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For non-negative integers d1 and d2, ifV1 andV2 are two partitions of a graphG’s vertex setV(G), such thatV1 andV2 induce two
subgraphs of G, called G[V1] with maximum degree at most d1 andG[V2] withmaximum degree at most d2, respectively, then the
graph G is said to be improper (d1, d2)-colorable, as well as (d1, d2)-colorable. A class of planar graphs without C3, C4, and C6 is
denoted by C. In 2019, Dross and Ochem proved that G is (0, 6)-colorable, for each graph G in C. Given that d1 + d2 ≥ 6, this
inspires us to investigate whether G is (d1, d2)-colorable, for each graph G in C. In this paper, we provide a partial solution by
showing that G is (3, 3)-colorable, for each graph G in C.

1. Introduction

Te term improper (d1, d2)-colorable, as well as
(d1, d2)-colorable, refers to a graph G, for non-negative
integers d1 and d2, if V1 and V2 are two partitions of
a graph G’s vertex set V(G), such that V1 and V2 induce
two subgraphs of G, called G[V1] with maximum degree
at most d1 and G[V2] with maximum degree at most d2,
respectively. Planar graphs and their conditions sufce to
be (d1, d2)-colorable are widely studied. Te cycle of
length n is denoted as Cn or n-cycle, for each n≥ 3. For
each h, p, Montassier and Ochem [1] constructed planar
graphs without C3 that are not (h, p)-colorable. For any h,
planar graphs without C3, C4, and C5 that are not
(0, h)-colorable were constructed by Borodin et al. [2]. As
opposed, some sufcient conditions for planar graphs to
be (d1, d2)-colorable for specifc d1 and d2 are found. In
2022, Ma et al. [3] showed that every planar graph
without C4 and C6 is (2, 9)-colorable. For any planar

graph G with girth (the length of the shortest cycle in the
graph) at least 5, Borodin and Kostochka [4] proved that
G is (2, 6)-colorable. Recently, Zhang et al. [5] showed
that planar graphs with girth at least 5 without adjacent
5-cycles are (1, 6)-colorable. Furthermore, Wang et al. [6]
proved that planar graphs with girth at least 5 without
adjacent 5-cycles are (3, 3)-colorable. Tis inspires us to
investigate whether planar graphs without C3, C4, and C6
have this property.

Let C be the class of planar graphs without C3, C4, and
C6. In [7], Choi et al. proved that G is (0, 45)-colorable, for
each graph G inC. Dross and Ochem [8] recently enhanced
the fndings by proving that G is (0, 6)-colorable, for each
graph G in C. Given that d1 + d2 ≥ 6, this inspires us to
investigate whether G is (d1, d2)-colorable, for each graph G

inC. It should be noted that preventing C3, C4, and C6 from
existing as subgraphs or induced subgraphs yields the same
graph class. Te following theorem provides a partial answer
in this work.
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Theorem 1. Every graph in C is (3, 3)-colorable.

2. Notations and Helpful Properties

First, we present useful notions, observations, lemmas, and
corollaries about a minimal planar graph G in C that is not
(3, 3)-colorable.

We refer to the vertex set, edge set, and face set, re-
spectively, as V(G), E(G), and F(G). To indicate a face f’s
boundary, we use the notation B(f). In addition, the
number of edges on the boundary of a face f determines its
degree. Let an l-vertex (face), an l+-vertex (face), or an
l− -vertex (face) be three diferent types of vertices (faces),
each with a vertex (face) that has a degree of l, at least l, or at
most l, respectively.

Lemma 2. G is connected.

Proof. Assume that G is not connected. Ten each con-
nected component of G is smaller than G.Terefore, a (3, 3)-
coloring is admissible for every connected component of G.
A (3, 3)-coloring of G results from the union of these
(3, 3)-colorings, which is contradictory. □

Lemma 3. Every vertex in G is a 2+-vertex.

Proof. Assume that v is a 1-vertex in G. G − v has
a (3, 3)-coloring c by employing the color set 1, 2{ } according
to G’s minimality. Since we have two colors, we can extend c

to G by properly coloring v, a contrary to the choice
of G. □

Observation 4. Every k-face is bounded by k-cycle for k≤ 9.
As a result of the absence of some cycles in G, the

following is easily observed.

Corollary  . G has neither 3-, 4-, nor 6-faces.

Lemma 6 (See [[9], in Lemmas 2.1, 2.2, and 2.3]). Let G be
a minimal graph which is not (d1, d2)-colorable where
d1 ≤ d2. Ten, we have the following:

(i) If v is a 3− -vertex in G, then v is adjacent to at least
two (d1 + 2)+-vertices where one of which is
a (d2 + 2)+-vertex.

(ii) If v is a (d1 + d2 + 1)− -vertex in G, then v is adjacent
to at least one (d1 + 2)+-vertex.

Lemma 6 yields the following lemma.

Lemma 7. Let G be a minimal graph which is not (3, 3)-
colorable. Ten, we have the following:

(i) If v is a 3− -vertex in G, then v is adjacent to at least
two 5+-vertices.

(ii) If v is a 5-vertex inG, then v is adjacent to at most four
3− -vertices.

Lemma 8. If v is a 2-vertex in G, then v is not incident to two
5-faces.

Proof. Let v be a 2-vertex in G incident to two faces f1 and
f2. Suppose to the contrary that f1 and f2 are 5-faces. By
Observation 4, we may assume that a 5-cycle B(f1)

� vv1x1x2v2 and a 5-cycle B(f2) � vv1u1u2v2. Ten,
|V(B(f1))∩V(B(f2))|≥ 3. If x1 � u1, then d(v1) � 2,
a contrary to Lemma 7 (i). If x1 � u2, then v1u1u2 is a 3-cycle,
a contradiction. By symmetry, x2 ∉ u1, u2 . Tus,
|V(B(f1))∩V(B(f2))| � 3. Hence, B(f1)∪B(f2) contains
a 6-cycle. Tis contradiction completes the proof. □

3. Proof of Theorem 1

Proof of Teorem 1. Suppose the contrary to Teorem 1 and
let G be a minimal counterexample. Te following are our
discharging processes.

Let μ(x) be an initial charge of x for all x ∈ V(G)∪F(G)

where μ(x) � d(x) − 4.
Using Euler’s formula and Handshaking lemma


x∈V(G)∪F(G)

μ(x) � 
x∈V(G)

(d(x) − 4) + 
x∈F(G)

(d(x) − 4)

� (2|E(G)| − 4|V(G)|)

+(2|E(G)| − 4|F(G)|)

� 4|E(H)| − 4|V(H)| − 4|F(H)|

� − 8.

(1)

Next, we redistribute the charge of vertices and faces to
have μ∗(x) by transferring charge from one element to
another later so that the total charge remains the same
(x∈V(G)∪F(G)μ∗(x) � − 8). However, upon the completion
of the discharging, the fnal charge satisfes μ∗(x)≥ 0 for all
x ∈ V(G)∪F(G) which is contradictory.

Discharging rules are as follows.
Let v be a vertex of a graph G.

(R1) For d(v) � 2, its incident 5-faces give charge (1/2)

to v.
(R2) For d(v) � 2, its incident 7+-faces give charge 1
to v.
(R3) For d(v) � 3, its incident 5+-faces give charge
(1/6) to v.
(R4) For d(v)≤ 3, its adjacent 5+-vertices give charge
(1/4) to v.

For each x ∈ V(G)∪F(G), the remaining part of the
proof shows that μ∗(x)≥ 0.

If x is a 4-vertex by (R1)-(R4), then it is obvious that
μ∗(x) � μ(x) � 0.

(i) Consider a 2-vertex v.
Lemma 7 (i) states that two 5+-vertices are adjacent
to v. Moreover, v has at least one incident 7+-face
according to Lemma 8. So, using (R1), (R2), and
(R4), we get the following result: μ∗(v)≥ μ(v) +

(1/2) + 1 + 2 × (1/4) � 0.
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(ii) Consider a 3-vertex v.
Lemma 7 (i) states that at least two 5+-vertices are
adjacent to a vertex v. It should be noted that v has
three incident 5+-faces. So, using (R3) and (R4), we
get the following result: μ∗(v)≥ μ(v) + 3 × (1/6) +

2 × (1/4) � 0.
(iii) Consider a 5-vertex v.

Lemma 7 (ii) states that at most four 3− -vertices can
be adjacent to a vertex v. So, using (R4), we get the
following result: μ∗(v)≥ μ(v) − 4 × (1/4) � 0.

(iv) Consider a 6+-vertex v.
Give v a k-vertex with k≥ 6. So, using (R4) and
k≥ 6, we get the following result: μ∗(v)≥ μ(v) −

k × (1/4)> 0.
(v) Consider a 5-face f.

Lemma 7 (i) states that a face f has no more than
two incident 2-vertices.

Case 1: Tere are two incident 2-vertices of
a face f.
Lemma 7 (i) states that there are no 3-vertices
incident to a face f. So, using (R1), we get the
following result: μ∗(f)≥ μ(f) − 2 × (1/2) � 0.
Case 2: Tere is one incident 2-vertex of a face f.
Lemma 7 (i) states that at most two 3-vertices are
incident to a face f. So, using (R1) and (R3), we
get the following result: μ∗(f)≥ μ(f) − (1/2) −

2 × (1/6)> 0.
Case 3: Tere are no incident 2-vertices on
a face f.
So, using (R3), we get the following result:
μ∗(f)≥ μ(f) − 5 × (1/6)> 0.

(vi) Consider a 7-face f.
Lemma 7 (i) states that a face f has at most three
incident 2-vertices.

Case 1: Tree 2-vertices are incident to a face f.
Lemma 7 (i) states that there are no 3-vertices
incident to a face f. So, using (R2), we get the
following result: μ∗(f)≥ μ(f) − 3 × 1 � 0.
Case 2: At most two 2-vertices are incident to
a face f.
So, using (R2) and (R3), we get the following
result: μ∗(f)≥ μ(f) − 2 × 1 − 5 × (1/6) > 0.

(vii) Consider a k-face f where k≥ 8.
Consider f bounded by v0v1 . . . vk− 1 which each
subscript is taken modulo k. Tis case depends on
(R2) and (R3). To facilitate the calculation, we
provide a new rule in which μ∗(f) is non-negative
while its incident receive charges not less than by
ones from (R2) and (R3). First, f sends charge 1/2
to each incident vertices (vi for each 0≤ i≤ k − 1).
Considering that f is an 8+-face, it implies that
μ∗(f)≥ 0. Now, we redistribute the charge from f

as in the following new rule:

(R∗) A 5+-vertex vi gives (1/4) (received from f) to
vi− 1 or vi+1 if it is a 2-vertex.

Case 1: Consider vi a 2-vertex.
Lemma 7 (i) states that a vertex vi has two adjacent
5+-vertices which are on the boundary of f, say
vi− 1 and vi+1. So, using (R∗), we get the following
result: two its adjacent 5+-vertices send charge 2 ×

(1/4) to vi. Tus, vi receives charge (1/2) + 2 ×

(1/4) � 1 from f as in (R2).
Case 2: Consider vi a 3-vertex.
So, using (R∗), vi receives charge at least
(1/2)≥ (1/6) as in (R3).
Case 3: Consider vi a 5+-vertex.
So, using (R∗), we get the following result: a vertex
vi send charge (1/4) to vi− 1 or vi+1 when it is a 2-
vertex. Tus vi receives charge at least (1/2) − 2 ×

(1/4) � 0 from f as in (R2).
Hence, μ∗(f)≥ 0.

One can observe that our proof is fnished when
μ∗(x)≥ 0 for every x ∈ V(G)∪F(G). □
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