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A boundary value problem for a nonhomogeneous heat equation with a load in the form of a fractional Riemann–Liouville
integral of an order β ∈ (0, 1) is considered. By inverting the diferential part, the problem is reduced to an integral equation with
a kernel with a special function. Te special function is presented as a generalized hypergeometric function. Te limiting cases of
the order β of the fractional derivative are studied: it is shown that the interval for changing the order of the fractional derivative
can be expanded to integer values β ∈ [0, 1]. Te results of the study remain unchanged. Te kernel of the integral equation is
estimated. Conditions for the solvability of the integral equation are obtained.

1. Introduction

Te feld of fractional calculus is rapidly developing, and it is
currently being applied in all science felds [1–3]. Research in
the following areas is relevant: study of direct problems with
nonlocal conditions for partial diferential equations of
fractional order and study of special functions’ properties
related to the solutions of fractional diferential equations
and their application in solving various boundary value
problems for a partial diferential equation [4–12]. Detailed
description on the application of fractional calculus in
various felds of science and technology at this stage is given
in the monograph [13]. Research on various direct and
inverse boundary value problems for partial diferential
equations, as well as the study of the properties of special
functions and operators of fractional integro-diferentiation
and their generalizations, is conducted in major scientifc
centers and world higher educational institutions. Boundary
value problems with spatial fractional integrals are also
interesting for the current study and are planned for further
research. From the applied side, for example, works by
authors in [14, 15] are relevant.

Also, loaded equations are an important section in the
diferential equation theory. If we consider a one-
dimensional limited medium, at one of the edges of

which there is a heat source, the power of which is pro-
portional to the temperature value, then the process of heat
propagation in this medium is described by the following
loaded heat equation [16]:

ut � uxx + λu(0, t). (1)

If a section of the medium (for example, a rod), the
temperature of which we are interested in, is located near
one end of the rod and far from the other end, then the
temperature is determined by the temperature regime of the
nearest end (for example, the left end) and the initial
condition (problem for a semiinfnite rod). Te process of
heat propagation will also be described by (1). Te study of
dynamic processes shows that the future course of many
processes depends not only on the present but also is de-
termined by the process prehistory. A mathematical model
of these dynamic processes can be built using diferential
equations with memory of various kinds, which are also
called equations with afterefect or loaded diferential
equations. Loaded diferential equations in a broad sense are
usually called equations that contain any functional (func-
tions) of the solution in the coefcients or on the right side.
Note that the presence of a loaded term containing the values
of the solution often leads to the phenomenon when the
phase state of the process can afect the dynamics of the
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entire process at any point and at any moment. In addition,
from the theoretical side, loaded equations represent
a special class of equations with their own specifc problems.
Te most general defnition of a loaded equation was frst
given by A.M. Nakhushev. Using numerous examples, he
showed the practical and theoretical importance of research
on loaded equations [17]. In [18], the solvability of the
nonlocal-in-time boundary-value problem for the nonlinear
parabolic equation is proved.

At the intersection of the theory of fractional calculus
and loaded heat equations, various interesting problems and
studies can arise. From a mathematical point of view,
nonclassical models of mathematical physics deserve at-
tention, which are represented by equations that include the
values of the desired function and its fractional derivatives or
fractional integrals on some manifolds from the domain of
boundary value problems. It is possible that the process of
heat propagation in inhomogeneous media, where heat
sources can vary depending on the location or time, will also
be described by an equation of type 1, and only the loaded
term will be presented in the form of a fractional integral or
derivative.Te aim of this work [19] is to clarify the nature of
the fractional order load in the issues of solvability of the frst
boundary value problem for the heat equation.Te resulting
pseudo-Volterra integral equation has a nonempty spectrum
for some values of the fractional derivative order. In [20],
a loaded term has the form of Riemann–Liouville’s fractional
derivative with respect to the time variable, and the order of
the derivative in the loaded term is less than the order of the
diferential part.Te kernel of the obtained integral equation
contains the Wright function. Te conditions for the unique
solvability of the integral equation are obtained. In [21–23],
it is shown that the existence and uniqueness of solutions for
fractionally loaded boundary value problems in certain
functional classes depend on the order of a fractional de-
rivative in the loaded term.

In [19–23], the loaded term in the equation was pre-
sented in the form of a fractional derivative, and the con-
ditions for the solvability of the boundary value problems
under consideration were obtained depending on the order
of the derivative that is included in the loaded term, that is,
the BVP could have a nonunique solution for some values of
the fractional derivative’s order. Now, we examine the
solvability of a boundary value problem with a loaded
equation and the solvability of an accompanying integral
equation in the case where the loaded term was represented
as a fractional integral. As a result, the obtained results are
fundamentally diferent from the results of works by authors
in [19–22], namely, it is shown that the BVP under the
conditions of the proven theorem is uniquely solvable for
any value of a fractional integral’s order β ∈ [0, 1]. In [23],
sufcient conditions for the unique solvability of the
boundary value problem with a fractional load were
established. Moreover, an example is given showing that
violation of these conditions can lead to nonuniqueness of
the solution. Note that the solution to the problem was
found in an explicit form.

Te paper is organized as follows: in Section 2, we
introduce some necessary defnitions and mathematical
preliminaries of fractional calculus, special functions,
and boundary value problems which will be needed in the
forthcoming sections. We present the statement of
a boundary value problem for a nonhomogeneous heat
equation with a load in the form of a fractional Rie-
mann–Liouville integral in Section 3. In Section 4, the
BVP is reduced to a Volterra integral equation of the
second kind. Te kernel of the equation contains a special
function, namely, a generalized hypergeometric series.
Checking the limit cases of the fractional integral’s order
in the loaded term of the BVP is done in Section 5. It is
shown that the BVP at limit values of the fractional in-
tegral’s order is reduced to an integral equation with
a kernel that coincides with the limit value of the kernel of
the integral equation obtained in Section 4. In Section 6,
we estimate the integral equation’s kernel and establish
conditions under which it has a weak singularity. Tis
implies the solvability conditions for the BVP which are
provided in Section 7.

Te equation of the boundary value problem includes
a loaded term in the form of a fractional integral, and the
kernel of the resulting integral equation contains a special
function. Te posed problem for the heat conduction
equation with a fractional load, as well as the resulting
integral equation, is new both in their formulation and in the
methods for solving it. Te results obtained in this work are
also new and difer signifcantly from previous studies. Until
now, such problems have not been fully considered and have
not been systematically studied.

2. Preliminaries

Defnition 1. Let φ(x) ∈ L1[a; b]. Ten, the integral

I
α
axφ( 􏼁(x) �

1
Γ(α)

􏽚
x

a

φ(t)

(x − t)
1− α dt, x> a, (2)

is called the fractional Riemann–Liouville integral of α order;
here, α> 0. For α � 0, the integral (I0axφ)(x) � φ(x) [24].

Remark 1. It follows from the defnition that for the exis-
tence of an integral (Iαaxφ)(x) in the sense of Rie-
mann–Liouville integral, it is sufcient that φ(x) belongs to
the class of summable functions: φ(x) ∈ L1[a; b].

We study boundary value problems for the loaded heat
equation, when the loaded term is represented in the form of
a fractional integral. Te considered problem is reduced to
an integral equation by inverting the integral part.

It is known [25] that in the domain Q � (x, t) | x> 0,{

t> 0}, the solution to the boundary value problem of heat
conduction

ut � auxx +Φ(x, t),

u|t�0 � f(x), u|x�0 � g(x),
(3)
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is described by the following formula:

u(x, t) � 􏽚
∞

0
f(ξ)G(x, ξ, t)dξ + 􏽚

t

0
g(τ)H(x, t − τ)dτ + 􏽚

t

0
􏽚
∞

0
Φ(ξ, τ)G(x, ξ, t − τ)dξ dτ, (4)

where

G(x, ξ, t) �
1

2
���
πat

√ exp −
(x − ξ)

2

4at
􏼢 􏼣 − exp −

(x + ξ)
2

4at
􏼢 􏼣􏼠 􏼡,

H(x, t) �
x

2
���
πa

√
t
(3/2)

exp −
x
2

4at
􏼠 􏼡.

(5)

Te Green function G(x, ξ, t − τ) satisfes the following
relation:

􏽚
∞

0
G(x, ξ, t)dξ � erf

x

2
�
t

√􏼠 􏼡. (6)

We also give defnitions and some properties of special
functions.

Error function and complementary error function have
the following forms:

erf z �
2
��
π

√ 􏽚
z

0
exp − ζ2􏼐 􏼑dζ,

erfc z �
2
��
π

√ 􏽚
∞

z
exp − ζ2􏼐 􏼑dζ � 1 − erf z.

(7)

A generalized hypergeometric series is defned by the
following formula [26]:

pF
q
α1, α2, . . . , αp; ρ1, ρ2, . . . , ρq; z􏼐 􏼑 � 􏽘

∞

k�0

α1( 􏼁k α2( 􏼁k, . . . , αp􏼐 􏼑
k

ρ1( 􏼁k ρ2( 􏼁k, . . . , ρq􏼐 􏼑
k

z
k

k!
, (8)

where

(a)k �
Γ(a + k)

Γ(a)
, (9)

is a Pochhammer symbol.
If p≤ q, the singular points of (8) are at z � 0 and z �∞;

z � 0 is a regular singularity and z �∞ is an irregular

singularity ([26] p. 137). Ten, series (8) converges for all
fnite values z.

Generalized hypergeometric function (8) arises, for
example, when calculating the integral by formula 3.478 (4)
([27] p. 356):

􏽚
u

0
ξ]− 1

(u − ξ)
μ− 1 exp βξn

( 􏼁dξ

� B(μ; ])u
μ+]− 1

nFn

]
n

,
] + 1

n
, . . . ,

] + n − 1
n

;
μ + ]

n
,
μ + ] + 1

n
, . . . ,

μ + ] + n − 1
n

; βu
n

􏼒 􏼓,

(10)

Re μ> 0,Re ]> 0, n � 2, 3, . . . . (11)

Here and everywhere else, Γ(z) and B(μ; ]) are Euler
integrals.

Let us present some inequalities. Preliminarily, following
the study by Luke [26], we introduce the following notation:

International Journal of Mathematics and Mathematical Sciences 3



θ �
αp

ρp

,

ϕ �
αp + 1
ρp + 1

,

η �
αp + 2
ρp + 2

,

(12)

where, for function (19),

ϕ � 􏽙

p

j�1

αj + 1
ρj + 1

,

αp � a1, a2, . . . , ap􏼐 􏼑,

ρq � b1, b2, . . . , bq􏼐 􏼑.

(13)

Theorem 3. Generalized hypergeometric function (8)
pFp(αp; ρp; − z) can be evaluated as follows:

e
− θz < pFp αp; ρp; − z􏼐 􏼑< 1 − θ + θe

− z
,

e
θz < pFp αp; ρp; z􏼐 􏼑< 1 − θ + θe

z
,

1 − θ z  1 −
ϕ
2

+
ϕ
2

e
− z

􏼠 􏼡< pFq αp; ρp; − z􏼐 􏼑< 1 − θ z exp −
ϕz

2
􏼠 􏼡,

1 + θ z exp −
ϕz

2
􏼠 􏼡< pFp αp; ρp; z􏼐 􏼑< 1 + θz 1 −

ϕ
2

+
ϕ
2

e
z

􏼠 􏼡,

z> 0, ρk ≥ αj > 0, j � 1, 2, . . . , p.

(14)

3. Statement of the Problem

In a domain Q � (x, t): x> 0, t> 0{ }, we consider a BVP

ut − uxx + λI
β
0xu(x, t)

􏼌􏼌􏼌􏼌􏼌x�c(t)
� f(x, t), (15)

u(x, 0) � 0, u(0, t) � 0, (16)

where λ is a complex parameter.

I
β
0xu(x, t) �

1
Γ(β)

􏽚
x

0

u(ξ, t)

(x − ξ)
1− β dξ (17)

is a fractional Riemann–Liouville integral (2) of an order β,
0< β< 1, c(t) is a continuous increasing function, c(0) � 0,
or c(t) is a positive const.

So, we assume that the solution u(x, t) belongs to the
following class:

u(x, t) ∈ L1(x≥ 0). (18)

Te right side of the BVP equation vanishes at t< 0 and
belongs to the following class:

f(x, t) ∈ L∞(A)∩C(B), (19)

where A � (x, t) | x> 0, t ∈ [0, T]{ }, B � (x, t) | x> 0, t≥ 0{ },
and T is a positive constant.

We also assume

f1(x, t) � 􏽚
t

0
􏽚
∞

0
G(x, ξ, t − τ)f(ξ, τ)dξ dτ ∈ L1(x≥ 0).

(20)

Tese classes are determined from the natural re-
quirement for the existence and convergence of improper
integrals arising in the study of the problem.

4. Reducing the BVP to an Integral Equation

Lemma  . Boundary value problems (15) and (16) are
equivalently reduced to a Volterra integral equation of the
second kind.

Proof. By virtue of the condition (19), a solution of problems
(15) and (16) can be represented by formula (3).

u(x, t) � − λ􏽚
t

0
􏽚
∞

0
G(x, ξ, t − τ)μ(τ)dξ dτ + f1(x, t),

(21)

where

μ(t) � I
β
0xu(x, t)

􏼌􏼌􏼌􏼌􏼌x�c(t)
, 0< β< 1, (22)

f1(x, t) � 􏽚
t

0
􏽚
∞

0
G(x, ξ, t − τ)f(ξ, τ)dξ dτ. (23)

Function (23) exists and is bounded due to condition
(19) and belongs to class (20) by assumption.

Taking into account relation (4) from (21), we obtain the
following:

u(x, t) � − λ􏽚
t

0
erf

x

2
����
t − τ

√􏼠 􏼡μ(τ)dτ + f1(x, t). (24)
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By assumption, function (14) f1(x, t) and function
u(x, t) satisfy inclusions (20) and (18). Now, we apply
a fractional integral operator of an order β, 0< β< 1 on
representation (24) with respect to variable x by formula (2)
and put a � 0.Ten, we put x � c(t). On the left side, we get
the function μ(t) according to (22).

To apply the operation of fractional integration of an
order β, 0< β< 1 to the right side of equality (24), we frst
calculate the following integral:

I
β
0x 􏽚

t

0
erf

x

2
����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡(x). (25)

So,

I
β
0x 􏽚

t

0
erf

x

2
����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡(x)

�
1
Γ(β)

􏽚
x

0
􏽚

t

0
erf

θ
2

����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡
1

(x − θ)
1− β dθ

�
1
Γ(β)

􏽚
t

0
μ(τ) 􏽚

x

0
erf

θ
2

����
t − τ

√􏼠 􏼡(x − θ)
β− 1

dθ􏼠 􏼡dτ

�
1
Γ(β)

􏽚
t

0
μ(τ)J(t, τ, x; β)dτ,

(26)

or

I
β
0x 􏽚

t

0
erf

x

2
����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡(x)

�
1
Γ(β)

􏽚
t

0
μ(τ)J(t, τ, x; β)dτ.

(27)

Since the study by authors in [28],

J(t, τ, x; β) � 􏽚
x

0
erf

θ
2

����
t − τ

√􏼠 􏼡(x − θ)
β− 1

dθ

�
x
β+1

�������
π(t − τ)

􏽰 B(2, β)3F3 1,
3
2
,
1
2
;
β + 2
2

,
β + 3
2

,
3
2
; −

x
2

4(t − τ)
􏼠 􏼡

� x
β+1Γ(β)/

�������
π(t − τ)

􏽰
Γ(β + 2)􏼐 􏼑2F2 1,

1
2
;
β + 2
2

,
β + 3
2

; −
x
2

4(t − τ)
􏼠 􏼡,

(28)

where pFq is a generalized hypergeometric sequence (8) from
defnition (1.2) [26], and then integral (25) takes the fol-
lowing form:

I
β
0x 􏽚

t

0
erf

x

2
����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡(x) � 􏽚
t

0

x
β+1

�������
π(t − τ)

􏽰
Γ(β + 2)

2F2 1,
1
2
;
β + 2
2

,
β + 3
2

; −
x
2

4(t − τ)
􏼠 􏼡μ(τ)dτ. (29)

After applying the operation of fractional integration of
an order β, 0< β< 1 to equality (26), we get the following:

I
β
0xu(x, t)(x) � − λI

β
0x 􏽚

t

0
erf

x

2
����
t − τ

√ μ(τ)dτ􏼠 􏼡􏼠 􏼡(x) + I
β
0xf1(x, t)(x). (30)
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Taking into account notation (22) and equality (26), after
substituting x � c(t) into the last equality, we obtain the
following integral equation:

μ(t) + λ􏽚
t

0
Kβ(t, τ)μ(τ)dτ � f2(t), (31)

where

Kβ(t, τ) � (c(t))
β+1/

�������
π(t − τ)

􏽰
Γ(β + 2)􏼐 􏼑2F2

1
2
, 1;

β + 2
2

,
β + 3
2

; −
(c(t))

2

4(t − τ)
􏼠 􏼡 (32)

and

f2(t) � I
β
0xf1(x, t)

􏼌􏼌􏼌􏼌􏼌x�c(t)
. (33)

Here, F2(a1, a2; b1, b2; z) is a convergent generalized
hypergeometric series (8) for all fnite z.

BVP (15), (16) is reduced to integral (34). Lemma is
proven. □

5. Study of Continuity in Order of a Fractional
Integral in the Interval of the Order’s Change

Ten, we study the continuity in the order β of the fractional
integral in the loaded term of the equation from BVP
(15), (16).

Lemma 5. For BVP (15), (16), there is continuity in the order
β in the loaded term of equation (15).

Proof. Te lemma is proved by checking the limit cases of
the fractional integral’s order in the loaded term of equation
(15).

(i) We consider the case β � 0. From (31) and (32), we
get the BVP when β � 0:

ut − uxx + λμ(t) � f(x, t),

u|x�0 � 0; u|t�0 � 0,
(34)

where μ(t) � I00x(u(x, t))|x�c(t) � u(c(t); t).
Te solution of the problem can be represented by
(8):

u(x, t) � − λ􏽚
t

0
erf

x

2
����
t − τ

√􏼠 􏼡μ(τ)dτ + f1(x, t).

(35)

By applying operation I00x and substituting x � c(t),
we get:

μ(t) + λ􏽚
t

0
erf

c(τ)

2
����
t − τ

√􏼠 􏼡μ(τ)dτ � f2(t), (36)

where

f2(t) � f1(c(t), t). (37)

Now, let us fnd the limit from kernel (32) for β
tending to zero from the right:

lim
β⟶0+0

Kβ(t, τ) �
c(t)

�������
π(t − τ)

􏽰
Γ(2)

2F2 1,
1
2
; 1,

3
2
; −

(c(t))
2

4(t − τ)
􏼠 􏼡

�
c(t)

�������
π(t − τ)

􏽰􏼠 􏼡1F1
1
2
,
3
2
; −

(c(t))
2

4(t − τ)
􏼠 􏼡.

(38)

It is known that [29]

1F1
1
2
,
3
2
; − z

2
􏼒 􏼓 �

��
π

√

2z
erf(z). (39)

Tus,

lim
β⟶0+0

Kβ(t, τ) � erf
c(t)

2
����
t − τ

√􏼠 􏼡. (40)

From here we conclude that (31) coincides with (36)
at β � 0.

(ii) We consider the case β � 1. From (31) and (32), we
get the BVP when β � 1:

ut − uxx + λμ(t) � f(x, t),

u|x�0 � 0; u|t�0 � 0,
(41)

where

μ(t) � I
1
ox(u(x, t))

􏼌􏼌􏼌􏼌x�c(t)
� 􏽚

c(t)

0
u(θ, t)dθ. (42)
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Te solution of the problem can be represented by
(5):

u(x, t) � − λ􏽚
t

0
erf

x

2
����
t − τ

√􏼠 􏼡μ(τ)dτ + f1(x, t).

(43)

Before applying operation I10x and substituting x �

c(t) to representation (43), we calculate the fol-
lowing integral:

I
1
0x 􏽚

t

0
erf

x

2
����
t − τ

√􏼠 􏼡μ(τ)dτ􏼨 􏼩 � 􏽚
x

0
􏽚

t

0
erf

θ
2

����
t − τ

√􏼠 􏼡μ(τ)dτ􏼠 􏼡dθ

� 􏽚
t

0
μ(τ) 􏽚

x

0
erf

θ
2

����
t − τ

√􏼠 􏼡dθ􏼠 􏼡dτ

� 􏽚
t

0

x
2

2
�������
π(t − τ)

􏽰 2F2
1
2
, 1;

3
2
, 2; −

x
2

4(t − τ)
􏼠 􏼡μ(τ)dτ.

(44)

Now applying operation I10x and substituting x �

c(t) to representation (43), we get the following:

μ(t) + λ􏽚
t

0

c
2
(t)

2
�������
π(t − τ)

􏽰 2F2
1
2
, 1;

3
2
, 2; −

c
2
(t)

4(t − τ)
􏼠 􏼡μ(τ)dτ � f2(t). (45)

Te limit of kernel (19) for β tending to 1 from the
left coincides with the kernel of the last integral
equation.
Lemma is proven. □

Remark 6. Taking into account the formula from the study
of authors in [28]

2F2
1
2
, 1;

3
2
, 2; − z􏼒 􏼓 �

1
z

���
πz

√
erfi(

�
z

√
) + 1 − e

z
( 􏼁, (46)

where

erfi(x) � − i erf(ix) �
2
��
π

√ 􏽚
x

0
e

t2
dt, (47)

integral equation (45) can be rewritten as

μ(t) + λ􏽚
t

0
K1(t, τ)μ(τ)dτ � f2(t), (48)

where

K1(t, τ) � c(t)erf
c(t)

2
����
t − τ

√􏼠 􏼡

−
2

����
t − τ

√

��
π

√ 1 − exp −
c
2
(t)

4(t − τ)
􏼠 􏼡􏼠 􏼡.

(49)

If c(t) ∼ tω (near the point t � 0), ω≥ 0, then the kernel
K1(t, τ) is bounded for all t ∈ [0; T], 0≤ τ ≤ t.

6. Evaluating the Kernel of the
Integral Equation

Kernel (32) of (31) has singularities when τ � t and t � 0.
To estimate the kernel, we consider a generalized hy-

perbolic function in the kernel as the form of the integral
representation (6) [27].

􏽚
u

0
x
]− 1

(u − x)
μ− 1 exp cx

n
( 􏼁dx

� B(μ, ])u
μ+]− 1
n Fn

]
n

,
] + 1

n
, . . . ,

] + n − 1
n

;
μ + ]

n
,
μ + ] + 1

n
, . . . ,

μ + ] + n − 1
n

; cu
n

􏼒 􏼓,

Re μ> 0,Re ]> 0, n � 2, 3 . . . .

(50)
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Substituting variables’ values n � 2, ] � 1, μ � β + 1 and
u � c(t), c � − (1/4(t − τ)), x � ξ, we get:

Kβ(t, τ) �
1

Γ(β + 1)
�������
π(t − τ)

􏽰 􏽚
c(t)

0
(c(t) − ξ)

β exp −
ξ2

4(t − τ)
􏼠 􏼡dξ. (51)

Ten, we estimate the kernel Kβ(t, τ) when 0≤ β≤ 1:

Kβ(t, τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1

Γ(β + 1)
�������
π(t − τ)

􏽰 􏽚
c(t)

0
(c(t) − ξ)

β
dξ �

1
Γ(β + 2)

�������
π(t − τ)

􏽰 (c(t))
β+1

. (52)

Ten, we consider the connection between the kernel’s
features with the order of the fractional integral in the loaded
term of the BVP’s equation and with the behavior of the load
for small values of the time variable.

Theorem 7. Integral equation (31) is uniquely solvable in the
class of functions C([0; T]) for the right-hand side
f2(t) ∈ C([0; T]) defned by formula (33), if c(t) ∼ tω (near
the point t � 0), ω> 0, and 0≤ β≤ 1.

Proof. We introduce the following notation:

Lβ(t, τ) �
(c(t))

β+1

Γ(β + 2)
2F2

1
2
, 1;

β + 2
2

,
β + 3
2

; −
(c(t))

2

4(t − τ)
􏼠 􏼡,

(53)

that is,

Kβ(t, τ) �
Lβ(t, τ)
�������
π(t − τ)

􏽰 . (54)

Let c(t) ∼ tω for t⟶ 0 + 0 when ω≥ 0. Ten,

Lβ(t, τ) �
t
ω
(β + 1)

Γ(β + 2) 2F2
1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡.

(55)

Tis function has singularities on the line t − τ � 0. Now,
we investigate it on continuity

lim
τ→t− 0

Lβ(t, τ) � lim
τ→t− 0

t
ω
(β + 1)

Γ(β + 2) 2F2
1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡. (56)

Let us introduce the following variable:

z �
t
2w

4(t − τ)
⇒ τ � t −

t
2w

4z
. (57)

We have the following cases:

(a) If 2w − 1> 0 then z⟶ 0 + 0 for τ⟶ t − 0
(b) If 2w − 1 � 0 then z⟶ (1/4) for τ⟶ t − 0
(c) If 2w − 1< 0 then z⟶ +∞ for τ⟶ t − 0

Now, we use the inequality from Teorem 3 for the
following values of variables:

p � 2, α1 �
1
2
, α2 � 1, ρ1 �

β + 2
2

, ρ2 �
β + 3
2

,

z �
t
2w

4(t − τ)
, θ �

α1α2
ρ1ρ2

�
2

(β + 2)(β + 3)
.

(58)

We get

exp −
2z

(β + 2)(β + 3)
􏼠 􏼡< 2F2

1
2
, 1;

β + 2
2

,
β + 3
2

; − z􏼠 􏼡<

< 1 −
2

(β + 2)(β + 3)
+

2
(β + 2)(β + 3)

exp(− z).

(59)
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Ten, the cases of values ω are revised.

(a) 2w − 1> 0 for τ⟶ t − 0, z⟶ 0 + 0. From in-
equality (60), we obtain

2F2
1
2
, 1;

β + 2
2

,
β + 3)

2
; −

t
2w

4(t − τ)
􏼠 􏼡 ∼ 1, for  τ⟶ t − 0.

(60)

(b) 2w − 1 � 0. From inequality (60), we obtain

exp −
1

2(β + 2)(β + 3)
􏼠 􏼡< 2F2

1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡

< 1 −
2

(β + 2)(β + 3)
+

2
(β + 2)(β + 3)

exp −
1
4

􏼒 􏼓,

(61)

or

exp −
1

2(β + 2)(β + 3)
􏼠 􏼡< 2F2

1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡< 1. (62)

(c) 2w − 1< 0. From inequality (60), we obtain

0< 2F2
1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡

< 1 −
2

(β + 2)(β + 3)
.

(63)

Ten, function (59) is bounded for any values w≥ 0
and 0≤ β≤ 1. Moreover,

lim
τ⟶t− 0

Lβ(t, τ) � lim
τ⟶t− 0

t
w

(β + 1)

Γ(β + 2) 2F2
1
2
, 1;

β + 2
2

,
β + 3
2

; −
t
2w

4(t − τ)
􏼠 􏼡 � 0. (64)

As for kernel (32),

Kβ(t, τ) �
Lβ(t, τ)
�������
π(t − τ)

􏽰 . (65)

Ten, ∀w≥ 0 and β ∈ [0; 1] kernel (32) has a weak
singularity in the domain D � (t, τ): 0≤ t≤T,{

0≤ τ ≤ t}. Tis result agrees with the above
inequality (24).

Integral equations with a weak singularity can be solved
by the method of successive approximations [30]. It can be
shown that for (31), successive iterated kernels are bounded
starting from some numbers.

Since

􏽚
T

0
􏽚

T

0
K

2
β(t, τ)dτ dt≤A, const A> 0, (66)

then according to [31] we have that the kernel Kβ(t, τ) is
continuous in the whole. If the right side of the integral
equation is continuous on the segment [0, T], and the kernel
is continuous in the whole, then any solution of the integral
equation is continuous on the segment [0, T] [31]. □

Remark 8. Under the conditions of Teorem 7, kernel (32)
of integral equation (31) has a weak singularity.Terefore, by
applying the method of successive approximations, we can
obtain a solution to integral equation (31) in the class of
continuous functions. And the corresponding boundary
value problem is well-posed in natural classes of functions,
i.e., the loaded term of the problem’s equation is a weak
perturbation.

In [32], the authors consider a singular integral equation
of the second kind of the Volterra type, but the method of
successive approximations is not applicable to it. Te
boundary value problem is considered in a degenerating
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domain. In [33], the authors also consider the solvability of
a nonhomogeneous boundary value problem for the Burgers
equation in a degenerating domain, namely, in an infnite
angular domain. Te existence of nontrivial solutions of
reduced homogeneous integral equations is shown.

Remark 9. It can be shown that

lim
t⟶0

􏽚
t

0
Kβ(t, τ) dτ � 0, 0< t<T. (67)

Ten, the norm of the integral operator from equation
(31) is less than 1. Terefore, due to the principle of con-
traction mappings, there is a unique solution to equation
(31) in the space of continuous functions.

7. On a Solution to BVP (15)-(16)

According to (43), we write the solution of problems (31)-
(32) in the following form:

u(x, t) � − λ􏽚
t

0
erf

x

2
����
t − τ

√􏼠 􏼡μ(τ)dτ

+ 􏽚
t

0
􏽚
∞

0
G(x, ξ, t − τ)f(ξ, τ)dξ dτ,

(68)

where f(x, t) belongs to class (19), and the solution of (34)
μ(t) is a continuous and bounded function under the
conditions of Teorem 7. Taking into account the non-
negativity of the functions G(x, ξ, t − τ) and
erf(x/2

����
t − τ

√
), taking into account an equality (it can be

found after introducing the replacement ξ � (x/2
����
t − τ

√
) by

integration, by parts, and by applying formula 3.461(5) from
[27] (on page 351).

􏽚
t

0
erf

x

2
����
t − τ

√􏼠 􏼡dτ � t erf
x

2
�
t

√􏼠 􏼡

+
x

�
t

√

��
π

√ exp −
x
2

4t
􏼠 􏼡 −

x
2

2
erfc

x

2
�
t

√􏼠 􏼡,

(69)

directly from (68), we obtain the following estimate:

u(x, t)| |≤C(λ)x
�
t

√
, (70)

where C(λ) � C1 λ| | + C2.
Te derivatives of the solution u(x, t) (68) satisfy the

following inclusion:

ut − uxx � − λμ(t) + f(x, t) ∈ L∞(A)∩C(B), T � const> 0,

(71)

where A � (x, t) | x> 0, t ∈ [0, T]{ }, B � (x, t) | x> 0, t≥ 0{ },
and T − const> 0 (this fact follows from (18) and notation
(13)).

So, function (68) satisfes (18) in the sense of relation
(29). Obviously, solution (68) satisfes the initial and
boundary conditions (8). Tus, function (68) according to
(69) and (70) satisfes BVP (15)-(16) and belongs to the
following class:

U � u (x
�
t

√
)

− 1
u ∈ L∞(A)∩C(B); ut − uxx ∈ L∞(A)∩C(B);

􏼌􏼌􏼌􏼌􏼌􏼌􏼚

1
Γ(β)

􏽚
x

0

u(ξ, t)

(x − ξ)1− β dξ􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
x�c(t)

∈ C([0; T]), T � const> 0, 0≤ β≤ 1
⎫⎬

⎭,

(72)

where A � (x, t) | x> 0, t ∈ [0, T]{ }, B � (x, t) | x> 0, t≥ 0{ },
and T � const> 0.

So, the following theorem is true.

Theorem 10. Let conditions (19) and (20) be satisfed for the
function f(x, t), the function μ(t) ∈ C([0; T]) is the solution
of integral equation (31) with the right hand side
f2(t) ∈ C([0; T]) defned by formula (33). Ten, BVP (15)-
(16) has the only solution (69) in the class (72), if c(t) ∼ tω

(near the point t � 0), ω≥ 0, and 0≤ β≤ 1.

 . Results and Discussion

Under the conditions of the theorem proved, there is an exact
solution to BVP (15)-(16) in the class of sufciently smooth
function (72). Following the study by Beshtokov [34], to solve
the problem using the method of energy inequalities, it is
possible to obtain a priori estimates for the diferential and
diference equations. Te obtained estimates ensure the

uniqueness of the solution and the continuous dependence of
the solution on the input data of the problem.Te linearity of
the problem under consideration with the obtained a priori
estimates will ensure the convergence of the approximate
solution to the exact solution at a certain velocity.

So, to model and substantiate theoretical conclusions, it
is possible to obtain a priori estimates in diferential and
diference interpretations as in [34] from which the
uniqueness and stability of the solution will follow from the
initial data and the right side of the equation, as well as the
convergence of the solution of the diference problem to the
solution of the diferential problem.

9. Conclusion

Note that in this work, theoretical results were obtained, the
totality of which is important in the theory of loaded parabolic
equations. Let us list these results. Te posed boundary value
problem is reduced to the Volterra integral equation of the
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second kind by inverting the diferential part of the problem.
Te peculiarity of the resulting integral equation is that its
kernel contains a special function. Terefore, it is difcult to
directly solve the integral equation.Ten, its kernel is evaluated.
Tis process is accompanied by a description of functional
classes of the solution and the right side of the equation.

Limiting cases of the fractional derivative’s order for
continuity with respect to the order of the fractional
derivative are also studied. Based on the obtained results,
the interval for changing the order of the fractional de-
rivative in the loaded term of the equation was established,
for which the existence and uniqueness theorem of the
solution to the problem was proven. In addition, for
limiting cases of the fractional derivative’s order, it is
possible to fnd an explicit solution to the boundary value
problem. In some cases of the type of load containing the
operator of fractional integro-diferentiation, one can fnd
a solution to the boundary value problem in explicit form,
for example, in [35].

Te results of this theoretical study have limited ap-
plicability to practical situations due to the underlying as-
sumptions. Numerical studies, in contrast, can be more
general and applicable to a wide range of conditions. Te
main weakness of this work is the following: the theoretical
research is based on idealizations that do not fully refect real
conditions. However, we should not forget that theoretical
research is still an important tool for understanding basic
principles and patterns underlying the problem being
studied. While numerical simulations can provide more
accurate and detailed results, obtained theoretical results can
contribute to the theory of fractional calculus and loaded
diferential equations. In this work, a boundary value
problem that arose at the intersection of the theory of
fractional calculus and the theory of loaded equations was
investigated, and existence-uniqueness theorem for the
solution in the class of continuous functions was established,
but further extensions of this research are possible, such as
proof of qualitative properties and boundaries, as well as the
construction of explicit solutions in some special cases using
other methods. Loaded partial diferential equations in-
volving Ψ-tempered operators can also be studied since
there is a sufcient amount of research on the theory of
Ψ-fractional calculus.
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