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Two-dimensional arrays of particles are of great interest because of their very characteristic optical properties and numerous
potential applications. Although a variety of theoretical approaches are available for the description of their properties, methods
that are accurate and convenient for computational procedures are always sought. In this work, a new technique to study the
diffraction of a monochromatic electromagnetic field by a two-dimensional lattice of spheres is presented. The method, based on
Fourier series, can take into account an arbitrary number of terms in the multipole expansion of the field scattered by each sphere.
This method has the advantage of leading to simple formulas that can be readily programmed and used as a powerful tool for
nanostructure characterization.

1. Introduction

The selective absorption in the visible spectral region
observed in granular noble-metal films or nanoparticles has
been the subject of numerous investigations in the past
[1]. This phenomenon is attributed to plasma resonance in
the particles forming the granular films, distinguishing the
particle optical properties from the bulk optical properties
of the metal itself. Early applications of these granular films
included solar absorbers [2] and selective optical filters [3].
With recent advances in particle synthesis and the capacity to
form periodic nanoparticle arrays by various methods, the
promise of application of these nanoparticles has increased
manyfold, covering areas of sensing, optical, electrooptical,
as well as solar cells and medical diagnostics [4].

To characterize the two-dimensional distribution of
nanoparticles on a substrate, it was frequent to use an
effective-medium theory that approximated the granular
films to an effective film having an effective optical thickness
and effective optical properties [5–7]. The particles were
considered very small compared to the light wavelength so
that the dipole approximation could be used. This approach
has served well the characterization of films in many studies,
giving a good correlation between theory and experiments

[7, 8]. When particles get slightly larger, the dipole approx-
imation may no longer hold and retardation effects have
to be taken into account, especially when nanoparticle-
substrate interaction is also considered [9]. A few attempts
at a comprehensive treatment are faced with conceptual diffi-
culties and prohibitive computing times [10]. Other methods
for modeling the optical properties of nanoparticle arrays
include the discrete dipole approximation (DDA) [11], the T-
matrix method [12], and the finite-difference time-domain
(FDTD) method [13]. Each method has its own advantages
and shortcomings but generally they required elaborate
numerical computational procedures. Among other things,
our method, based on Fourier series, can take into account
an arbitrary number of terms in the multipole expansion of
the field scattered by each spherical nanoparticle. It has the
advantage of leading to simple formulas that can be readily
programmed and used as a powerful tool for nanostructure
characterization.

In a previous work, we introduced a new way to solve the
problem of particle arrays consistently and efficiently, when
only the electric dipole radiation of the particles was consid-
ered [14, 15]. The theoretical treatment of the scattered field
was based on a variant of the electromagnetic Green function
method for a two-dimensional lattice of spheres. We will
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now show how this approach can be extended to take into
account an arbitrary number of multipole terms. The present
paper will deal with the principles of the method and general
formulas, whenever possible, will be developed. In a separate
recent publication, examples of numerical calculations have
been given, showing interesting features both for dielectric
nanoparticle arrays as well as metallic nanoparticle arrays,
together with comparison with some experimental data [16].

In the following, we will make use of the basis of vector
harmonics [17, 18]:
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are the commonly known vector harmonics [19]. The more
important properties of the Xs

lm(θ,φ)’s are listed in the
appendix of [18]. We will also use the related vector-valued
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Calculations can be made in Cartesian coordinates, since the
quantities rlYlm(θ,φ) appearing in (4) are polynomials in x,
y, and z.

2. Outline of the Method

The problem at hand is the diffraction of a monochromatic
electromagnetic field of angular frequency ω and wave vector
k by a structure made of identical, nonoverlapping spheres

of radius ρ, whose centers xi = (xi, yi, 0) form a hexagonal
lattice in the xy-plane. Assuming for now that no substrate
is present, the traditional approach to this subject can be
summarized in the following four conceptual steps [20]
(we will use Gaussian units throughout this paper, and a
harmonic time dependence through a factor exp(−iωt) is
understood for all time dependent quantities).

Step 1. We will call Ei, Bi the field radiated by the sphere
centered at xi, and by E′i , B′i the total electromagnetic field
incident on that sphere, which is the superposition of the
incoming field Ein, Bin and of the fields scattered by all the
other spheres:
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Because of the symmetry of the problem, all the Ei’s and Bi’s
are merely copies of each other, differing only by a phase
factor, and thus, assuming that x0 is the origin:
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where jl(r) are the spherical Bessel functions of the first kind,
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where h(1)
l (r) are the first Hankel functions [19]. The

multipole coefficients a′T(l,m), aT(l,m) (with T = E for
electric or M for magnetic) in (9) and (10) must be related
by Mie’s formulas:

aE(l,m) = αE(l)a′E(l,m),

aM(l,m) = αM(l)a′M(l,m),
(11)

where for a given value of k = |k|, the polarisabilities
αT(l) are known functions of the common size and dielectric
constant of the spheres [21].

Step 3. In view of (8), it should be possible to use techniques
like addition theorems to express the a′T(l,m)’s in terms
of the aT(l,m)’s [17]. Therefore, if we call ain
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into a form the following:
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from which, theoretically, the aT(l,m)’s can be computed,
hence E0 and B0. In practice, however, one has to reduce
(12) to an equation involving only a finite number of
unknowns, which is equivalent to approximating E0, B0 by
a field with only a finite number of nonvanishing multipole
coefficients.

Step 4. Finally, we have for the scattered field the following:
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∑
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(13)

Again, addition theorems must be used to express the fields
in (13) in terms of the aT(l,m)’s.

There is a fundamental difficulty involved in the
approach just described: although the series in (13) or (8)
may very well converge, this seems to be no longer true
when the approximation at the end of the third step is made
[20]. Even though this problem can be dealt with by some
averaging process [20], the resulting calculations are not only
exceedingly complex, they are also far too inefficient to be

of practical use. There is thus a real need for improvements,
both in terms of consistency and efficiency, and we propose
here a new calculation technique addressing both concerns.

Our approach distinguishes itself from the traditional
scheme in two fashions: first, we will use Fourier series,
instead of (13), to express Esc and Bsc. Then, since we can
write

∑
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∑

i /= 0

Bi =
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Bi − B0, (14)

we will use, instead of (8), the equivalent “subtractive”
formula:

E′0 = Ein + Esc − E0, B′0 = Bin + Bsc − B0, (15)

where, again, Esc and Bsc are expressed in terms of Fourier
series. To avoid dealing with singularities in the operation,
the current densities of the multipoles, at this stage, are
replaced by narrow-shaped Gaussian distributions. For the
dipole approximation [14, 15], this method not only proved
to be fully consistent, it also led to accurate results hundreds
of times faster than with the usual procedure.

The calculation of the Fourier series of Esc and Bsc in
terms of the multipole coefficients aT(l,m) of the field E0, B0

is presented in Section 3, while in Section 4, we show how to
retrieve the multipole coefficients a′T(l,m) of E′0, B′0 from the
expressions for Esc, Bsc, and E0, B0. Some auxiliary results are
relegated to the Appendix.

3. Calculation of the Scattered Field

Let us call Ji the current density induced in the ith sphere
(i.e., the source of Ei, Bi): we will compute the scattered field
as the field radiated by the current density:
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Just as in (7), we must have the following:
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can be rewritten as
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where the integral extends to the “primitive cell” of area
S in the xy-plane (note that in (20) we could have used
J0 instead of J, because J(x) = J0(x) in the primitive cell
(to avoid unnecessarily technical arguments, we will assume
that spheres do not extend beyond their respective cell
boundaries).

Our task is to compute the scattered field in terms of
the multipole moments of J0. To achieve that, we first solve
Maxwell’s equations:

∇× Bsc(x) + ikEsc(x) = 4π
c
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we can write the retarded solution of (24) as
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The last step consists in expressing (29) in terms of the
multipole coefficients aT(l,m) of E0, B0. Any current density
with the aT(l,m)’s as multipole moments will, outside the
source, radiate the same field as E0, B0. Thus, if we are only
interested in the value of Esc, Bsc outside the layer of spheres,
we can use a point source with the same multipole moments
[18]:
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and, after some manipulations, to the following:
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where k+
g should be used for z > 0 and k−g for z < 0. Using

(5) and (32) can be more compactly rewritten as
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4. Subtraction Process

Using a point source, like we just did, is not suitable to
compute E′0, B′0 through formula (15): this gives formulas
for Esc, Bsc and E0, B0 that are both singular at the origin.
To avoid such singularities, we will use a variant of Ewald’s
method [22], and replace the δ-function in (30) by a suitably
normalized Gaussian distribution:
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When these coefficients are substituted in (29), the corre-
sponding formulas for Esc

g , Bsc
g are more complicated than

(33), because it is now necessary to use integrations by parts
to compute the scattered field and it is difficult to express the
results in a general manner.

We will now show how to compute the multipole coef-
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that is,
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where Γ(x) is the gamma function.
Assuming that σ is small enough, E′0, B′0 will assume the

general form for a free electromagnetic field [18]:
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=
∑

g

[(
H−1

lm

(
Dg

))∗ · Bsc
g (z)

]

z=0
.

(46)

The task is a bit more complicated for E0, B0. First, we
will use (5) to rewrite (35) as

J0(x) =
∞∑

l=1

c(−1)l+1

kl+1

×
l∑

m=−l

⎛

⎝aE(l,m)

√
2l + 1
l + 1

H−1
lm (∇)

+
1
k
aM(l,m)H0

lm(∇)

⎞

⎠Φ(x).

(47)

Using then the fact that [18]

Hs
lm(∇)Φ(x) = (−1)l+s

σ2(l+s)
Φ(x)Hs

lm(x) (48)

leads to

J0(x) =
∞∑

l=1

c

kl+1σ2l−2

×
l∑

m=−l

⎛

⎝aE(l,m)

√
2l + 1
l + 1

H−1
lm (x)

− aM(l,m)
kσ2

H0
lm(x)

⎞

⎠Φ(x).

(49)

If we now develop E0, B0 and J0 in vector harmonics:

E0(x) =
∑

l,m,s

Es
lm(r)Xs

lm

(
θ,φ

)
,

B0(x) =
∑

l,m,s

Bs
lm(x)Xs

lm

(
θ,φ

)
,

J0(x) =
∑

l,m,s

J slm(r)Xs
lm

(
θ,ϕ

)
,

(50)

we will have

J−1
lm (r) = a0

E(l,m)c

(2π)3/2σ2l+1kl+1

√
2l + 1
l + 1

rl−1 exp

(
k2σ2

2
− r2

2σ2

)

,

J0
lm(r) = − a0

M(l,m)c

(2π)3/2σ2l+3kl+2
rl exp

(
k2σ2

2
− r2

2σ2

)

,

J1
lm(r) = 0.

(51)
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According to formulas (A.3) and (A.6) of the Appendix,

E−1
lm (r)

= −4πk2

c

l + 1
2l + 1

×
(
hl−1(kr)

∫ r

0
jl−1(kr′)J−1

lm (r′)r′2dr′

− jl−1(kr)
∫ r

0
hl−1(kr′)J−1

lm (r′)r′2dr′

+ jl−1(kr)
∫∞

0
hl−1(kr′)J−1

lm (r′)r′2dr′
)

− 4πi
kc

l

2l + 1
J−1
lm (r),

B−1
lm (r)

= −4πk2

c

√
l + 1

2l + 1

×
(
hl−1(kr)

∫ r

0
jl(kr′)J0

lm(r′)r′2dr′

− jl−1(kr)
∫ r

0
hl(kr′)J0

lm(r′)r′2dr′

+ jl−1(kr)
∫∞

0
hl(kr′)J0

lm(r′)r′2dr′
)
.

(52)

Since J−1
lm (r) = O(rl−1) and J0

lm(r) = O(rl)(we say that
f (x) = O(xn) if the limit limx→ 0( f (x)/xn) exists), (52) takes
the following form:

E−1
lm (r)

= −4πk2

c

l + 1
2l + 1

jl−1(kr)

×
∫∞

0
hl−1(kr′)J−1

lm (r′)r′2dr′

− 4πi
kc

l

2l + 1
J−1
lm (r) + O

(
rl+1

)
,

B−1
lm (r)

= −4πk2

c

√
l + 1

2l + 1
jl−1(kr)

×
∫∞

0
hl(kr′)J0

lm(r′)r′2dr′ + O
(
rl+1

)
,

(53)

so that, according to (41),

[(
H−1

lm (∇)
)∗ · E0(x)

]

x=0

= − aE(l,m)

(2π)3/2σ2l+1

√
l + 1

2l + 1
exp

(
k2σ2

2

)

×
[∫∞

0
hl−1(kr) exp

(

− r2

2σ2

)

rl+1dr

+
l

l + 1
2lΓ(l + 1/2)

π1/2

i

kl+2

]

,

[(
H−1

lm (∇)
)∗ · B0(x)

]

x=0

= aM(l,m)

(2π)3/2σ2l+3k

√
l + 1

2l + 1
exp

(
k2σ2

2

)

×
∫∞

0
hl(kr) exp

(

− r2

2σ2

)

rl+2dr.

(54)

Combining (44)–(46) and (54) gives the final result:

a′E(l,m)

= − 4π
kl−1

√
2l + 1
l + 1

×
⎧
⎨

⎩

(
H−1

lm (ik)
)∗· Ein(0)+

∑

g

[(
H−1

lm

(
Dg

))∗· Esc
g (z)

]

z=0

⎫
⎬

⎭

−
√

2
π

aE(l,m)

(kσ)2l+1 exp

(
k2σ2

2

)(
Il−1(kσ)+i

l
(l + 1)

(2l − 1)!!
)

,

a′M(l,m)

= 4π
kl−1

√
2l + 1
l + 1

×
⎧
⎨

⎩

(
H−1

lm (ik)
)∗· Bin(0)+

∑

g

[(
H−1

lm (Dg)
)∗· Bsc

g (z)
]

z=0

⎫
⎬

⎭

−
√

2
π

aM(l,m)

(kσ)2l+3 exp

(
k2σ2

2

)

Il(kσ),

(55)

where

(2l − 1)!! = 1 · 3 · 5 · 7 · · · (2l − 1),

Il(α) =
∫∞

0
hl(z) exp

(

− z2

2α2

)

zl+2dz
(56)

Il(α) can easily be computed using the recursion formula:

Il(α) = α2
(

lim
z→ 0

zl+1hl(z) + Il−1

)
= α2(Il−1 − i(2l − 1)!!),

(57)
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which can be deduced from an integration by parts, and
using the fact that, for l = 0,

I0(α)

=
∫∞

0

exp(iz)
iz

exp

(

− z2

2α2

)

z2dz

= α3 exp

(

−α2

2

)[√
π

2
+ i
∫ α

0
exp

(
t2

2

)

dt

]

− iα2.

(58)

5. Numerical Applications

In the following, we will show a few examples of calculations
for illustration purpose. In particular, we would like to
compare calculations based uniquely on the electric dipole
terms and those obtained by including multipolar terms for
better accuracy. The spherical particles are distributed in
a two-dimensional hexagonal array as described previously
and the metal composing the particles is gold. As particle
deposits are usually done on glass, the optical refractive index
supposed in the wavelength range considered (from 400 nm
to 800 nm) is 1.5. The optical constants for gold have been
determined by ellipsometric studies using thin films of this
metal (we acknowledge with thanks Professor Georges Bader
of Université de Moncton for kindly providing us with the
gold optical constants).

From the calculations performed with small particles,
such as those with a diameter smaller than 50 nm, it is
observed that the dipolar approximation with retardation
effects is quite similar to more accurate calculations using
higher multipolar terms. Figure 1 shows the reflectance for a
two-dimensional array of 50 nm diameter spherical particles
on glass with an interparticle distance of 60 nm. The dipolar
approximation and the multipolar calculations both have a
reflectance peaking at 570 nm with only a slight variation in
amplitude in the wavelength range considered. Variations in
the interparticle distance will not alter this conclusion.

For larger particles, the difference between the dipolar
and multipolar calculations becomes considerable. Figure 3
shows the case of 200 nm particles separated by a distance
of 400 nm. The dipolar calculations gave a reflectance that
peaks near 540 nm, whereas the reflectance given by the
multipolar calculations exhibits a maximum near 570 nm.
A broadening of the dipolar reflectance spectra is equally
observed when multipolar terms are included. Putting the
particles at a closer distance, that is, 300 nm instead of
400 nm, will accentuate the interactions between the particles
and the difference between the dipolar and multipolar
calculations for the reflectance (Figure 3). Compared to
results in Figure 2, the curves in this latter figure show a
further broadening accompanied by a red shift in the peak
wavelength.
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Figure 1: Reflectance of a two-dimensional array of 50 nm gold
nanoparticles deposited on glass separated by an interparticle
distance of 60 nm. Solid line: dipolar approximation, dotted line:
multipolar calculations.
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Figure 2: Reflectance of a two-dimensional array of 200 nm gold
nanoparticles deposited on glass separated by an inter-particle
distance of 400 nm. Solid line: dipolar approximation, dotted line:
multipolar calculations.

It should be noted that calculations done for other metals
such as silver and copper will give similar qualitative features.

6. Conclusion

The formulas we have obtained are relatively simple, consid-
ering the complexity of the problem encountered. When the
spheres are suspended in vacuo, all that remains to do, to
completely solve the problem, is to calculate explicitly the
Fourier coefficients of the scattered field. This task might
be a little tedious, but the results will involve nothing more
elaborate than the complementary error function. From a
numerical perspective, this means that in terms of special
functions, the only procedures needed are those involving
the computation of the erfc(x) function and the Dawson’s
integral which appears in (58).
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Figure 3: Reflectance of a two-dimensional array of 200 nm gold
nanoparticles deposited on glass separated by an inter-particle
distance of 300 nm. Solid line: dipolar approximation, dotted line:
multipolar calculations.

As for the case where a substrate has to be taken into
account, a technique analogous to the one introduced in [15]
can be used.

Appendix

A. Multipole Expansion of Retarded Fields
inside the Source

When solving Maxwell’s equations, the electrical field E,
magnetic induction B, current density J, and vector potential
A can all be expended using the vector harmonics Xs

lm(θ,φ):

E(x) =
∑

l,m,s

Es
lm(r)Xs

lm

(
θ,φ

)
,

B(x) =
∑

l,m,s

Bs
lm(r)Xs

lm

(
θ,φ

)
,

J(x) =
∑

l,m,s

J slm(r)Xs
lm

(
θ,ϕ

)
,

A(x) =
∑

l,m,s

As
lm(r)Xs

lm

(
θ,φ

)
.

(A.1)

Substituting (A.1) into (22) gives first, for the retarded field
the following:

As
lm(r) = 4πki

c

×
(
hl+s(kr)

∫ r

0
jl+s(kr′)J slm(r′)r′2dr′

+ jl+s(kr)
∫∞

r
hl+s(kr′)J slm(r′)r′2dr′

)
,

(A.2)

and when (A.2) is itself substituted into (25), the final result
is

B−1
lm (r) = − 4πk2

c

√
l + 1

2l + 1

×
(
hl−1(kr)

∫ r

0
jl(kr′)J0

lm(r′)r′2dr′

+ jl−1(kr)
∫∞

r
hl(kr′)J0

lm(r′)r′2dr′
)

,

(A.3)

B0
lm(r) = 4πk2

c

√
l + 1

2l + 1

×
(
hl(kr)

∫ r

0
jl−1(kr′)J−1

lm (r′)r′2dr′

+ jl(kr)
∫∞

r
hl−1(kr′)J−1

lm (r′)r′2dr′
)

− 4πk2

c

√
l

2l + 1

×
(
hl(kr)

∫ r

0
jl+1(kr′)J1

lm(r′)r′2dr′

+ jl(kr)
∫∞

r
hl+1(kr′)J1

lm(r′)r′2dr′
)

,

(A.4)

B1
lm(r) = 4πk2

c

√
l

2l + 1

×
(
hl+1(kr)

∫ r

0
jl(kr′)J0

lm(r′)r′2dr′

+ jl+1(kr)
∫∞

r
hl(kr′)J0

lm(r′)r′2dr′
)

,

(A.5)

E−1
lm (r) = − 4πk2

c

l + 1
2l + 1

×
(
hl−1(kr)

∫ r

0
jl−1(kr′)J−1

lm (r′)r′2dr′

+ jl−1(kr)
∫∞

r
hl−1(kr′)J−1

lm (r′)r′2dr′
)

+
4πk2

c

√
l(l + 1)
2l + 1

×
(
hl−1(kr)

∫ r

0
jl+1(kr′)J1

lm(r′)r′2dr′

+ jl−1(kr)
∫∞

r
hl+1(kr′)J1

lm(r′)r′2dr′
)

− 4πi
kc

l

2l + 1
J−1
lm (r) +

4πi
kc

√
l(l + 1)
2l + 1

J1
lm(r),

(A.6)
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E0
lm(r) = − 4πk2

c

×
(
hl(kr)

∫ r

0
jl(kr′)J0

lm(r′)r′2dr′

+ jl(kr)
∫∞

r
hl(kr′)J0

lm(r′)r′2dr′
)

,

(A.7)

E1
lm(r) = 4πk2

c

√
l(l + 1)
2l + 1

×
(
hl+1(kr)

∫ r

0
jl−1(kr′)J−1

lm (r′)r′2dr′

+ jl+1(kr)
∫∞

r
hl−1(kr′)J−1

lm (r′)r′2dr′
)

− 4πk2

c

l

2l + 1

×
(
khl+1(kr)

∫ r

0
jl+1(kr′)J1

lm(r′)r′2dr′

+ k jl+1(kr)
∫∞

r
hl+1(kr′)J1

lm(r′)r′2dr′
)

+
4πi
kc

√
l(l + 1)
2l + 1

J−1
lm (r)− 4πi

kc

l + 1
2l + 1

J1
lm(r).

(A.8)
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