E∗,

I∗, Q∗, H∗, R∗) within model (1) achieves global asymptotic
stability if R0 < 1; otherwise, it becomes unstable.

We obtained a Lyapunov function to demonstrate the
global stability of the model at the endemic equilibrium
point E∗ � (S∗, E∗, I∗, Q∗, H∗, R∗).

dΨ
dt

� S − S
∗

( 􏼁 + E − E
∗

( 􏼁 + I − I
∗

( 􏼁 + Q − Q
∗

( 􏼁 + H − H
∗

( 􏼁􏼂 􏼃 × μR0S
∗

− μS − μE − g1I − g2Q − g3H. (22)

Here, g1 � μ + η + δc, g2 � μ + ϕ and g3 � μ + δ + κ.

dΨ
dt

� − S − S
∗

( 􏼁 + E − E
∗

( 􏼁 + I − I
∗

( 􏼁 + Q − Q
∗

( 􏼁 + H − H
∗

( 􏼁􏼂 􏼃 × μ S − R0S
∗

( 􏼁 + μE + g1I + g2Q + g3H􏼂 􏼃. (23)

Hence, dΨ/ dt≤ 0 for all (S∗, E∗, I∗, Q∗, H∗, R∗). Te
equality dΨ/ dt � 0 holds only for S∗, E∗, I∗, Q∗, H∗, R∗.

As a result, positive E∗ is globally asymptotically stable.

5. Sensitivity Analysis

In this section, sensitivity analysis is utilized to evaluate
the importance of the generic parameters contributing to
the basic reproduction number R0. Parameters demon-
strating a positive impact are deemed highly and pro-
portionally sensitive to the value of R0, while those with
a negative impact are less responsive to a decrease in R0.

Additionally, there is a category of parameters termed
neutrally sensitive. Te sensitivity index method is uti-
lized to identify the most critical model parameters,
where those with a positive sign are deemed highly
sensitive to the value of R0, maintaining a proportional
relationship with it.

ΥR0
hi �

zR0

zhi

×
hi

R0
, (24)

where R0 is the fundamental reproduction ratio and Pi is as
mentioned before. Using the stated formula, we arrive at
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ΥΛ � 1,

Υβ � 1,

Υη � −
η

c + μ + η + ψ
,

Υc � −
c

c + μ + η + ψ
,

Υπ �
μ

μ + π
,

Υψ � −
ψ

c + μ + η + ψ
,

Υμ � −
(2μ + π)(μ + c + η + ψ) − μ(μ + α)

μ(μ + π)(μ + c + η + ψ)
.

(25)

Some criteria have been shown to be positive, while
others have been found to be negative. A positive re-
lationship between the parameters indicates that raising
the value of that parameter has a substantial infuence on
the frequency of disease transmission. A negative link
indicates that increasing the relevance of these criteria
might assist in reducing the disease’s aggressiveness. Te
physical appearance of the number signals is given in
Figure 3.

6. Bifurcation Analysis

To investigate whether the model system (1) exhibits
backward bifurcation, we apply the theory of center man-
ifolds following the methodology described by Cas-
tillo–Chavez and Song in [6]. We consider the system as
follows: dx/ dt � f(x, β∗), where f is continuously difer-
entiable at least twice in x and β denotes the bifurcation
parameters. Te equations a and b are represented as
follows:

a � 􏽘

6

k,i,j�1
vkwiwj

z
2
gk

zuizuj

E0, β
∗

( 􏼁 and,

b � 􏽘
6

k,i,j�1
vkwi

z
2
gk

zuizβ
E0, β
∗

( 􏼁.

(26)

Terefore, when a> 0 and b> 0, backward bifurcation
occurs, whereas when a< 0 and b> 0, forward bifurcation
occurs.

Now, to calculate the bifurcation parameter β, then R0 be
equivalent to

β � β∗

�
μ(μ + π)(μ + c + η + ψ)

πΛ
,

(27)

by setting S � x1, E � x2, I � x3, Q � x4, H � x5, and
R � x6, the model system (1) can be rewritten in the fol-
lowing form:

g1(x) � Λ − x1x3β − x1μ,

g2(x) � x1x3β − (π + μ)x2,

g3(x) � πx2 − (c + μ + ψ + η)x3,

g4(x) � (1 − δ)cx3 − (ϕ + τ + μ)x4,

g5(x) � ψx3 + τx4 − (κ + σ + μ)x5,

g6(x) � ϕx4 + κx5 + δcx3 − μx6.

(28)

Te Jacobian matrix of the model system (28) was
assessed at E0 with β � β∗. Tis assessment yielded both the
right and left eigenvectors associated with a single zero
eigenvalue.

u1 �
β∗Λ
μ2

u3,

u2 �
μ + c + η + ψ

α
u3,

u4 �
c(1 − δ)

τ + μ + ϕ
u3,

u5 �
ψk1 + τck3

k1k2
u3,

u6 �
k1k2δc + k2k3ϕc + κk1ψ + k3τc

μk1k2
u3,

(29)

where k1 � μ + τ + ϕ, k2 � κ + σ + μ, and k3 � 1 − δ. With
v1 � 0, v3 � μ + π/πv2, v4 � 0, v5 � 0, and v6 � 0.

1.2
1

0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1

Elasticity indices for significance of parameters

Figure 3: Elasticity indices for signifcance of parameters in R0.
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Te nonzero partial derivatives are derived as follows:

z
2
g2

zx1zx3
� β∗,

z
2
g2

zx3zx1
� β∗,

z
2
g2

zx1zβ
∗ � 0,

z
2
g2

zx3zβ
∗ �
Λ
μ

,

δ �
Λv2u3

μ
,

a �
2v2β
∗Λu2

3

μ2
,

b �
Λv2u3

μ
.

(30)

As a> 0 and b> 0, hence the model exhibits the back-
ward bifurcation.

Te observation depicted in Figure 4 indicates that
model (1) exhibits the phenomenon of backward bifurcation
when R0 � 1.

7. Optimal Control Problem

Te sensitivity analysis presented in the preceding part aids
us in developing an efective control plan to combat this
pandemic. We rebuild the model (1) by monitoring the most

relevant factors in order to examine the efect of control
measures on the future scenario. Te model (1) has the
following structure with the addition of two controls:

_S(t) � Λ − 1 − u1( 􏼁βSI − μS,

_E(t) � 1 − u1( 􏼁βSI − π + μ + ρu2( 􏼁E,

_I(t) � πE − (μ + c + ψ + η)I,

_Q(t) � c(1 − δ)I − (τ + ϕ + μ)Q + ρu2E,

_H(t) � ψI + τQ − (κ + σ + μ)H,

_R(t) � ϕQ + δcI + κH − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

with the given initial conditions

S(0)> 0 andE(0), I(0), Q(0), H(0)R(0)≥ 0. (32)

Te control u1(t) denotes cautious actions such as social
isolation and frequent usage of face masks. Control u2(t)

indicates a rapid step to isolate persons infected with the
COVID-19 virus. We develop the functional objectives. J. Its
goal is to reduce infectious persons while also lowering the
cost of implemented controls u1 and u2.

J u1(t), u2(t)( 􏼁 � 􏽚
t

0
C1E(t) + C2I(t) + C3Q(t) +

1
2

C4u
2
1(t) + C5u

2
2(t)􏼐 􏼑􏼚 􏼛dt, (33)

where C1, C2, C3, C4, and C5 represent the weight constants.
Furthermore, in order to minimise the objective func-

tional, we must determine the best control pair u∗1(t) and
u∗2(t).

J u
∗
1(t), u

∗
2(t)􏼈 􏼉 � min J u1(t), u2(t)( 􏼁, u1(t), u2(t)εU􏼈 􏼉.

(34)

Given the system (31) and the control set U � (u1(t), u2􏼈

(t))\ui(t)} is Lebesgue measurable on [0, 1], 0≤ ui(t)≤ 1,

i � 1, 2, 3{ }.

7.1. Existence of the Optimal Control Problem. Tis sub-
section gives proof that the control problem exists. Te
optimal control problem is given by the following equation
in the Lagrangian:

L E, I, Q, u1, u2􏼈 􏼉 � C1E + C2I + C3Q +
1
2
C4u

2
1 +

1
2
C5u

2
2.

(35)

To get the smallest Lagrangian value, we defne Ham-
iltonian H for the optimum control problem as follows:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10
15
20
25
30
35
40

Figure 4: Bifurcation diagram of model (1) showing backward
bifurcation.
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H � L E, I, Q, u1, u2( 􏼁

+ ξ1
dS(t)

dt
+ ξ2

dE

dt
+ ξ3

dI

dt
+ ξ4

dQ

dt
+ ξ5

dH

dt
+ ξ6

dR

dt
.

(36)

Adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5, and ξ6 and optimal
control variables u1 and u2.

ξ1′(t) � − ξ2 − ξ1( 􏼁 1 − u1( 􏼁βI + ξ1μ􏼈 􏼉,

ξ2′(t) � − C1 − ξ1 μ + α + ρu2( 􏼁 + ξ3π + ξ4ρu2􏼈 􏼉,

ξ3′(t) � − C2 + ξ2 − ξ1( 􏼁 1 − u1( 􏼁βS − ξ3(μ + c + η + ψ) + ξ4c(1 − δ) + ξ5ψ + ξ6δc􏼈 􏼉,

ξ4′(t) � − C3 − ξ4(τ + ϕ + μ) + ξ5τ + ξ6ϕ􏼈 􏼉,

ξ5′(t) � − − ξ5(κ + σ + μ) + ξ6κ􏼈 􏼉,

ξ6′(t) � − − ξ6μ􏼈 􏼉,

u1(t) �
ξ2 − ξ1( 􏼁βSI

C4
􏼨 􏼩,

u2(t) �
ξ2 − ξ4( 􏼁ρE

C5
􏼨 􏼩.

(37)

Theorem 6. For control problem (31), there exists u∗(t) �

(u∗1(t), u∗2(t))εU such that

min
u1(t),u2(t)( )εU

J u1(t), u2(t)( 􏼁 � J u
∗
1 , u
∗
2( 􏼁. (38)

By defnition, the set of control variables u1, u2εU is
convex and closed. Tis optimum system has been defned,
and it gives assurance regarding the solidity required for the
optimal control system’s validation. As a result, we dis-
covered an optimum solution to our presented control issue.
In order to solve our stated issue, we use the Pontryagin
maximal approach. By using this principle, the Hamiltonian
is given by

H � L E, I, Q, u1, u2( 􏼁

+ ξ1
dS

dt
+ ξ2

dE

dt
+ ξ3

dI

dt
+ ξ4

dQ

dt
+ ξ5

dH

dt
+ ξ6

dR

dt
.

(39)

An existent nontrivial vector function ξ � (ξ1, ξ2, . . . , ξn)

emerges if we designate (y∗, u∗) as an optimal solution to
our formulated optimal control problem.

dy

dt
�

zH(t, y, u, ξ)

zu
,

0 �
zH(t, y, u, ξ)

zu
,

ξ′(t) �
zH(t, y, u, ξ)

zu
.

(40)

Tese fndings are achieved by applying the necessary
conditions to the Hamiltonian.

Theorem 7. With the provided optimal controls u∗1 and u∗2 ,
as well as the solutions S∗, E∗, I∗, Q∗, H∗, R∗ from the cor-
responding state system (31), the existence of adjoint variables
ξm for m � 1, . . . , 6 is assured.

ξ1′(t) � − ξ2 − ξ1( 􏼁 1 − u1( 􏼁βI + ξ1μ􏼈 􏼉,

ξ2′(t) � − C1 − ξ1 μ + α + ρu2( 􏼁 + ξ3π + ξ4ρu2􏼈 􏼉,

ξ3′(t) � − C2 + ξ2 − ξ1( 􏼁 1 − u1( 􏼁βS − ξ3(μ + c + η + ψ) + ξ4c(1 − δ) + ξ5ψ + ξ6δc􏼈 􏼉,

ξ4′(t) � − C3 − ξ4(τ + ϕ + μ) + ξ5τ + ξ6ϕ􏼈 􏼉,

ξ5′(t) � − − ξ5(κ + σ + μ) + ξ6κ􏼈 􏼉,

ξ6′(t) � − − ξ6μ􏼈 􏼉,

(41)
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with transversality conditions ξm(t) � 0, m � 1, 2, . . . , 6. Proof. When considering the values S∗, E∗, I∗, Q∗, H∗, and
R∗ and computing the Hamiltonian’s derivatives concerning
the state variables S(t), E(t), I(t), Q(t), H(t), and R(t), we
derive the subsequent adjoint system:

ξ1′(t) � − ξ2 − ξ1( 􏼁 1 − u1( 􏼁βI + ξ1μ􏼈 􏼉,

ξ2′(t) � − C1 − ξ1 μ + α + ρu2( 􏼁 + ξ3π + ξ4ρu2􏼈 􏼉,

ξ3′(t) � − C2 + ξ2 − ξ1( 􏼁 1 − u1( 􏼁βS − ξ3(μ + c + η + ψ) + ξ4c(1 − δ) + ξ5ψ + ξ6δc􏼈 􏼉,

ξ4′(t) � − C3 − ξ4(τ + ϕ + μ) + ξ5τ + ξ6ϕ􏼈 􏼉,

ξ5′(t) � − − ξ5(κ + σ + μ) + ξ6κ􏼈 􏼉,

ξ6′(t) � − − ξ6μ􏼈 􏼉.

(42)

with transversality conditions ξm(t) � 0, m � 1, 2, . . . , 6. □

Theorem 8. Te pair of controls (u∗1 , u∗2 ), which optimizes
the objective functional J within the region U, is expressed as
follows:

u
∗
1 � max min

ξ2 − ξ1( 􏼁βSI
C4

, 1􏼨 􏼩, 0􏼨 􏼩,

u
∗
2 � max min

ξ2 − ξ4( 􏼁ρE

C5
, 1􏼨 􏼩, 0􏼨 􏼩.

(43)

Proof. By employing the optimality condition, we obtain the
following:

zH

zu1
� C4u1 + ξ1βSI − ξ2βSI,

zH

zu2
� C5u2 − ξ2ρE + ξ4ρE.

(44)

For the optimal control variables u∗1 and u∗2 that solve
(44), we yield the following:

u
∗
1(t) �

ξ2 − ξ1( 􏼁βSI
C4

􏼨 􏼩,

u
∗
2(t) �

ξ2 − ξ4( 􏼁ρE

C5
􏼨 􏼩.

(45)

Te optimality system can be written as follows:

dS
∗

dt
� Λ − 1 − max min

ξ2 − ξ1( 􏼁βSI

C4
, 1􏼨 􏼩, 0􏼨 􏼩􏼠 􏼡βS

∗
I
∗

− μS
∗
,

dE
∗

dt
� 1 − max min

ξ2 − ξ1( 􏼁βSI

C4
, 1􏼨 􏼩, 0􏼨 􏼩􏼠 􏼡βS

∗
I
∗

− π + μ + ρmax min
ξ2 − ξ4( 􏼁ρE

C5
, 1􏼨 􏼩, 0􏼨 􏼩􏼠 􏼡E

∗
,

dI
∗

dt
� πE
∗

− (μ + c + ψ + η)I
∗
,

dQ
∗

dt
� c(1 − δ)I

∗
− (τ + ϕ + μ)Q

∗
+ ρmax min

ξ2 − ξ4( 􏼁ρE

C5
, 1􏼨 􏼩, 0􏼨 􏼩E

∗
,

dH
∗

dt
� ψI
∗

+ τQ
∗

− (κ + σ + μ)H
∗
,

dR
∗

dt
� ϕQ
∗

+ δcI
∗

+ κH
∗

− μR
∗
.

(46)

□
8. Model with ABC-Fractional Derivative

Tis section expands upon the previously proposed model
(1) by introducing fractional-order considerations using
the ABC-fractional derivative. We utilize fxed-point

theorems to assess both the existence and uniqueness
of solutions within the generalized model. Prior to
extending the model (1), a review of essential preliminary
defnitions will be conducted, proving benefcial for this
section’s analyses.
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8.1. Preliminaries

Defnition 9. Te defnition of ABC derivative and in-
tegration of function z(t) are defned as

ABC
D

α
0+z(t) �

1 − α
N(α)

􏽚
t

0
Eα

− α
1 − α

(t − x)
α

􏼚 􏼛z′(x)dx

ABC
I
α
0+z(t) �

1 − α
N(α)

z(t) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
z(x)dx, t> 0,

(47)

where α denotes fractional order. As a result, the sug-
gested nonlinear fractional model in terms of the ABC-
fractional operator has the following form:

ABC
D

α
0S(t)� Λ − βSE − μS,

ABC
D

α
0E(t) � βSE − (π + μ)E,

ABC
D

α
0I(t) � πE − (μ + c + ψ + η)I,

ABC
D

α
0Q(t) � c(1 − δ)I − (τ + ϕ + μ)Q,

ABC
D

α
0H(t) � ψI(t) + τQ − (κ + σ + μ)H,

ABC
D

α
0R(t) � ϕQ + δcI + κH − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

with

S
0

� S(0),

E
0

� E(0),

I
0

� I(0),

Q
0

� Q(0),

H
0

� H(0),

R
0

� R(0).

(49)

8.2. Results for Existence andUniqueness of theModel. In this
section, the methodology of fxed-point theory is used to
determine whether or not the suggested model has any
solutions at all, as well as whether or not those solutions are
unique. Te Banach space denoted by the equation
E � C([0, T], R) is the space of all continuous real-valued
functions with the norm provided by

‖S, E, I, Q, H, R‖ � ‖S‖ +‖E‖ +‖I‖ +‖Q‖ +‖H‖ +‖R‖.

(50)

Using the fractional operator ABCIα0+ on both sides of the
system (48), we get

S � S0 +
1 − α
N(α)

G1(t, S) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G1(x, S)dx,

E � E0 +
1 − α
N(α)

G2(t, E) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G2(x, E)dx,

I � I0 +
1 − α
N(α)

G3(t, I) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G3(x, I)dx,

Q � H0 +
1 − α
N(α)

G4(t, Q) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G4(x, Q)dx,

H � H0 +
1 − α
N(α)

G5(t, H) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G5(x, H)dx,

R � R0 +
1 − α
N(α)

G6(t, R) +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G6(x, R)dx,

(51)

where
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G1(t, S) � Λ − βSE − μS,

G2(t, E) � βSE − (π + μ)E,

G3(t, I) � πE − (μ + c + ψ + η)I,

G4(t, Q) � c(1 − δ)I − (τ + ϕ + μ)Q,

G5(t, H) � ψI + τQ − (κ + σ + μ)H,

G6(t, R) � ϕQ + δcI + κH − μR.

(52)

Te kernels within (51) adhere to the Lipschitz condition
for 0≤ ηi < 1, i � 1, 2, . . . , 6 if and only if the nonlinear
functions S, E, I, Q, H, and R possess an upper bound. For
instance, if S and S∗ represent two functions, the outcome is
as follows:

‖G1(t, S) − F1 t, S
∗

( 􏼁‖

� ‖Λ − βSE − μS − Λ − βS
∗
(t)E − μS

∗
( 􏼁‖

� ‖μ S
∗

− S( 􏼁 + βI S
∗

− S( 􏼁‖

≤ μ + β sup
t

ε[0, T]|E|􏼠 􏼡 ‖S − S
∗
‖

� η1 ‖S − S
∗
‖ ,

(53)

where η1 � (μ + β sup
t

  ε[0, T]|E|). Tus,

‖G1(t, S) − G1 t, S
∗

( 􏼁‖ ≤ η1 ‖S − S
∗
‖ . (54)

Similarly, repeat the same procedure as in (53) above, we
yield

‖G2(t, E) − G2 t, E
∗

( 􏼁‖ ≤ η2 ‖E − E
∗
‖ ,

‖G3(t, I) − G3 t, I
∗

( 􏼁‖ ≤ η3 ‖I − I
∗
‖ ,

‖G4(t, Q) − G4 t, Q
∗

( 􏼁‖ ≤ η4 ‖Q − Q
∗
‖ ,

‖G5(t, H) − G5 t, H
∗

( 􏼁‖ ≤ η5 ‖H − H
∗
‖ ,

‖G6(t, R) − G6 t, R
∗

( 􏼁‖ ≤ η6 ‖R − R
∗
‖ .

(55)

Here, ηi (where i � 1, 2, . . . , 6) signifes the respective
Lipschitz constant associated with the functions Gi(·) for
i � 1, 2, . . . , 6. Equation (51) can now be rephrased into
a recursive form as demonstrated as follows:

Sn � S0 +
1 − α
N(α)

G1 t, Sn− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G1 x, Sn− 1( 􏼁dx,

En � E0 +
1 − α
N(α)

G2 t, En− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G2 x, En− 1( 􏼁dx,

In � I0 +
1 − α
N(α)

G3 t, In− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G3 x, In− 1( 􏼁dx,

Qn � Q0 +
1 − α
N(α)

G4 t, Qn− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G4 x, Qn− 1( 􏼁dx,

Hn � H0 +
1 − α
N(α)

G5 t, Hn− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G5 x, Hn− 1( 􏼁dx,

Rn � R0 +
1 − α
N(α)

G6 t, Rn− 1( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G6 x, Rn− 1( 􏼁dx.

(56)

Let us represent the disparity between consecutive
components as Φi

n, where i � 1, 2, . . . , 6. Tus,
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Φ1n(t) � Sn − Sn− 1 �
1 − α
N(α)

G1 t, Sn− 1 − G2 t, Sn− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G1 x, Sn− 1(x)( 􏼁 − G1 x, Sn− 2( 􏼁( 􏼁dx

Φ2n(t) � En − En− 1 �
1 − α
N(α)

G2 t, En− 1 − G2 t, En− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G2x, En− 1(x) − G2 x, En− 2( 􏼁( 􏼁dx

Φ3n(t) � In − In− 1 �
1 − α
N(α)

G3 t, In− 1 − G3 t, In− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G3 x, In− 1(x)( 􏼁 − G3 x, In− 2( 􏼁( 􏼁dx

Φ4n(t) � Qn − Qn− 1 �
1 − α
N(α)

G4 t, Qn− 1 − G4 t, Qn− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G4 x, Qn− 1(x)( 􏼁 − G4 x, Qn− 2( 􏼁( 􏼁dx

Φ5n(t) � Hn − Hn− 1 �
1 − α
N(α)

G5 t, Hn− 1 − G5 t, Hn− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G5 x, Hn− 1(x)( 􏼁 − G5 x, Hn− 2( 􏼁( 􏼁dx

Φ6n(t) � Rn − Rn− 1 �
1 − α
N(α)

G6 t, Rn− 1 − G6 t, Rn− 2( 􏼁( 􏼁( 􏼁 +
α

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
G6 x, Rn− 1(x)( 􏼁 − G6 x, Rn− 2( 􏼁( 􏼁dx.

(57)

Taking into consideration that Sn � 􏽐
1
i�0Φ

1
i , En � 􏽐

1
i�0

Φ1i , In � 􏽐
1
i�0Φ

1
i , Qn � 􏽐

1
i�0Φ

1
i , Hn � 􏽐

1
i�0Φ

1
i , Rn � 􏽐

1
i�0Φ

1
i .

Taking the norm on both sides of (56) and using the (57)
yield

‖Φ1n ‖ �
1 − α
N(α)

η1 ‖Φ1n− 1 ‖
αη1

N(α)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ1n− 1 ‖ dx,

‖Φ2n ‖ �
1 − α
N(α)

η2 ‖Φ2n− 1 ‖
αη2

N(R)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ2n− 1 ‖ dx,

‖Φ3n ‖ �
1 − α
N(α)

η3 ‖Φ3n− 1 ‖
αη3

N(R)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ3n− 1 ‖ dx,

‖Φ4n ‖ �
1 − α
N(α)

η4 ‖Φ4n− 1 ‖
αη4

N(R)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ4n− 1 ‖ dx,

‖Φ5n ‖ �
1 − α
N(α)

η5 ‖Φ5n− 1 ‖
αη5

N(R)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ5n− 1 ‖ dx,

‖Φ6n ‖ �
1 − α
N(α)

η6 ‖Φ6n− 1 ‖
αη6

N(R)Γ(α)
􏽚

t

0
(t − x)

α− 1
‖Φ6n− 1 ‖ dx.

(58)

Based on the preceding conclusions, we are now able to
formulate and prove the main theorem.

Theorem 10. Te fractional proposed model (32) possesses
a unique solution for tε[0, T] if the condition is satisfed
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1 − α
N(α)

ηi +
ηi

N(α)Γ(α)
T
α

􏼠 􏼡< 1, i � 1, 2, 3, . . . , 6. (59)

Proof. Because the functions S, E, I, Q, H, R are limited by
the assumptions, they satisfy the Lipschitz condition. In light
of equation (40), we get

‖Φ1n ‖ ≤ ‖ Sn(0) ‖
1 − α
N(α)

η1 +
η1

N(α)Γ(α)
T
α

􏼠 􏼡

n

,

‖Φ2n ‖ ≤ ‖ En(0) ‖
1 − α
N(α)

η2 +
η2

N(α)Γ(α)
T
α

􏼠 􏼡

n

,

‖Φ3n ‖ ≤ ‖ In(0) ‖
1 − α
N(α)

η3 +
η3

N(α)Γ(α)
T
α

􏼠 􏼡

n

,

‖Φ4n ‖ ≤ ‖ Qn(0) ‖
1 − α
N(α)

η4 +
η4

N(α)Γ(α)
T
α

􏼠 􏼡

n

,

‖Φ5n ‖ ≤ ‖ Hn(0) ‖
1 − α
N(α)

η5 +
η5

N(α)Γ(α)
T
α

􏼠 􏼡

n

,

‖Φ6n ‖ ≤ ‖ Rn(0) ‖
1 − α
N(α)

η6 +
η6

N(α)Γ(α)
T
α

􏼠 􏼡

n

.

(60)

As a result, the above sequences occur and as
n⟶∞, ‖Φi

n(t)‖⟶ 0, i � 1, 2, ...6. In addition, using the
triangle inequality for each k, we obtain

‖ Sn+k − Sn ‖ ≤ 􏽘
n+k

i�n+1
Z

i
1 �

Z
n+1
1 − Z

n+k+1
1

1 − Z1
,

‖ En+k − En ‖ ≤ 􏽘
n+k

i�n+1
Z

i
2 �

Z
n+1
2 − Z

n+k+1
2

1 − Z2
,

‖ In+k − In ‖ ≤ 􏽘
n+k

i�n+1
Z

i
3 �

Z
n+1
3 − Z

n+k+1
3

1 − Z3
,

‖ Qn+k − Qn ‖ ≤ 􏽘
n+k

i�n+1
Z

i
4 �

Z
n+1
4 − Z

n+k+1
4

1 − Z4
,

‖ Hn+k − Hn ‖ ≤ 􏽘
n+k

i�n+1
Z

i
5 �

Z
n+1
5 − Z

n+k+1
5

1 − Z5
,

‖ Rn+k − Rn ‖ ≤ 􏽘
n+k

i�n+1
Z

i
6 �

Z
n+1
6 − Z

n+k+1
5

1 − Z6
.

(61)

In (60), the expressions within the brackets are denoted
as Zi, where i � 1, 2, . . . , 6. Te condition (1 − α/N(α)ηi +

ηi/N(α)Γ(α)Tα)< 1 is imposed. As per the uniform con-
vergence theorem, the functions Sn, En, In, Qn, Hn, and Rn

constitute a Cauchy sequence in E. Employing the limit
theory on (56) as n⟶∞, we observe that the limit of these
sequences corresponds to the unique solution of the pro-
posed model (48). □

9. Numerical Simulation

We employ numerical simulations to demonstrate the
theoretical fndings reported in earlier sections. Days are
used as the time unit. Te parameters determined and ftted
in Table 2 are examined, and Figures 5–8 are generated. Te
infuence of control variables on the model (1) is graphically
shown in Figure 7.

Figures 5(a)–5(f) depict the behavior of susceptible persons
S, exposed people E, infected people I, quarantined people Q,
hospitalised people H, and recovered people R for diferent
fractional-order α values. Figure 5(a) indicates that when the
value of α falls, the number of sensitive people falls quickly and
converges to zero. Te graph in Figure 5(b) for exposed in-
dividuals shows that when the value of α declines, so does the
rate of increase. Figure 5(c) shows that the infected population
rises fast with noninteger values of α, but when the value of α
decreases, the rate of infection increases. It also indicates that the
number of infected persons is much smaller at a very slow rate
(α � 0.8). Te number of patients quarantined Q(t) and
hospitalised H(t) reduces as α increases, as seen in Figures 5(d)
and 5(e), respectively. Similarly, persons are retrieved or
eliminated (dead) extremely quickly with a change in α, as seen
in Figure 5(f).

We provide numerical simulations of the suggested
model (1) and (31) with and without optimum control. For
this objective, a MATLAB programme was designed to
combine the essential optimality requirements, and a de-
tailed output is extensively tested using a variety of simu-
lations. As discussed in Section 7, the optimality system for
the proposed optimal control problem is derived from the
state and adjoint equations under proper boundary condi-
tions. We showed classical derivative solutions in
Figures 6(a)–6(f) by a red line to compare with approxi-
mation solutions using optimum controls and found that
both solutions are almost equivalent for each population
Q(t). We depict the susceptible people of systems (1) and
(31) in Figure 6(a). Te red line represents the population of
class S in the uncontrolled system (1), whereas the green
solid line represents the population of class S in the regulated
system (31), with optimum regulations. Te exposed pop-
ulation of both systems (1) and (31) is shown in Figure 6(b).
When no control measures are taken, the red solid line
indicates that there are more exposed persons. Figure 6(c)
depicts the infectious population I of system (1) without

Table 2: Parameters and their values.

Name Parameter values References
β 0.0805 [23]
μ 0.0106 [23]
π 0.0668 [23]
c 0.0002 [23]
δ 0.07 Fifted
Λ 0.5 Fifted
ϕ 0.03668 Assumed
η 0.28 Fifted
σ 0.02537 [23]
ψ 0.0045 Assumed
τ 0.000428 Demographic
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Figure 5: Te dynamical behavior of the fractional model (1) with α� 0.8, 0.9, and 1.
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Figure 6: Continued.
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controls and system (31) with controls. Te red solid line
indicates that when no control is adopted, there are more
infectious persons.

Te hospitalised populationH(t) with andwithout controls
is shown in Figure 6(e). When all controls are implemented, the
green solid line indicates that fewer people are hospitalised.
Finally, Figure 6(f) depicts the reconstructed population R(t).
Tere are more recovered people in the example that employs
optimum control theory (because there is more susceptible,
exposed, hospitalised, quarantined, and infected).

10. Conclusion

In this study, we formulated a mathematical model to ex-
plore the transmission dynamics of the novel coronavirus
infection (COVID-19) and the factors infuencing its spread

among individuals. Leveraging the principles of mathe-
matical epidemiology, we modeled the progression of sus-
ceptibility to infection and subsequent recovery pathways.
Upon confrming the model’s positivity and boundedness,
we computed the basic reproduction number using the next-
generation matrix method. We established the local and
global stability of disease equilibria. Employing an integer-
order model, we applied optimal control strategies to ad-
dress the COVID-19 epidemic.

Utilizing two control measures—social distancing and
mask usage, along with prompt actions to protect the vul-
nerable population and quarantine for exposed individu-
als—we aimed to curtail viral transmission globally. We
discussed the necessary conditions for an optimal control
problem and aimed to diminish the number of vulnerable
and infected individuals while enhancing the count of
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Figure 6: Graphical representation of the model (1) with and without controls.
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Figure 7: Numerical simulations of the control variables.
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recoveries in the COVID-19 scenario. Employing Pon-
tryagin’s maximum principle, we determined the optimal
values for the proposed controls. Te resulting optimality
system was numerically solved using the MATLAB com-
puting environment.

Our model visually depicts the transmission dynamics of
the virus through contact and assesses the pace of change by
tracking the number of infections and the likelihood of
future infections. Te epidemic is fueled by new infections,
prompting our research to contribute to future pandemic
predictions. We explored the stability related to the re-
productive number, illustrating the impact of interactions
between infected and susceptible populations. Regulating
this contact rate proves pivotal in controlling the current
disease spread. Diverse regulations govern public gatherings
across states and regions, necessitating adherence to
guidelines to mitigate health risks efectively.
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