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We have carried out the calculation and experimental measurement of the field formed by optical schemes composed of an axicon
and lens with strong spherical aberrations. The calculation is performed by the methods of geometrical optics and diffraction
integral. A mechanism is revealed, which is responsible for increasing the intensity in the near-axial focus of the doublet. It is
shown that the formed bottle beam has a small length and the field at the periphery is of two types: oscillating and smooth
ones. The changeover of the field from the bottle beam to a z-dependent Bessel beam is traced. The last beam is characterized, in
particular, by the Bessel-type structure of its Fourier spectrum.

1. Introduction

Axicons and their combinations can be used for many
applications, and for the first time this came to attention
in [1], where a number of specific schemes is considered
as well. In particular, a variety of papers are devoted to the
calculation and analysis of a focusing scheme consisting of a
thin lens and an axicon [2—16]. This combination can be used
to obtain a high-quality focal ring. In paper [4] the authors
have shown that the irradiance distribution in the transverse
plane of the ring is the Gaussian distribution. Rings of
such nature seem to be very useful in laser-machining, for
example, for the hole drilling application [2]. The axicon-
lens system is also of interest in the context of feasibility to
form an unusual axial distribution of intensities. It is found
that, for a certain choice of the Fresnel number of an optical
scheme and diameter of the Bessel beam, the axial intensity
distribution is characterized by the existence of two distinct
focilocated to the left and to the right of the geometrical back
focal plane [4, 8, 10, 12, 14, 16].

Between these two foci a region of a very low intensity
is located, which is named the bottle beam [17]. During
decreasing the distance between the axicon and lens, the far
focus disappears and then a hollow beam is formed [5, 7, 9,

11, 12, 15]. Bottle and hollow beams have recently attracted
interest because of their applications in optical trapping to
trap atoms in the dark region [18, 19].

It is interesting to note that there is a region beyond the
focal plane where the conical waves again overlap [8, 10].
Here the initial Bessel-like structure can be reconstructed
with a transverse profile expanding while propagation. To
create a Bessel beam in this region, another lens is required
to rectify the diverging wave front [3, 8].

Effects of spherical aberrations in converging and diverg-
ing lens-axicon doublets are investigated in paper [6]. Com-
parisons with aberration-free computations show that higher
peak irradiances occur for the converging doublet when
spherical aberrations are included. For example, spherical
aberrations increase the peak intensity by a factor of 8 for 0.5-
deg axicon and f = 100 mm lens for the of 20-mm diameter
input beam.

In this work the influence of the spherical aberration
is studied for a lens-axicon doublet where the focal length
is much smaller (f ~ 10mm), and the cone angle of a
Bessel beam corresponds to the most frequently used in
practice value (y = 1deg). Such a doublet is characterized
by a more compact size, which is of importance for possible
applications. The theoretical investigation is performed by



FIGURE 1: Ray diagram for the scheme composed of an axicon and
thick lens.

two methods: geometrical optics and diffraction integral.
The combination of two methods offers a more clear insight
into details of the longitudinal and transverse structure of
the field after the lens. Particular emphasis is placed on the
description of the transformation of field configurations and,
in particular, on the transformation of the bottle beam and
z-dependent Bessel beam.

2. Description of the Scheme Using
the Ray Tracing Method

The ray path in the axicon-thick lens scheme is presented
in Figure 2. Geometrical constructions can be conveniently
performed using the following method. It is suitable to take
number 4 as a reference ray, which starts from the center of
the half-sphere and, consequently, does not undergo changes
in the direction of propagation while emerging from the
lens.

In essence, the direction of ray 4 is the analog of the
optical z-axis in the scheme without any axicon. That is why
pairs of rays equally spaced from ray 4 will intersect this ray 4
at the same point. These are the pairs of rays (3—5; 2—6; 1-7)
as exemplified in Figure 1. At that the intersection point of
the mentioned pairs of rays will shift toward the lens due to
the known spherical aberration effect, which is just presented
in Figure 1. In the scheme the spherical aberration will lead
to the spreading of the focal ring in comparison with the case
where a thin lens is used. One of two ellipse-shaped sections
of this ring by the figure plane is presented in Figure 1.

The annular field may be regarded as an optical source
generating a divergent light beam. The direction of ray 3
in this beam is characterized by the fact that the energy
propagates behind the lens in parallel to the z-axis. All rays
between 1 and 3 are seen to intersect z-axis to form a conical
beam of rays in the space. The cone angle therewith decreases
with increasing z. Ray 1 is the last one as it issues out of the
center of the axicon. It should be noted that depending on
the relationship between the cone angle of axicon, distance
z1, and diameter of lens 2R, this ray may undergo the total
internal reflection and then the marginal ray will issue out
of the point located outside the optical z-axis. This ray 1
determines the far boundary zp,y of the dark area in the
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FIGURE 2: Two parameters of the output light ray from area I, that
is, the distance z,, at which it intersects the optical axis (a) and
inclination angle y5 (b) depending on the radial coordinate r of the
ray in the axicon plane.

vicinity of the z-axis. Its near boundary is determined by
ray 6. It is characterized by the fact that all rays being lower
than ray 6 intersect the optical axis closer to the lens, that
is, at a smaller distance z. The presence of this optical effect
follows from the mathematical calculation of the ray path in
the scheme. As a result of the calculation, we have obtained
two parameters of the output ray, namely, (i) the distance z;
between the lens and point of intersecting of the optical axis
by the ray and (ii) the angle yg of crossing of the z-axis by
the ray. Final equations for z, and y3 slightly differ for three
types of rays.

(I) The ray enters the lens and emerges from it above the
optical z-axis (see Figure 1).

(II) The ray enters the lens and emerges from it below the
optical z-axis.

(IIT) The ray enters below the optical z-axis and leaves
above this axis.
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In case I we have

— h2
27 () Lok )
Y8 = (Your — Y0)- (2)

Here h, = cosz(yz)(clhl-kcz\/h% — [h} = R2tg2(y2)]/cos(y2))
is the radial coordinate of the ray emerging from the lens,
hy = zitg(y1) — r is the radial coordinate of the ray at the
input of the lens, and r is the radial coordinate of the ray in
the plane of the axicon; the incidence and refraction angles
are equal to y;, where sin(y;) = nsin(y,); n is the refraction
index; yin = (yo — ¥2) is the incidence angle between the ray
and spherical surface; you = sin!(nsin(yi,)) is the angle
of the output ray with the sphere surface; yo = tg~!(hy/L),

L =+R?—h3,c;5 = L. For case II the presented formulas
are modified in accordance with the substitutions: ¢; = 1, ¢
=-1, hy = r—=zitg(y1), yin = (yo + y2). In case III the
substitutions are as follows: ¢; = =1, ¢, =1, hy = r —z1tg(y1),
Yin = (y2 = 0)> ¥B = (Yout + y0).

Note that light rays belonging to the area I always
intersect the optical axis, and rays from area III never
intersect the axis. The angle yp for them in the presented
formulas will be positive. The rays from area II may or may
not intersect the axis z. Here if there is the intersection of the
axis, the angle yp is positive, otherwise it is negative.

Let us perform the numerical calculation for a specific
case, which corresponds to the experiment. Let R = 7.5 mm,
y1 = ldeg, z; =4 cm. At n = 1.868 we receive y, = 0.53 deg.
For small cone angles the formula h, ~ cih; + c;Rtg(y2)
is valid with a high degree of accuracy. Let us calculate the
parameters of beams typical for this case. Ray 1 (see Figure 1)
issues out of the axicon center and determines the lower
boundary (in values of the radius ) of area I. Its parameters
at the output (see (1) and (2)) in this case are z, = 10.6 mm,
yp ~ 2 deg. Consequently, the far boundary of the dark area
i Zmax = 10.6 mm. Ray 3 is also situated in area 1. Its upper
boundary 7| max is found from the equation hy (71 max) = 0
and corresponds to ray 4 in Figure 1. From the above formula
we find 71 max = z1£g(y1) and the numerical value 7)o =
0.7 mm. The plots in Figure 2 show the distance z,(r) and
angle yp(r) for area I in relation to the radial coordinate r.

Figure 2 shows that the beam issuing the center of the
axicon on passing through the optical scheme intersects
the optical axis under a maximal angle of approximately 4
degrees. This ray, as is mentioned above, determines the far
boundary of the dark area. As the radius r increases, the
inclination angle of output rays decreases and the distance
where they intersect the axis becomes larger. At 7 = 0.62 mm
the angle yp is equal to zero and the distance is z, — oc.
These parameters determine ray 3 in Figure 1. On further
increasing r, the output beams have the off-axis direction.
Note that beam 3 is placed at the distance h,; = 0.15mm
from the optical axis and its intersection with ray 4 analogues
to the optical axis (see above) is achieved at the distance
234 = ha3tg~ 1 (y2) — R which is equal to 8.9 mm.

It should be noted that this distance is equal to the
paraxial focus. Figure 1 shows that the coordinates (h3,234)

determine approximately the position of the annular field
behind the lens. As is seen, the diameter of the dark area is
very small. It is also worth noticing that when comparing
Figures 2(a) and 2(b), it follows that in area I the angle yz
decreases with increasing the distance z, or the derivative
dy,/dz, < 0. Such a behavior of light beams will be
characterized by the term “negative angular dispersion.”

Now let us consider area II in more detail. Its lower
boundary in value of the radial coordinate r is determined
by the formula mmin = zi1tg(y1) + Rtg(y2). This formula
has been obtained using h,(r) = 0 in the small angle y,
approximation. The calculation according to this equation
gives romin = 0.7 7mm. The upper boundary r;max here is
determined either by the radius of a beam incident on the
axicon or by the effect of the total internal reflection. The
second limitation provides the equation for determining the
radius yout(r) = 71/2 from which we find 72 max = 5.25 mm.
This value is lower than the radius of the input beam.
Therefore in the particular case under study the limitation
of area II occurs due to the total internal reflection on the
spherical surface.

In Figure 3 the angular and spatial coordinate of the rays
from area II at the point of crossing by them of the optical
z-axis are plotted.

As is seen in Figure 3(a) the spatial coordinate is non-
monotonously dependent on r. For paraxial beams (small
values of r) the angle dispersion of rays is positive, that is, the
angle yp increases when the increasing z, becomes larger. The
maximum value of z, is equal approximately to 7.3 mm and
is realized at r = 2 mm. On further increasing r the negative
angle dispersion of rays takes place up to the critical angle of
the total internal reflection. The curve in Figure 3(a) shows a
rather wide flat area of about 2 mm in length. Here the angle
dispersion is large and the derivative dz,/dr is small, which
is indicative of a high concentration along the optical axis of
rays with various values of the angle yg. This has to lead to an
increase in the axial intensity of radiation in the mentioned
area. On the whole two-valuedness of the function z(r)
means that each point of the optical axis here is intersected
by two cones of rays. At the point of the maximum of the
curve z,(r) two cones merge into one cone and ray 6 passes
through this point in Figure 1. This allows one to estimate
also a minimal coordinate z; i, Of the dark area (Figure 1).
The calculation for the presented above parameters of the
scheme gives z; min = 7.3 mm. Thus, the bottle beam formed
behind the lens is localized within an interval of (7.3 + 10.6)
mm.

3. Field Calculation with Application of
the Diffractional Integral

As it is seen from the previous section, the method for ray
optics allows one to obtain a number of simple and visual
results, concerning the structure of the field, formed by the
axicon-thick lens system. If there is a necessity of studying
the field structure in more detail, diffractional integrals
should be used. For all, in analogy to the previously given
facts, the basic field characteristics could be withdrawn from
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FIGURE 3: Parameters of the light ray belongs area II, that is, the distance z, at which it intersects the optical axis (a) and inclination angle y;

(b) versus the radial coordinate of the ray in the plane of axicon.
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the analysis of the diffractional integral in the scalar form.
The advantage of this approach in comparison with the
application of vector diffraction theory consists in simplicity
and visuality of the obtained results. At this, however,
a preliminary analysis of the borders of application of
scalar diffraction theory for the description of the scheme
in Figure 1 is necessary. As it is known, paraxial optics
approximation has an accuracy not high enough, when the
radiation is propagated under the large angle to the optical
axis. Then it follows from Figures 2 and 3 that z-range where
the paraxial approximation is valid is large enough, namely,
angle yp transcends the paraxial approximation only near the
lens, thatis, at z < 1 cm.

The second approximation concerns the kind of the
function of lens transmission. In the given paper it will be
expressed as follows: 7,(r) = t(r)exp[ko(n — 1)v/R? — 2],
where t(r) is Fresnel transmission coefficient on the interface
spherical surface-air. The phase function, included in this
equation, considers spherical aberrations of all orders. An
effective aperture radius 7iens can be calculated from the
geometrical optics equations (1) and (2). From the definition
of angle v, it follows, that for the marginal beam sin(y,) =
Nens/R. Taking into consideration the fact that radii rjens and

R are of the same order (see Figure 4), we have the inequality
y2 < yo. Then the condition of total internal reflection will
have the form sin(yy) = 1/#, from which the equation jens =
R/n follows. In this particular case we have rjens & 4 mm. At
that, the thickness of lens is hjens ~ 1.2 mm. As we can see, the
effective lens is thin enough and its description with phase
transmittance function is reasonable. The remaining part
of the thick lens can be changed with usual plane-parallel
plate (see Figure4). As a result the diffraction equation,
considering light propagation from input of the axicon up
to input of the effective lens, will be the following:

ik J . ) r2+r?
a(r) = 7@ + Ln ao(r) exp( ikoyr: + zlcoiz(z1 In

koT?‘]
*Jo <z1 + L/n)rldrl’

3)

where ay(r) is amplitude of the field, incident on the axicon,
Jo(x) is Bessel function of the first type of zero order.

To calculate the field behind the lens, amplitude (3) has
been multiplied by the given above function of the lens
transmission, and further it has been calculated with the
diffractional integral in free space.

3.1. Intensity Distribution along the Optical Axis. The result
of calculation the intensity distribution along the optical axis
is given in Figure 5. As it follows from the comparison of
numerical values of intensity in maxima in the Figures 5(a)
and 5(b), near the point z = 12.86 mm a strong light energy
concentration takes place. When moving away from the given
point towards the lens the intensity decreases sharply to the
value close to zero.

At the same time when approaching the lens the intensity
decreases slower. As the result, the longitudinal axial maxi-
mum size is ~0.2 mm. Intensity has not been calculated on
closer distance to the lens owing to the supposed loss of the
calculation accuracy in nonparaxial region. The maximum
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F1Gure 5: Dependence on-axis light intensity behind the thick lens in the scheme in Figure 1 when the distance between the axicon and the

lens is 4 cm.

described above obviously corresponds to the described in
the Section 1 case, when the derivative dz,/dr is equal or
close to zero (see Figure 3(a)).

When moving away from the lens, as it is seen from
the Figure 5(a), a dark area is clearly seen. Its near and far
borders are equal to Zyin ~ 7.78 mm, Zmax = 10.6 mm, and it
corresponds well to the given above estimation, made on the
basis of ray optics. The dark area ends with wider and less
intensive maximum (Figure 5(a)), after which the intensity
decreases steadily with the increase of the distance z.

3.2. Transverse Intensity Distribution along the Optical Axis.
Transverse intensity distribution on various distances from
the lens has been also calculated. The aim was to reveal
tendencies in intensity behavior, and, in particular, to reveal
here the opportunities of Bessel-type beams formation.
Generally, the transversal structure of the field has been
classified by us on four types. The first field type is given in
Figure 6. It is realized near the basic maximum of the axial
intensity, shown in Figure 5(b).

Distance z for the curve in Figure 6(a) strictly cor-
responds to the given above intensity maximum. As we
can see, here there is an ordered ring structure with little
number of rings. The reason for a small transverse size
of the beam (radius is ~10ym) can be understood from
the fact that in the given area the interference of large
number of conical beams with different cone angles takes
place (see Figure 3 and its discussion in Section 1). At that
near the axis the constructive interference prevails, which
leads to the formation of intensive maximum. The plot
in Figure 6(b) has been drawn for the point of the first
interference minimum, shown in Figure 5(b). Here the field
structure is more random and it expresses some contrast
to the ordered structure in the previous figure. The plots
in Figures 6(c) and 6(d) illustrate transition to the bottle
beam. They are characterized by the destructive interference

domination in the near-axis region and the tendency for
formation of ordered multi-ring field in the periphery.

Figure 7(a) presents an example of the developed periph-
eral field in the initial area of bottle beam existence.
Regular multi-ring structure of the intensity distribution
with modulation depth equaling to 1 points out, probably,
the existence of the analytical description of such a structure.
With the growth of z the width of the dark area grows
(compare with Figure 1), but generally the deformation of
ordered structure starts and this structure has the tendency
to become a single-ring field. The intermediate state of the
field is shown in Figure 7(b). Here, the width of bottle beam
is large (about 150 ym), the intensity modulation depth
decreases, and nonoscillating component appears.

Figure 8 shows the developed single-ring field being
a periphery of bottle beam. With the growth of z and
approaching the far border of bottle beam single-ring field
is compressed to the optical axis, forming the area with very
strong intensity radial gradient (Figure 8(b)). The absence
of oscillation specifies the fact that given field has a conical
nature with narrow angular spectrum. Such a field is typical
for a Bessel beam focusing with the thin lens [12]. It is proved
in Figure 2, where it is shown that in given distances the
conical field is a paraxial one, and the cone angle decreases
with the growth of z.

During the process of compression, single-ring field
reaches the optical axis, two conical beams appear as a result:
the first one converging to the axis, the second one diverging
from it. At this a constructive interference and the intensity
maximum formation take place directly on the axis. The
first stage of overlapping of the stated two beams is given
in Figure 9(a). Generally, only axial interference maximum
is formed here. With the growth of z the area of overlap,
accordingly, grows, and this leads to the increase of Bessel-
type beam diameter (Figures 9(b), 9(c) and 9(d)). However,
owing to the decrease of a cone angle of two conical beams
with the growth of z, the cone angle of a Bessel-type beam
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decreases, and ring diameters grow according to the distance.
This fact leads to a nonlinear dependence between the total
number of beam rings and its diameter.

3.3. Calculation of the Far Field. The similarity of the trans-
verse structure of the formed field to the Bessel beam is of
great importance. According to the calculations given above,
with the distance growth it is possible to expect the formed
field approaching zero-order Bessel beam. In Figure 10(a)
an example of a normalized intensity distribution I(r) at a
distance of 1 m from the lens is shown. The comparison of
function I(r) with the standard Bessel functions of the kind
J¢ (koysr) has been conducted. Angle yg is calculated with
formula (2). For example, at z = 0.3 m it equals to 5.2 - 1074,
rad, and at z = 20.5 m the angle y5 equals to 3.1-107* rad. In
Figure 10(b) the differential function A(r) = I(r) —J§ (koysr)
for the case z = 0.3 m is shown. As we can see, the value of
the given function does not exceed the value 1%, and this fact
indicates a high degree of intensity distribution similarity to
Bessel one. With the growth of z the approximation accuracy
becomes stronger.

Except the investigation of intensity function I(r), the
spatial spectrum of the field behind the thick lens has been
found. A standard scheme of Fourier lens transformation
with long-focused lens has been calculated for this. The
obtained Fourier-spectrum intensity distribution in analogy
with the given in Figure 10 one is described by Bessel
function with high accuracy. It shows particularly the fact
that in a distance z = 0.3 m a far field of radiation generated
by the system axicon-thick lens is realized. However, a much
more important result consists in the fact that the given
scheme forms a so-called z-dependent Bessel beam in far
field [20]. Such a beam is characterized by its local transverse
intensity distribution being Bessel one, but the cone angle of
the beam decreases monotonously inversely to the distance
z. Fourier-spectrum of z-dependent Bessel beam is not a
ring one, as it is for a standard Bessel beam, but Bessel one

Ax L L,
A z

FiGURE 11: Experimental setup for production of quasi-Bessel light
beam: Ax-axicon; L, ,—half-ball lenses.

as well. Such a spectrum behavior makes the z-dependent
Bessel beam similar to the beams of Gaussian type.

4. Experimental Setup and Results

The scheme of experimental setup is shown in Figure 11.
A Gaussian beam from a He-Ne laser (A = 0.63um) is
expanded by the collimator 2 up to diameter of 2 cm. Linear
axicon Ax has the apex angle « = 186 deg. The thick plane-
convex lens L;, having the form of half-ball with curvature
radius 7.5mm and refractive index n 1.87, is placed
behind the axicon in the area of the existence of conical and
Bessel beams. To register the fine structure of the field that is
localized in proximity to the lens, use was made of a simple
scheme of magnification with the help of a short-focus lens
2 that is identical to lens 1. In the process of measuring,
lens 2 moved along the optical axis whereas the CCD-matrix
occupied a fixed position. The distance between the axicon
and lens was also unchanged and equal to 4 cm.

The maximal displacement of lens 2 in the measuring
process amounted to 2 cm, and the average distance z was
equal to 121 cm. Because of a great value of z, the image
formation was brought about by means of the near-axial
region of lens 2; therefore, aberration-induced distortions
were negligible. The average magnification was about 130
and changed insignificantly at small shifts of lens 2.

The basic results of measurements are shown in Figures
12 and 13. Figures 12(al)-12(a3), 12(b1)-12(b3) illustrate
the situation appropriate to Figure 3(a) where there takes
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(a) (b)

F1GURE 13: Bessel-like transverse structure of a field at the distance
of z=5.45cm (a) and 5.75 cm (b).

place the composition of two conical beams with dif-
ferent cone angles. To be more pictorial, in right-hand
Figure 12(al) the centers of the beams are shifted relative to
each other. This is achieved by shifting the axicon relative to
the optical axis. In so doing the Figure 12(al) corresponds
to the case where on the beam axis there takes place the
intensity minimum, that is, the destructive interference. And
this situation was repeated at a very small period along the
z-axis. Note that these oscillations of intensity on the beam
axis may also be regarded as some version of self-imaging of
optical mini-bottle beam (see also [13, 21, 22]).

Figure 12(a3) corresponds to the position of the reg-
istration plane in the region of the intensity maximum
preceding the bottle beam (see Figure 6). Here, as noted
above, a multibeam interference is realized, because the
angular dispersion of rays is close to zero. Figures 12(a3)—
12(a7) show the dynamics of sweeping the bottle beam. Here,
on the whole, there is a good agreement with the calculation,
except that the periphery zone of the bottle beam is a less
extensive one. This seems to be related to neglect of the real
structure of the axicon in the vicinity of its vertex where
there is the roundness (see [9, 23]). Figure 12(a8) refers to
the bottom of this bottle beam.

The subsequent change of the field is related to the
changeover to beams of Bessel type. Examples of such a beam
are given in Figure 13. Here with distance from first lens, the
period of intensity oscillations decreases and such a tendency
persists up to the far zone [20].

5. Conclusion

A study is made of the structure of the light field which is
formed by an axicon with a small cone angle and lens with a
strong spherical aberration. Basic emphasis is layered on the
analysis of the near field after the lens. The calculation of this
field is carried out by the methods of geometrical optics and
diffraction integral. The results of the calculation as well as
experimental measurements have shown that one can single
out a few types of the field structure, which are qualitatively
different. The first structure is characterized, first of all,
by the intensive axial maximum arising as a result of the
constructive interference of a great number of conic waves
under condition of a small angular dispersion. Also, there is
a zone of interference of two conical beams, which forms a
characteristic interference pattern with intensity beats. After
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the mentioned maximum, the bottle beam is formed, the
periphery region of which is at first an oscillating one and is
practically transformed into one broad ring. At the last state
the bottle beam is transformed into the Bessel-type field, its
cone angle decreasing with distance up to zero value. This
field is of interest by itself and its study in detail is planned to
perform later on.

The presence of the spherical aberration also tells on that
the near field decreases in size, which would be of practical
interest as well. These sizes may be controllable on account of
using the spatial degree of freedom of the scheme—distance
between the axicon and lens. An additional feasibility of
controlling the structure is realized, while changing the
values of spherical aberration via changing the diameter of
an incident beam as well as the modulation of the refraction
index of the lens.
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