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Interferometric switching as a routing method in sequence of coupled optical microresonators is explored. Mach-Zhender
interferometry is extended to systems of side-coupled integrated sequences of resonators (SCISSORs) and coupled resonators
optical waveguides (CROWs). We generalized Coupled Mode Theory (CMT) to a system of three coupled waveguides. The two
bus interferometric switching functions of SCISSOR and CROW resonant structures are investigated. A novel switching device
based on three input phase modulation ports is presented. This device displays a wide range of switching behaviors which might
lead to new interesting applications.

1. Introduction

The tremendous growth of communication services and
information technologies demands new and enhanced net-
working capabilities. Switching is one of the main functions
of communication systems and networks. In particular, novel
optical switching technologies have the potential to play a
decisive role in future telecommunication and information
processing systems. The extensive deployment of wavelength
division multiplexing (WDM) technologies demands for
high-speed, scalable, and rapidly reconfigurable network
switching. Several optical switching technologies exist, like
electrooptic (EO), acoustooptic (AO), thermooptic (TO),
optomechanical (OM), and optical amplifier (OA) based
switching. Refractive index modulation, inducing phase dif-
ferences for switching functionalities, resorts especially to
EO or TO effects. These are widely used in directional
couplers, Mach-Zehnder interferometers, and multi-mode
interference (MMI) switches (for a good review see, e.g.,
[1]). The present paper focuses on some possible extensions
of these interferometric techniques by means of sequences
of microoptical resonator systems, like SCISSORs (side-
coupled integrated spaced-sequences of resonators) and
CROWs (coupled resonator optical waveguides) [2–6]. A
particular combination of these allows to use three input
waveguides for amplitude and phase modulation. The

advantage of a system of resonators over conventional single-
resonator scheme coupling is its larger spectral band, the
possibility to operate through interferometry on several
channels and its higher design flexibility. In particular, this
latter aspect allows for a diversity of behaviors compared to
usual directional coupling switching.

The practical realization of such kind of phase switching
devices is, however, still limited by present photonic fabri-
cation tolerances. Phase shifting of light requires the same
interferometric precision as the device operation itself. For
example, the phase difference between two interfering light
beams needs to be tightly controlled at the subwavelength
level to provide efficient switching. Even more sensitive to
small deviations from the nominal parameters are devices
where coherent addition of signals is achieved by arranging
complex systems of resonator chains. These require nanome-
ter level accuracy in the fabrication of the single resonators
and their mutual spacings. For instance, coupled resonator
induced transparency (CRIT) effects emerge easily only for
few nanometer deviations [7–12]. However, while present
optical lithography still suffers of few nanometers impre-
cision needing further improvements, the next generation
optical lithography is likely to achieve an order of magnitude
leap in accuracy paving the way to novel interferometric
devices [13]. Also, the fabrication of electrooptic silicon-
photonic modulators which are capable of providing smooth
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and uniform phase shifts over a broad spectrum is a topic
of intense research and promises to find a wide area of
applications [14]. Elsewhere we have demonstrated the prac-
tical realization of a novel silicon photonic interferometric
switching device showing that resonator phase switching is
indeed feasible [12]. Therefore, it is interesting to explore
from the theoretical point of view some extensions of
conventional directional coupling methods which could have
potential applications in upcoming interferometric devices.

The next section will briefly summarize the basics of cou-
pled mode theory (CMT) which will be particularly useful in
our context. Section 2 will set the stage for interferometric
switching between three waveguides which in turn will be
used in Section 3 where interferometric switching with a
dual bus waveguide resonator system is described. Section 4
will extend this to a particular arrangement of three-bus
resonator systems.

2. CMT and Phase Switching for
the Double-Sided Symmetric
Codirectional Coupler

CMT has grown to a vast subject in the last three decades (for
a good introduction see e.g., [15]). Let us quickly recall some
standard equations which describe in particular the coupling
between two waveguides.

We assume that the two waveguides have the same geom-
etry and propagation constants β, and they are homogenous
and isotropic. Material or other types of losses are negligible.
Within these assumptions, the fields in the first and second
waveguide are given by the solution of the following coupled
differential equations:

∂A1(z)
∂z

= icA2(z),

∂A2(z)
∂z

= icA1(z),
(1)

with A1(z) and A2(z) are the z dependent parts of the fields,
and c a mutual mode coupling coefficient. c is obtained
from perturbation theory by the amplitudes cross-sectional
integral over the section of the two waveguides of the
codirectional coupler and has the dimension of an inverse
length. If we impose as initial conditions

A1(0) = A1e
iφ1 , A2(0) = A2e

iφ2 , (2)

then the solutions at z are

A1(z) = tA1e
iφ1 + iκA2e

iφ2 ,

A2(z) = iκA1e
iφ1 + tA2e

iφ2 ,
(3)

with

κ = sin(cz)eiβz, t = cos(cz)eiβz, (4)

being κ and t the cross- and through-coupling coefficients,
respectively, and eiβz accounts for the phase shift. κ and t are
given by

κ = sin
(
πL

2Lc

)
eiβL, t = cos

(
πL

2Lc

)
eiβL, (5)

where

Lc = λ

2(neffe(λ)− neffo(λ))
(6)

is the coupling length, λ the wavelength, L the length of the
coupling section, while neffe and neffo are the even and odd
mode wavelength-dependent effective indexes, respectively.
Then, from (4) and (5), one obtains

c = π

2Lc
. (7)

From (3), it follows that

|A1(z)|2 = |t|2|A1|2 + |κ|2|A2|2 + 2|κ||t||A1||A2| sinΔφ,

|A2(z)|2 = |κ|2|A1|2 + |t|2|A2|2 − 2|κ||t||A1||A2| sinΔφ,
(8)

with Δφ = φ1 − φ2. For simplicity in (8), the dependence of
the coupling coefficients on z is omitted. Power conservation
condition for the lossless system follows straightforwardly
from (5), or (8), as |t|2 + |κ|2 = 1.

If we set A2 = 0, we obtain the well-known power
exchange expressions for the single-sided codirectional cou-
pler made of two equal waveguides

|A1(z)|2 = cos2(cz)|A1|2 = |t|2|A1|2,

|A2(z)|2 = sin2(cz)|A1|2 = |κ|2|A1|2.
(9)

The Mach-Zehnder modulator is obtained when two
signals with same amplitude (A1 = A2 = A) are coupled into
the waveguides. In fact, (8) becomes

|A1(z)|2 = |A|2(1 + 2|κ||t| sinΔφ
)
,

|A2(z)|2 = |A|2(1− 2|κ||t| sinΔφ
)
,

(10)

which shows that, when Δφ = 0, no power exchange between
the two waveguides occurs, while, for Δφ = m(π/2) (m an
integer), the power oscillates between the two waveguides
depending on the coupling section length, L. If cL = π/4 and
Δφ = ±π/2, then all the power is transferred into one or the
other waveguide.

Let us now extend (1) to the situation of Figure 1, where
three waveguides couple. We call the central waveguide the
Drop waveguide for a reason that will be clear in the follow-
ing. We consider the case of a Drop signal AD excited by the
fields A1 and A2 in the upper and lower waveguides. Then,
neglecting the direct coupling between the two outer waveg-
uides, we write a set of three coupled differential equations:

∂A1(z)
∂z

= icAD(z),

∂AD(z)
∂z

= icA1(z) + icA2(z),

∂A2(z)
∂z

= icAD(z).

(11)

We impose the initial conditions

A1(0) = A1e
iφ1 ,

AD(0) = ADe
iφD ,

A2(0) = A2e
iφ2 ,

(12)
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Figure 1: Double sided symmetric codirectional coupler.

where φ1, φ1, and φD express the phase of A1, A2, and AD,
respectively. The solutions of (11) are

A1(z) = t′A1e
iφ1 + iκDADe

iφD − κ′A2e
iφ2 ,

AD(z) = iκDA1e
iφ1 + tDADe

iφD + iκDA2e
iφ2 ,

A2(z) = −κ′A1e
iφ1 + iκDADe

iφD + t′A2e
iφ2 ,

(13)

with

t′ = cos2
(
cz√

2

)
eiβz, tD = cos

(√
2cz

)
eiβz, (14)

κ′ = sin2
(
cz√

2

)
eiβz, κD = 1√

2
sin
(√

2cz
)
eiβz. (15)

The term 1/
√

2 in (15) is a consequence of the symmetry
of the system (symmetric coupling and geometry). For
simplicity, let us consider AD = 0, then

|A1(z)|2 = ∣∣t′∣∣2|A1|2 +
∣∣κ′∣∣2|A2|2

− 2
∣∣κ′∣∣∣∣t′∣∣|A1||A2| cosΔφ,

(16)

|AD(z)|2 = |κD|2
(
|A1|2 + |A2|2 + 2|A1||A2| cosΔφ

)
, (17)

|A2(z)|2 = ∣∣κ′∣∣2|A1|2 +
∣∣t′∣∣2|A2|2

− 2
∣∣κ′∣∣∣∣t′∣∣|A1||A2| cosΔφ.

(18)

If the system is lossless, power conservation implies
|k′|2 + |kD|2 + |t′|2 = 1. Despite not being directly coupled to
each others, (16) and (18) show a possible crosstalk between
the outer waveguides through the intermediate Drop port
(crossing of arrows through the Drop port shown in
Figure 1). This can be quantified by using as initial condition,
for example, A2 = 0 which implies from (16)–(18)

|A1(z)|2 = |A1|2cos4
(
cz√

2

)
,

|AD(z)|2 = |A1|2
2

sin2
(√

2cz
)

,

|A2(z)|2 = |A1|2sin4
(
cz√

2

)
.

(19)

Equation (19) is plotted in Figure 2 in normalized inten-
sity and distance. These show that the signal from the upper
(lower) waveguide is never completely recovered in the Drop
port because part of it recouples towards the lower (upper)
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Figure 2: Power transfer in the waveguides of the ds-coupler for
one input signal only ((16), (17), and (18), with initial conditions
A1 = 1, A2 = 0). Red dashed line: amplitude A1(cz); blue dotted-
dashed line: amplitude A2(cz); black solid line: amplitude AD(cz).

waveguide. The Drop behaves like a “power transiting” port,
and the amount of light that crosses the structure can be
considered as a measure of crosstalk. However, we will see
that this interpretation must be taken with caution.

In fact, if we consider a same input signal (A1 = A2 = A)
on the top and bottom waveguides, (16)–(18) simplify to

|A1(z)|2 = |A2(z)|2 = |A|2
(

1− 1
2

sin2
(√

2cz
)(

1 + cosΔφ
))

,

|AD(z)|2 = |A|2(1 + cosΔφ
)
sin2

(√
2cz

)
.

(20)

The case for in phase signals (Δφ = 0) is shown in
Figure 3(a). In this case, the energy transfer between the
Drop and external ports occurs harmonically. A 100% power
transfer to the Drop port occurs when

L = π

2
√

2c
= Lc√

2
. (21)

Figures 3(b) and 3(c) show this case for a phase difference
of Δφ = π/4 and Δφ = (3/4)π: the power in the outer
waveguides 1 and 2 (magenta dotted-dashed line) oscillates
around the initial input value but is never zero, while the
Drop signal (black solid line) oscillates according to the
propagation length like in the previous case, but with less
maximum intensity. If instead a phase difference of Δφ = π
is applied (Figure 3(d)), there is no power in the Drop port.

Therefore, a particularly interesting situation occurs
when a ds-coupler has a coupling section long as in (21)
(cz = (1/

√
2)(π/2) in Figure 3). In fact, for two equal input

signals the ds-coupler acts as an interferometric switch: for
Δφ = 0, all the power goes into the drop port (Figure 4),
while, for Δφ = π, all the power stays in waveguides 1
and 2 (Figure 5). Under these circumstances, the crosstalk
between waveguide 1 and 2 has been suppressed. At first, this
seems to be at odds with what shown in Figure 2 where a
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Figure 3: Power transfer in the waveguides of the ds-coupler for two equal input signals ((16), (17), and (18), with initial conditions A1 = 1,
A2 = 1, Δφ = (0,π/4, (3/4)π,π) in (a), (b), (c), (d), resp.). Magenta dotted-dashed line: amplitude A1(cz) and A2(cz); black solid line:
amplitude AD(cz).

|A|2

|A|2

|AD(L)|2 = 2|A|2
Δφ = 0

L = Lc/
√

2

Figure 4: The ds-coupler switch in phase: all the power goes into
the Drop port.

significant power transfer from waveguide 1 to waveguide 2
is observed. This apparent contradiction is explained by the
fact that the signal in waveguide 1 (waveguide 2) undergoes
twice a phase change of π/2 (evanescent waves have always a
π/2 phase difference with respect to the waveguide core field
phase) and the net π dephased cross coupled wave interferes

|A|2

|A|2

L = Lc/
√

2

|AD(L)|2 = 0
Δφ = π

Figure 5: The ds-coupler switch out of phase: no power couples
into the Drop port.

destructively in waveguide 2 (waveguide 1). This interference
effect leads to a mutual subtraction of the cross-coupled
powers.

For completeness, we mention also the case when the
light is injected only in the Drop waveguide, that is,

A1(0) = 0, AD(0) = AD, A2(0) = 0, (22)
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Figure 6: The single racetrack switch.

then

A1(z) = A2(z) = iAD sin
(√

2cz
)

√
2

eiβz,

AD(z) = AD cos
(√

2cz
)
eiβz,

(23)

whereby of course

|A1(z)|2 = |A2(z)|2 = |AD|2
2

sin2
(√

2cz
)
= |AD|2 |κD|

2

2
,

|AD(z)|2 = |AD|2 cos2
(√

2cz
)
= |AD|2|tD|2.

(24)

These show that the power is equally distributed among
the outer waveguides. Note that by imposing a coupling
section length equal to the value given by (21), it leads to
a complete power transfer into waveguide 1 and 2, that is,
the ds-coupler can be used as a splitter. Its advantage over
other splitting devices, as Y-branches or MMI splitters, is that
it is less sensitive to imbalances, provided that the spacing
difference between the waveguides arising due to fabrication
imperfections is negligible. Its disadvantage is obviously that
it is wavelength dependent.

3. Dual Bus Resonator Interferometric Switch

A further extension of the formalism is to consider a single
resonator as in Figure 6. We consider a racetrack resonator
so that we can apply the CMT extension developed in
Section 2. For simplicity, the bus-waveguide gaps and the
coupling section lengths are the same everywhere. To apply
the transfer matrix approach [16–21], a first step is to relate
the amplitudes (A1

1,A1
2) with (A2

1,A2
2) (see Figure 6 for the

definitions). From (3), we have:
(
A2

1

A2
2

)
=M

(
A1

1

A1
2

)
=
(
t iκ
iκ t

)(
A1

1

A1
2

)
. (25)

In order to “transfer” the signal, it is more appropriate to
write the relationships (A1

1,A2
1) → (A1

2,A2
2). For which one

obtains the coupling matrix K:
(
A1

2

A2
2

)
= K

(
A1

1

A2
1

)
= 1

i|k|

(
−|t| e−iβL

−eiβL |t|
)(

A1
1

A2
1

)
, (26)

where, for the straight sections, the lossless case (|κ1|2 +
|t1|2 = 1) was considered. We instead assume bending losses

2

1.5

1

0.5

0 −3 −2 −1 0 1 2 3

γ (rad)

N
or

m
al

iz
ed

 in
te

n
si

ty

Figure 7: The dual-bus single resonator Fano resonance spectrum
for Δφ = π/2 (Drop: black solid line, Through: red dashed line).

in the racetrack. The (forward and backward) internal prop-
agation matrix P is

(
A2

3

A1
3

)
= P

(
A1

2

A2
2

)
=
⎛
⎝ 0 aeiβπR

1
a
e−iβπR 0

⎞
⎠
(
A1

2

A2
2

)
, (27)

where a = e−απR is the half round trip loss factor, α the total
loss per unit length, and R the curvature radius.

Equations (26) and (27) define a transfer matrix TPK as
(
A2

3

A1
3

)
= TPK

(
A1

1

A2
1

)
= PK

(
A1

1

A2
1

)
. (28)

With the definition of the Input, Through, Drop, and
Add ports as in Figure 6, we define AIn, ATh, AD, and AAd

the respective field amplitudes. Therefore,
(
AAd

AD

)
= T1

(
AIn

ATh

)
= KTPK

(
AIn

ATh

)
. (29)

By rearranging the elements of the transfer matrix T1 into
the scattering matrix S1, one obtains

(
ATh

AD

)
= S1

(
AIn

AAd

)
. (30)

To simulate the device of Figure 6, we use the following
parameters: bent curvature radius of 3.25μm, gap spacing
of 0.2μm, silicon waveguides width of 0.45μm, silicon
waveguide core height of 0.22μm, SiO2 cladding of 0.75μm,
and −0.03 dB/90◦ bent loss in TE polarization [22].

The first interesting situation is when we inject two input
signals, one in the Input port and the other in the Add port
such that AIn = eiφ1 and AAd = eiφ2 , with φ1 and φ2 their
phases. For Δφ = φ2 − φ1 = π/2, we obtain Figure 7.
The parameter γ represents the round-trip dephasing of the
resonator given as γ = 2πpopt(Δλ/λ2), where popt = (2πR +
2L) neff is the optical path of the resonator,Δλ the wavelength
shift from a racetrack resonance, and neff the effective
index (at resonance wavelength) of the waveguides (see
Appendix A).

The γ dependencies of the Drop and Through signals are
asymmetric. This is the manifestation of the Fano resonance
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Figure 8: The SCISSOR and CROW resonant structures.

that arises from the interference between the resonant modes
in the racetrack, where a narrow band superimposes on the
waveguide flat spectral background [23, 24].

Devices where two phase modulated incoming signals
are injected can be used for light switching functions. In
this case, a high extinction ratio is obtained. For instance,
at γ = ±0.6, in Figure 7, the drop and through signals have
a maximum or vanish (the maximum intensity does not
reach 2 because bent losses are considered). Now, if Δφ is
changed from π/2, as in Figure 7, to 3/2π, a similar spectrum
is found with the two signals changed (the black solid line
would go into the red dashed line). This means that, by
phase modulation, the signal output can be switched in the
Through port or in the Drop port.

It is possible to extend this interferometric switching
functions to a parallel or serial chain of coupled resonators,
that is, in CROW or SCISSOR, Figure 8.

To model a SCISSOR, we introduce an external propaga-
tion matrix Q j connecting the jth to the ( j + 1)th resonator

(
A

j+1
1

A
j+1
4

)
= Q j

(
A

j
1

A
j
4

)
=
(
eiβD

j j+1
0

0 e−iβDj j+1

)(
A

j
1

A
j
4

)
, (31)

where Dj j+1 is the distance which separates the jth to ( j +
1)th resonator. Then, (30) can be generalized to the SCISSOR
structure with a scattering matrix Sh:

(
ATh

AD

)
= Sh

(
AIn

AAd

)
= SNQN−1SN−1 · · ·Q1S1

(
AIn

AAd

)
. (32)

For the CROW, we simply generalize (29) to

(
AAd

AD

)
= TN · · ·T2T1

(
AIn

ATh

)
, (33)

where Tk (k = 1, . . . ,N) is the transfer matrix for the kth
resonator and is given by (28). From this we obtain, the
scattering matrix Sv

(
ATh

AD

)
= Sv

(
AIn

AAd

)
. (34)

Figure 9 shows a spectrum of a SCISSOR made of a
chain of eight racetrack resonators. Figure 9(a) represents
the spectrum when only one signal is injected: high-order
filter flat-box spectrum appears. When a second signal is
injected at the Add port with the same amplitude but with a
phase difference Δφ = π/2 with respect to the signal injected
in the In port, Figure 9(b) is obtained. We call this situation,
where we have two input signals, the double bus situation.
The point γ = ±1.5 can be used to switch the signal from
the Through to the Drop port by controlling the phase at
the Add signal. Moving the Add signal phase from π/2 to
3/2π switches the output from the Through to the Drop
port. Possibly, a wavelength band can be switched by using
the γ = ±1.75 point, though with low extinction rates.
Therefore, with this respect, the SCISSOR geometry presents
limited advantages over the single resonator case of Figure 7.

An eight racetrack CROW structure has a behavior
shown in Figure 10. As in the previous case, the left and right
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Figure 9: The single (a) and dual-bus (b) eight resonator SCISSOR spectrum for Δφ = π/2. (Drop: black solid line, Through: red dashed
line).
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Figure 10: The single (a) and dual-bus (b) eight resonator CROW spectrum for Δφ = π/2. (Lines as in Figure 9).
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Figure 11: The resonator pair ds-coupler switch.

graphs represent the single- and double-bus spectra for the
same dephasing. CROW are very different from SCISSOR:
given a N resonator CROW, the single bus device has N Drop
resonances (Figure 10(a)) while the double bus device has
N − 1 bands when a Δφ = π/2 is considered (Figure 10(b)).

Also, in this case, for a dephasing of Δφ = (3/2)π, one can
flip the Through ↔ Drop port outputs. Not all bands have
the same extinction efficiency, only the central ones exhibit
an almost ideal on-off. The CROW has the advantage with
respect to the SCISSOR and single resonator that it allows
band routing or it can be used as an optical interleaver,
that is, as a device that separates a set of channels into two
sets, routing them separately towards the Drop and Through
ports. The width of each band depends on the structural
parameters.

4. Three-Bus Resonator Interferometric Switch

A further interesting situation is to model a structure like that
of Figure 11. It shows a single pair of racetrack resonators
coupled to three-bus waveguides. This interferometric switch
works as follows: the input signals In1 and In2 are tuned
to a resonance wavelength and have the same amplitude.
Then, depending on their relative phase, they interfere
constructively or destructively in the Drop waveguide. In the
former case, the signal is expected to couple into the Drop
port, while, in the latter case, the signal is transmitted to
the Through ports. Experiments demonstrate this principle
[11, 12].
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Figure 12: Spectral response of the device in Figure 11, with AIn1 = 1, AAd = 0, AIn2 = 0, L = 10μm (a), and L = 3μm (b) (Drop port: black
solid line, Through1 port: red dashed line, Through2 port: blue dotted-dashed line).

In this section, we model the device as a three-bus device,
that is, we drive it with three input signals whose phase is
independently controlled. To relate the known signals A1

1 =
AIn1 , A2

4 = AAd, A1
7 = AIn2 to the unknown A2

1 = ATh1 ,
A1

4 = AD, and A2
7 = ATh2 (Figure 11), we use a general

transfer matrix T:
⎛
⎜⎝
ATh1

AD

ATh2

⎞
⎟⎠ =

⎛
⎜⎝
T11 T21 T31

T21 T22 T21

T31 T21 T11

⎞
⎟⎠
⎛
⎜⎝
AIn1

AAd

AIn2

⎞
⎟⎠ = T

⎛
⎜⎝
AIn1

AAd

AIn2

⎞
⎟⎠, (35)

whose elements are reported in Appendix B. The device (and
therefore T) is symmetric: the paths In1 → Through1, In1 →
Drop, In1 → Through2 are equivalent to the paths In2 →
Through2, In2 → Drop, In2 → Through1.

Figure 12 shows the spectral response of the device when
used in single bus configuration, that is, only one input signal
is injected (AIn1 = 1, AAd = 0, AIn2 = 0), for two coupling
section lengths of L = 10μm and L = 3μm. The drop signal
(black line) shows a typical resonant behavior with a sharper
feature for the L = 3μm device than for the L = 10μm device
because of its lower coupling efficiency. It is also interesting
to note that the crosstalk is much higher for L = 10μm
than for 3 μm. At resonance, the power is almost equally
distributed between the Drop and Through2 ports.

Figure 13 shows the case of a device operated in a duals
bus configuration. We used L = 10μm for the coupling
section. The input signals have the same amplitude and a
phase difference of Δφ = 0,π/4, 3/4π,π for Figures 13(a),
13(b), 13(c), 13(d), respectively. When the two input signals
are in phase, and the wavelength is resonant with the two
racetracks, then most of the power is transferred to the
Drop port. This situation was experimentally confirmed in
[11, 12].

The Through ports will not exhibit complete extinction
due to crosstalk effects (Figure 13(a)). Similarly, when the
two input signals are in antiphase (Figure 13(d)), a complete
destructive interference is achieved in the Drop waveguide
and no Drop signal is observed. Most of the power goes
straight in the Through ports. Note that the minima at reso-
nance in the Through signals are due to the resonator round

trip losses. With no dephasing, the Through signal minima
coincide, with the Drop signal maximum at resonance λ0

(Figure 13(a)). In the other case, the Through signals show
the behaviors of a Fano resonance (Figures 13(b) and 13(c)).
When there is a phase shift between the input signals, the
Through signals show characteristics of Fano resonance with
a different minimum at λF = λ0 ± 0.8 nm. This occurs
already for a small Δφ = π/10. Moreover, the Through signal
resonance depth depends on the phase shift and vanishes
almost completely at Δφ = π/4 (Figure 13(b)). This is
potentially useful to build interferometric switching devices
with good on-off extinctions.

To highlight the phase shift dependence, we repeated the
calculations at the resonant or at the Fano wavelengths (λ0

or λF , resp.) by varying Δφ. At the same time, we varied
the intensity of the input signals. The results are shown in
Figure 14 for λ0 and in Figure 15 for λF , for |AIn2 |2 = δ ×
|AIn1|2 with δ = (1, 0.75, 0.25, 0). Several features can be
observed. First, for perfect input balance (Figure 14(a) and
Figure 15(a)), the Drop signal goes to zero at Δφ = π, while
the Through signals vanish only for λF and not for λ0. For this
reason, interferometric switching is at λF than at λ0. Second,
for λF (Figure 15), the three output signals (Drop, Through1

and Through2) vanish for three different values of Δφ: Δφ =
π/4 the Through2, Δφ = π the Drop, and Δφ = 7/4π the
Through1. Third, the transmission of the input signals to
the through ports is more effective for λF than for λ0, which
might be useful for practical purposes. Fourth, from Figures
14 and 15, it is clear that an interferometric switch device
must be robust against input signal imbalance.

Similar features are obtained for a device with L = 3μm.
The main difference is that λF is more near to λ0 which makes
difficult the use of the Fano concepts for interferometric
routing.

A further extension of the ds-router concept is a double
SCISSOR structure as shown in Figure 16. To model it, we
transform T (35) into the “scattering matrix” S such that⎛

⎜⎝
ATh1

AAd

ATh2

⎞
⎟⎠ = S

⎛
⎜⎝
AIn1

AD

AIn2

⎞
⎟⎠. (36)
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Figure 13: Spectral response of the device in Figure 11, with AIn1 = (1, ei(π/4), ei(3/4)π , eiπ) ((a), (b), (c), (d), resp.), AAd = 0, AIn2 = 1. (Lines
as in Figure 12.)

After simple algebraic manipulation, one finds

S = 1
T22

⎛
⎜⎝
T11T22 − T12T21 T12 T31T22 − T12T21

−T21 1 −T21

T31T22 − T12T21 T12 T11T22 − T12T21

⎞
⎟⎠, (37)

where the lower indexes indicate the row × column element
of T.

Then, by introducing an external propagation matrix Qk

which connects the Through and Add ports of the kth pair of
resonators with the In and Drop ports of the (k+ 1)th pair as

⎛
⎜⎝
AInk+1

1

ADk+1

AInk+1
2

⎞
⎟⎠ = Qk

⎛
⎜⎝
AThk

1

AAdk

AThk
2

⎞
⎟⎠ =

⎛
⎜⎝
eiβD

k
0 0

0 e−iβDk
0

0 0 eiβD
k

⎞
⎟⎠
⎛
⎜⎝
ATh k

1

AAdk

AThk
2

⎞
⎟⎠

(k = 1, . . . ,N),
(38)

we can express the general equations for the device of
Figure 16 with a total transfer matrix STot:

⎛
⎜⎝
AThN

1

AAdN

AThN
2

⎞
⎟⎠ = STot

⎛
⎜⎝
AIn1

1

AD1

AIn1
2

⎞
⎟⎠ = SNQN−1SN−1 · · ·Q1S1

⎛
⎜⎝
AIn1

1

AD1

AIn1
2

⎞
⎟⎠.
(39)

And, finally, after inverting STot (37), we get
⎛
⎜⎝
AThN

1

AD1

AThN
2

⎞
⎟⎠ = TTot

⎛
⎜⎝
AIn1

1

AAdN

AIn1
2

⎞
⎟⎠, (40)

which is the generalized version of (35).
Figure 17 shows the spectral response for the 1,2,4, and

8 pair SCISSOR interferometric switch (Figures 17(a), 17(b),
17(c), 17(d), resp.) with only one input signal. The (N − 1)
central dips are not due to fabrication imperfections [11, 12]
but are intrinsic features due to the existence of the central
Drop waveguide between the two resonator chains. The
system behaves like a single SCISSOR row with asymmetric
gaps which introduce a correspondent asymmetric phase
shift at each resonator gap leading to CRIT-like features. It
is in this spectral region, near the center of the resonance
band, where light couples more efficiently into the resonators
and travels repeatedly through them producing slow light
effects. For this reason, it is also in this central CRIT-
like region where most of the attenuation occurs due to
radiation and roughness losses on the resonator bent. Note
how, aside from the flat-box spectrum, despite strong input
imbalance, the two Through ports response (red dashed
and blue dotted-dashed lines) tend to merge together inside
the mode’s spectral range with increasing the number of
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Figure 14: Phase response of the device in Figure 11 at λ0, with AIn1 = eiΔΦ, AAd = 0, |AIn2 |2 = (1, 0.75, 0.25, 0) ((a), (b), (c), (d), resp.)
(Lines as in Figure 12.)

resonator pairs. This is because in an N-pair SCISSOR the
input signals couple to the various resonator pairs, and,
while they are propagating along the sequence, their power
is progressively balanced due to the large crosstalk. This
robustness of SCISSOR devices against input imbalances
could have practical advantages where a power injection is
uncertain or difficult to tailor.

Figure 18 illustrates the use of a dual bus SCISSOR inter-
ferometric switch with two equal input signals. Increasing the
number of resonator, the response gets a flat-box shape and
a good rejection of the input signal at the two Through ports
is obtained.

Figure 19 shows the effect of a phase shift between the
two input signals. As Δφ increases, the Drop signal decreases
and vanishes for Δφ = π. The Through signals are coincident
within the stop-band and differ outside this wavelength
region when Δφ /= 0.

We studied also the effect of an imbalance between
the two input signals. A phase sweep at γ = 1 for four
different intensities is shown in Figure 20. Contrary to the
single pair interferometric switch affected by Fano resonance
asymmetries and unequal Through port signal intensities
along the phase sweep, the 2 × 8 SCISSOR interferometric
switch flattens out the differences on the Through signals and
shows its robustness against imbalances.

5. Three-Bus Interferometric Switch with
Three Input Signals

Another potentially interesting application is to operate the
ds-coupler interferometric switch of Figure 11 with three
input signals, that is, to use the Add port as a third input
port. Figure 21 shows its spectral response when AIn1 = eiφ1 ,
AAd = eiφAdd , AIn2 = eiφ2 . Figure 21(a) shows the case of all
three equal input phases ((φ1, φAdd, φ2) = (0, 0, 0)): the Drop
and the two Through signals are equal with slight differences
caused by the bending losses. Figure 21(b) reproduces the
case (φ1, φAdd, φ2) = (0,π/4,π/2): at the resonance
wavelength, the two Through signals are high while the Drop
signals are low. The Through signal resonances are Fano
resonances. Figure 21(c) represents the alternative case where
only a π-shift on the Add signal is applied ((φ1,φAdd,φ2) =
(0,π, 0)): the Drop signal maximizes at resonance, while the
two Through signals are low. Figure 21(d) shows the case
when a π-shift is applied to both the Add and one Input
signal (φ1,φAdd,φ2) = (0,π,π): all the input signals are
addressed to the Through1 port. The symmetric case where
the signals are directed to the Through2 port is obtained by
applying the same phase shift to the other Input signal.

This three input signal configuration allows using the
Add signal as a control signal to drive the interferometric
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Figure 15: Phase response of the device in Figure 11 at λF , with AIn1 = eiΔΦ, AAd = 0, |AIn2 |2 = (1, 0.75, 0.25, 0) ((a), (b), (c), (d), resp.).
(Lines as in Figure 12.)
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Figure 16: The 2×N SCISSOR phase switch.

switch to different functionalities (compare Figure 13 with
Figure 21). In fact, if the phase of the Add signal is changed
from 0 to π, the Drop signal is switched from 1 to 3 (in
absence of bending losses); while, if the phase of one of
the input is changed from 0 to π and φAdd = π, one can
switch off and on the Through signals. Many other sorts
of combinations in phase and intensity at the Input ports,
resonator numbers, and overall resonant device geometry for

phase switching applications could be imagined in the most
diverse configurations.

6. Conclusions

A three-bus waveguide multiple resonator-based interfer-
ometric switching device was discussed which is able to
route light over a broad range of wavelengths by phase
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Figure 17: Spectral response of the SCISSOR switch with 1, 2, 4, 8 pairs of resonators ((a), (b), (c), (d), resp.) and inputs AIn1 = 1, AAd = 0,
AIn2 = 0. (Lines as in Figure 12.)

modulation. To obtain its behavior, it was necessary to
analyze first the performance of the two bus waveguide
single resonator and SCISSOR and CROW systems. We
showed that extending side coupling and Mach-Zehnder
phase switching techniques to multiple waveguides and
to chains of resonators could be useful to enhance their
switching capabilities. The proposed interferometer device
shows the possibility to control a lightwave signal with the
phase of another signal. This allows to add a further degree
of freedom in designing reconfigurable optical routers and
complex networks. Simple examples can be foreseen in single
channel switches where the switch redirects the signal in two
different channels without absorbing the light (Figure 7), or
in a dual channel interleaver where the signal bands can
be alternatively directed on one or the other channels by
phase control (Figure 10(b)), or in a three channel router
where the signal is routed along three different directions by
controlling the wavelength and the phase (Figure 13(b)). It
is clear, though, that the potentiality of the scheme proposed
in this work is not exhausted by these examples and more
can be envisaged by optical network specialists. However,
we believe that herewith we outlined some proposals which
display how this is a field with vast possibilities, hopefully
inspiring further investigations of possible applications of
novel interferometric switching devices.

Appendices

A.

Instead of displaying the spectral response of a resonant
structure in terms of the wavelength, it is possible to express it
as a resonator round trip dephasing, clearly with the assump-
tion of a nondispersive system. The resonant wavelength of
the mth mode, λm, is thus in general

λm =
popt(λm)

m
, (A.1)

with the wavelength-dependent optical path of the racetrack
resonator popt = (2πR + 2L)neff(λm), neff(λm) the effective
index of the resonator waveguides at the mth resonant
wavelength, and m the resonance azimutal number. In the
case of dispersionless systems, (A.1) is no longer an implicit
function, and any two modes at λ1 and λ2 are determined
solely by the optical path of the resonator (popt(λm) =
popt for all m) and by the mode azimutal number m, as

λ1 =
popt

m
, λ2 =

popt

m + 1
. (A.2)

This means that the difference (i.e., the FSR) is

λ2 − λ1 = −
popt

m(m + 1)
= − λ1

m + 1
= −λ1λ2

popt
. (A.3)
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Figure 18: Spectral response of the SCISSOR switch with 1, 2, 4, 8 pairs of resonators ((a), (b), (c), (d), resp.), and inputs AIn1 = 1, AAd = 0,
AIn2 = 1, with same phase. (Lines as in Figure 12.)

Then, the parameter γ representing the round-trip de-
phasing of the resonator can be defined as an “angular
deviation” from resonance at some wavelength λ as

λ = λ1 +
γ

2π
(λ2 − λ1) = λ1 − γ

2π
λ1λ2

popt
, (A.4)

and from which

γ = 2πpopt
λ1 − λ

λ1λ2
≈ 2πpopt

Δλ

λ2
. (A.5)

B.

In Figure 11, we can relate (A2
3,A2

4,A2
5) → (A1

3,A1
4,A1

5)
through (13) as

⎛
⎜⎝
A1

3

A1
4

A1
5

⎞
⎟⎠ =M

⎛
⎜⎝
A2

3

A2
4

A2
5

⎞
⎟⎠ =

⎛
⎜⎝

t′ iκD −κ′
iκD tD iκD
−κ′ iκD t′

⎞
⎟⎠
⎛
⎜⎝
A2

3

A2
4

A2
5

⎞
⎟⎠. (B.1)

Proceeding in the same way as we have done with matrix
M of (25), we look for the coupling matrix that relates in
the interference section the upper to the lower waveguide

through the middle one, that is, (A2
3,A2

4,A1
3) → (A2

5,A1
4,A1

5),
and obtain the second transfer matrix Tb:
⎛
⎜⎝
A2

5

A1
4

A1
5

⎞
⎟⎠ = Tb

⎛
⎜⎝
A2

3

A2
4

A1
3

⎞
⎟⎠

= 1
κ′

⎛
⎜⎝

t′ iκD −1
iκD(κ′ + t′) tDκ′ − κ2

D −iκD
t′2 − κ′2 iκD(κ′ + t′) −t′

⎞
⎟⎠
⎛
⎜⎝
A2

3

A2
4

A1
3

⎞
⎟⎠.

(B.2)

Due to a symmetric coupling, K of (26) can be applied
also at (A1

6,A2
6) → (A1

7,A2
7). For the same reason, the same

internal propagation matrix of (27) can be applied also at
(A2

5,A1
5) → (A1

6,A2
6). Therefore, the third transfer matrix

connects (A2
5,A1

5) → (A1
7,A2

7) in the same way as (28) (but
with the order of the propagation and coupling matrixes
inverted):

(
A1

7

A2
7

)
= TKP

(
A2

5

A1
5

)
= KP

(
A2

5

A1
5

)
. (B.3)

To proceed in the inverse direction, that is, from ports
(In2, Through2) to (In1, Through1), note that, again because
of coupling symmetry, TPK relates also (A1

7,A2
7) → (A2

5,A1
5),

TKP does the same with (A2
3,A1

3) → (A1
1,A2

1), and Tb con-
nects also (A2

5,A2
4,A1

5) → (A2
3,A1

4,A1
3).
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Figure 19: Spectral response of the 2 × 8 SCISSOR switch of Figure 16 with inputs, AIn1 = (1, ei(π/2), ei(3/4)π , eiπ) ((a), (b), (c), (d) resp.),
AAd = 0, AIn2 = 1 (Lines as in Figure 12.)

Now, we can obtain the overall device response of
Figure 11 by separating the contributions to the two Through
and the Drop ports as the sum of three different terms corre-
sponding to the three following device states.

State (I). Input signal in In1 only is injected and propagated
from the top to the bottom of the device

⎛
⎜⎝
AIn1 =

∣∣AIn1

∣∣eiφ1

AAd = 0
AIn2 = 0

⎞
⎟⎠ �−→

⎛
⎜⎝
ATh(I)

1

AD(I)

ATh(I)
2

⎞
⎟⎠. (B.4)

Schematically, this goes as follows (from the right to the
left):

←−
(
A2

3

A1
3

)
= TPK

(
AIn1

ATh(I)
1

)
(B.5)

←−
⎛
⎜⎝

A2
5

AD(I)

A1
5

⎞
⎟⎠ = Tb

⎛
⎜⎝
A2

3

0
A1

3

⎞
⎟⎠←− (B.6)

(
0

ATh(I)
2

)
= TKP

(
A2

5

A1
5

)
←− . (B.7)

This means that the first set of equations from the first
transferral of (B.5)

A2
3 = TPK

11 AIn1 + TPK
12 ATh(I)

1
,

A1
3 = TPK

21 AIn1 + TPK
22 ATh(I)

1
,

(B.8)

have to be inserted into (B.6) to obtain

A2
5 =

(
Tb

11T
PK
11 + Tb

13T
PK
21

)
AIn1

+
(
Tb

11T
PK
12 + Tb

13T
PK
22

)
ATh(I)

1
,

(B.9)

AD(I) =
(
Tb

21T
PK
11 + Tb

23T
PK
21

)
AIn1

+
(
Tb

21T
PK
12 + Tb

23T
PK
22

)
ATh(I)

1
,

(B.10)

A1
5 =

(
Tb

31T
PK
11 + Tb

33T
PK
21

)
AIn1

+
(
Tb

31T
PK
12 + Tb

33T
PK
22

)
ATh(I)

1
.

(B.11)

Proceeding further with the next transfer, we have from
(B.7) that

0 = TKP
11 A

2
5 + TKP

12 A
1
5,

ATh (I)
2
= TKP

21 A
2
5 + TKP

22 A
1
5,

(B.12)
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Figure 20: Phase response of the 2 × 8 SCISSOR switch of Figure 16 with input imbalances |AIn1 |2 = (1, 0.25, 0.1, 0) ((a), (b), (c), (d),
resp.), AAd = 0, AIn2 = 1, at phase round-trip shift γ = 1 (Lines as in Figure 12.)

which, through (B.9), (B.10), and (B.11), leads to

ATh(I)
1
= T11AIn1 ,

AD(I) = T21AIn1 ,

ATh(I)
2
= T31AIn1 ,

(B.13)

with

T11 = − TKP
11 A + TKP

12 B

TKP
11 C + TKP

12 D
,

T21 = E + FT11,

T31 = G + HT11,

A = Tb
11T

PK
11 + Tb

13T
PK
21 ,

B = Tb
31T

PK
11 + Tb

33T
PK
21 ,

C = Tb
11T

PK
12 + Tb

13T
PK
22 ,

D = Tb
31T

PK
12 + Tb

33T
PK
22 ,

E = Tb
21T

PK
11 + Tb

23T
PK
21 ,

F = Tb
21T

PK
12 + Tb

23T
PK
22 ,

G = TKP
21 A + TKP

22 B,

H = TKP
21 C + TKP

22 D.

(B.14)

State (II). Input signal in In2 only is injected and propagated
from the bottom to the top of the device.

⎛
⎜⎝

AIn1 = 0
AAd = 0

AIn2 =
∣∣AIn2

∣∣eiφ2

⎞
⎟⎠ �−→

⎛
⎜⎝
ATh(III)

1

AD(III)

ATh(III)
2

⎞
⎟⎠. (B.15)

One proceeds exactly as for State (I), but in the opposite
direction. The only difference in the final result is that in

(B.13) the ports (In1, Through(I)
1 , Through(I)

2 ) have to be

exchanged with (In2, Through(III)
2 , Through(III)

1 ):

ATh(III)
1
= T13AIn2 ,

ADrop(III) = T23AIn2 ,

ATh(III)
2
= T33AIn2 ,

(B.16)

with T13 = T31, T23 = T21, and T33 = T11.

State (III). Add port signal only is injected and propagated
from the central Add waveguide towards the Drop and upper
and lower Through ports.

In the transfer matrix of (35), only one coefficient is
missing, namely, T22. This is fixed by the other matrix ele-
ments and power conservation criteria. Expressing explicitly
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Figure 21: Spectral response of the 2 × 1 SCISSOR switch of Figure 16 with inputs AIn1 = eiφ1 , AAd = eiφAdd , AIn2 = eiφ2 , and (φ1, φAdd, φ2)
= (0, 0, 0); (φ1, φAdd, φ2) = (0, π/4, π/2); (φ1, φAdd, φ2) = (0,π, 0); (φ1, φAdd, φ2) = (0,π,π) for figures (a), (b), (c), (d), respectively (Lines as
in Figure 12.)

with the matrix elements of T the power balance between the
input and output intensities of the waves, it must hold:

∣∣AIn1

∣∣2 +
∣∣AIn2

∣∣2 + |AAd|2

= ∣∣ATh1

∣∣2 + |AD|2 +
∣∣ATh2

∣∣2 + Loss

=
(
|T11|2 + |T21|2 + |T31|2

)(∣∣AIn1

∣∣2 +
∣∣AIn2

∣∣2
)

+
(

2|T21|2 + |T22|2
)
|AAd|2

+
(
T11T

∗
31 + |T21|2 + T31T

∗
11

)(
AIn1A

∗
In2

+ A∗In1
AIn2

)

+
(
T11T

∗
21 + T21T

∗
22 + T31T

∗
21

)(
AIn1 + AIn1

)
A∗Ad

+
(
T∗11T21 + T∗21T22 + T∗31T21

)(
A∗In1

+ AIn2

)
AAd + Loss,

(B.17)

with the last term indicating the losses of the structure. This
implies the following conditions:

|T11|2 + |T21|2 + |T31|2 = 1, (B.18)

2|T21|2 + |T22|2 = 1, (B.19)

T11T
∗
31 + |T21|2 + T31T

∗
11 = 0, (B.20)

T∗11T21 + T∗21T22 + T∗31T21 = 0. (B.21)

Conditions (B.18) and (B.20) are already satisfied by
the coefficients found in the two previous cases (very
cumbersome and long calculations). From (B.21), we finally
obtain the last coefficient for matrix (35):

T22 = −T21

T∗21

(
T∗11 + T∗31

)
, (B.22)

which satisfies also (B.19) through (B.20).
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