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Based on the vectorial Rayleigh-Sommerfeld diffraction integral formulae, analytical expressions for a vectorial elliptical Gaussian
beam’s nonparaxial propagating in free space are derived and used to investigate target beam’s propagation properties. As a
special case of nonparaxial propagation, the target beam’s paraxial propagation has also been examined. The relationship of
vectorial elliptical Gaussian beam’s intensity distribution and nonparaxial effect with elliptic coefficient 𝛼 and waist width related
parameter 𝑓

𝜔
has been analyzed. Results show that no matter what value of elliptic coefficient 𝛼 is, when parameter 𝑓

𝜔
is large,

nonparaxial conclusions of elliptical Gaussian beam should be adopted; while parameter 𝑓
𝜔
is small, the paraxial approximation of

elliptical Gaussian beam is effective. In addition, the peak intensity value of elliptical Gaussian beam decreases with increasing the
propagation distance whether parameter 𝑓

𝜔
is large or small, and the larger the elliptic coefficient 𝛼 is, the faster the peak intensity

value decreases. These characteristics of vectorial elliptical Gaussian beam might find applications in modern optics.

1. Introduction

With the development of laser technology, research on semi-
conductor lasers [1], microoptical technologies [2–4], and
highly focusing field [5–7] has become deeper. In practical
application, the problem that would be confronted is of a
beam with large divergence angle or small spot size that is
of the order of light wavelength. In this case, the theory of
optical propagation and transformation based on paraxial
approximation is no longer valid [8], and it needs strict
electromagnetic field theory to solve the problem of beam’s
nonparaxial propagation. In recent decades, several research
methods about solving beam’s nonparaxial propagation have
been developed, such as vectorial Rayleigh-Sommerfeld
diffraction integral method [9], perturbation power series
method [10], transition operators [11], angular spectrum
representation [12], and virtual source point technique [13].
And vectorial Rayleigh-Sommerfeld diffraction method has
been used to treat various beam’s nonparaxial propagation
problems [14–17].

An elliptical Gaussian beam can be radiated and realized
by semiconductor diode laser [18]. In the past few years, some
nonparaxial propagation properties of vectorial elliptical
Gaussian beams have been reported, such as the far-field
beam divergence angle [19], diffracted at a circular and a
rectangular aperture [20, 21]. Since the semiconductor laser

beamhas a large divergence angle, it would become necessary
to consider the target beam’s nonparaxial propagation. In this
work, we use the vectorial Rayleigh-Sommerfeld diffraction
integral formulae to solve the nonparaxial propagation of a
vectorial elliptical Gaussian beam. Target beam’s nonparaxial
propagation analytical expressions are derived and used to
investigate its propagation properties, including the evolution
of intensity and shape of elliptical Gaussian beam with
different elliptic coefficient 𝛼 and different waist width related
parameter 𝑓

𝜔
, and the relationships of elliptical Gaussian

beam’s nonparaxial effect and its intensity distributions with
elliptic coefficient 𝛼 as well as parameter 𝑓

𝜔
are analyzed.

2. Nonparaxial Propagation of Vectorial
Elliptical Gaussian Beams in Free Space

Let us consider the incident field of elliptical Gaussian beam,
which is polarized in the 𝑥 direction and can be defined by
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where r
0
= 𝑥
0
i + 𝑦
0
j and i and j are the unit vectors in 𝑥

and 𝑦 directions, respectively. 𝐸
0
is a constant, 𝜔 is the waist

width, and 𝛼 is elliptic coefficient, which denotes the ratio of
elliptical Gaussian beam’s waist width in 𝑥 and 𝑦 directions.

According to the vectorial Rayleigh-Sommerfeld diffrac-
tion integral formulae, the nonparaxial propagation of light
beam in the half-space 𝑧 > 0 turns out to be [9]

𝐸
𝑥
(𝑥, 𝑦, 𝑧) = −

1

2𝜋

∬

∞

−∞

𝐸
𝑥
(𝑥
0
, 𝑦
0
,

0)

𝜕R (r, r
0
)

𝜕𝑧

𝑑𝑥
0
𝑑𝑦
0
,

(2a)

𝐸
𝑦
(𝑥, 𝑦, 𝑧) = −

1

2𝜋

∬

∞

−∞

𝐸
𝑦
(𝑥
0
, 𝑦
0
,

0)

𝜕R (r, r
0
)

𝜕𝑧

𝑑𝑥
0
𝑑𝑦
0
,

(2b)

𝐸
𝑧
(𝑥, 𝑦, 𝑧) =

1

2𝜋

∬

∞

−∞

(𝐸
𝑥
(𝑥
0
, 𝑦
0
, 0)

𝜕R (r, r
0
)

𝜕𝑥

+ 𝐸
𝑦
(𝑥
0
, 𝑦
0
,

0)) 𝑑𝑥
0
𝑑𝑦
0

𝜕R (r, r
0
)

𝜕𝑦

,

(2c)

where r = 𝑥i + 𝑦j + 𝑧k and k denotes the unit vector in 𝑧

direction.𝐸
𝑥,𝑦,𝑧

(𝑥, 𝑦, 𝑧) are components of the𝐸 vector along
𝑥, 𝑦, and 𝑧 directions in an arbitrary plane 𝑧, respectively,
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where 𝑘 = 2𝜋/𝜆 is the wave number and 𝜆 is the incident
wavelength. When |r − r

0
| ≫ 𝜆, |r − r

0
| can be approximately

expanded into [19]
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So (3) can be expressed as
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Substituting (5) into (2a)–(2c), we obtain
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Substituting (1) into (6a), we can obtain
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By utilizing the following integral formula [20]
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(7) can be expressed as follows:
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Similarly, substituting (1) into (6b) and (6c), and recalling
integral formula (8), we can obtain other elements of the
elliptical Gaussian beam:
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Figure 1: Intensity distribution of elliptical Gaussian beam for 𝑓
𝜔
= 0.01 as a function of 𝑥 in free space in different planes: (a) 𝑧 = 0; (b)

𝑧 = 𝑧
𝑟
; (c) 𝑧 = 5𝑧

𝑟
; (d) 𝑧 = 10𝑧

𝑟
; (e) 𝑧 = 20𝑧

𝑟
. Several curves correspond to different elliptic coefficient 𝛼: 𝛼 = 0.8 (dashed curve); 𝛼 = 1 (solid

curve); 𝛼 = 1.5 (dotted curve).

The intensity distribution of nonparaxial propagation of the
ellipticalGaussian beamat the point (𝑥, 𝑦, 𝑧) can be expressed
as follows:
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where 𝐼
𝑥
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𝑦
(𝑥, 𝑦, 𝑧), and 𝐼
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(𝑥, 𝑦, 𝑧) are the intensity

distributions of the 𝑥, 𝑦, and 𝑧 components of the field,
respectively.

The paraxial propagation of elliptical Gaussian beam can
be dealt with as a special case by using the paraxial expansion
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Accordingly, (7) can be reduced to
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Equations (9) and (12) are the main analytical results for
elliptical Gaussian beam’s nonparaxial propagating in free
space, and (15) is the paraxial analytical formula for elliptical
Gaussian beam’s paraxial propagating in free space.
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Figure 2: Intensity distribution of elliptical Gaussian beam for 𝑓
𝜔
= 0.5 as a function of 𝑥 in free space in different planes: (a) 𝑧 = 0; (b)

𝑧 = 𝑧
𝑟
; (c) 𝑧 = 5𝑧

𝑟
; (d) 𝑧 = 10𝑧

𝑟
; (e) 𝑧 = 20𝑧

𝑟
. Several curves correspond to different elliptic coefficient 𝛼: 𝛼 = 0.8 (dashed curve); 𝛼 = 1 (solid

curve); 𝛼 = 1.5 (dotted curve).

3. Numerical Simulations and Analysis

In order to confirm the relationship of elliptical Gaussian
beam’s intensity distribution and nonparaxial effects with
elliptic coefficient 𝛼 as well as parameter 𝑓

𝜔
, according to the

analytical expressions obtained above, we have carried out the
numerical simulations of intensity distributions of vectorial
elliptical Gaussian beam’s nonparaxial propagating in free
space. For the convenience of comparison, the light peak
intensity in the input plane 𝑧 = 0 is set to 1. The propagation
distance is normalized to 𝑧/𝑧

𝑟
, where 𝑧

𝑟
= 𝜋𝜔

2

/𝜆 is the
Rayleigh distance, and the incident wavelength is 632.8 nm.

The evolution behavior of intensity distributions of
nonparaxial elliptical Gaussian beams with several elliptic
coefficients 𝛼 in different observation planes is depicted in
Figures 1 and 2, which correspond to two differentwaist width
related parameters 𝑓

𝜔
, respectively. From Figure 1, for small

value 𝑓
𝜔

= 0.01—that is, elliptical Gaussian beam’s waist
width𝜔 is large—one can see that all the normalized intensity
distributions of nonparaxial elliptical Gaussian beams would

preserveGaussian typewhen the propagation distance ranges
from 𝑧 = 0 to 𝑧 = 20𝑧

𝑟
, while for large value 𝑓

𝜔
=

0.5—that is, elliptical Gaussian beam’s waist width 𝜔 is
small (see Figure 2)—we can find that, with the increase of
propagation distance 𝑧, the transverse intensity profiles turn
into Gaussian-like shape quickly. Besides, numerical results
also show that the peak intensity value decreases when the
propagation distance increases, and the larger the value of
elliptic coefficient 𝛼 is, the faster the peak intensity value
decreases, no matter whether 𝑓

𝜔
is large or small.

Figure 3 gives the intensity distributions of elliptical
Gaussian beam in the plane 𝑧 = 10𝑧

𝑟
for different parameter

𝑓
𝜔
. The elliptic coefficient 𝛼 is fixed to 0.8, 1, and 1.5 from

the first row to the third row, respectively.The corresponding
longitudinal component 𝐼

𝑧
of nonparaxial elliptical Gaussian

beam and paraxial result 𝐼
𝑝
of elliptical Gaussian beam are

also depicted together for comparison. From Figures 3(a1)–
3(a3), one can see that no matter what value of the elliptic
coefficient 𝛼 is, for small value of 𝑓

𝜔
= 0.1, 𝐼

𝑧
is very small

and can be neglected; hence, the curves of total intensity
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Figure 3: Intensity distributions 𝐼(𝑥, 𝑦, 𝑧), 𝐼
𝑧
(𝑥, 𝑦, 𝑧), and 𝐼

𝑝
(𝑥, 𝑦, 𝑧) of elliptical Gaussian beam in the plane 𝑧 = 10𝑧

𝑟
for different parameters

𝑓
𝜔
and elliptic coefficient 𝛼: (a1) 𝑓

𝜔
= 0.1, 𝛼 = 0.8; (b1) 𝑓

𝜔
= 0.3, 𝛼 = 0.8; (c1) 𝑓

𝜔
= 0.5, 𝛼 = 0.8; (a2) 𝑓

𝜔
= 0.1, 𝛼 = 1; (b2) 𝑓

𝜔
= 0.3, 𝛼 = 1;

(c2) 𝑓
𝜔
= 0.5, 𝛼 = 1; (a3) 𝑓

𝜔
= 0.1, 𝛼 = 1.5; (b3) 𝑓

𝜔
= 0.3, 𝛼 = 1.5; (c3) 𝑓

𝜔
= 0.5, 𝛼 = 1.5.

distribution 𝐼 and corresponding paraxial result 𝐼
𝑝
are almost

coincident. While the parameters 𝑓
𝜔
are increased to 0.3 (see

Figures 3(b1)–3(b3)), 𝐼
𝑧
becomes strong, so 𝐼 and 𝐼

𝑝
began to

show slight difference. When 𝑓
𝜔
is further increased to 0.5,

𝐼
𝑧
becomes more strong, and the difference between 𝐼 and 𝐼

𝑝

increased obviously (see Figures 3(c1)–3(c3)). As a result, no
matter what the value of 𝛼 is, the nonparaxial conclusions of
the elliptical Gaussian beam should be considered when 𝑓

𝜔

is large. Conversely, the paraxial approximation of elliptical
Gaussian beam is valid when 𝑓

𝜔
is small. Furthermore,

the light peak intensity value will decrease with increasing

the elliptic coefficient 𝛼 in the same observation plane, no
matter what value of 𝑓

𝜔
is. However, the larger the value of

parameters 𝑓
𝜔
is, the smaller the spot size of beam is, no

matter what value of elliptic coefficient 𝛼 is.
Figure 4 shows the contour graphs of intensity distribu-

tions 𝐼
𝑥
, 𝐼
𝑧
, and 𝐼 of nonparaxial elliptical Gaussian beams

for elliptic coefficient 𝛼 = 1.5 in the plane 𝑧 = 10𝑧
𝑟
, and

the corresponding paraxial result 𝐼
𝑝
is also given in Figure 4.

The parameter 𝑓
𝜔
is chosen as 0.1, 0.3, and 0.5 from the

first row to the third row, respectively. As shown in Figure 3,
when 𝑓

𝜔
is small, the longitudinal component 𝐼

𝑧
is very
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Figure 4: Contour graphs of intensity distributions 𝐼
𝑥
(𝑥, 𝑦, 𝑧), 𝐼

𝑧
(𝑥, 𝑦, 𝑧), 𝐼(𝑥, 𝑦, 𝑧), and 𝐼

𝑝
(𝑥, 𝑦, 𝑧) of elliptical Gaussian beam with elliptic

coefficient 𝛼 = 1.5 in the plane 𝑧 = 10𝑧
𝑟
for different parameters 𝑓

𝜔
: (a1)–(a4) 𝑓

𝜔
= 0.1; (b1)–(b4) 𝑓

𝜔
= 0.3; (c1)–(c4) 𝑓

𝜔
= 0.5.

small and can be neglected; hence the beam profiles of total
intensity distribution 𝐼 and corresponding paraxial result 𝐼

𝑝

are visibly similar. Figures 4(a1)–4(a4) also show that 𝐼
𝑧
can

be neglected, and the paraxial approximation is valid when

𝑓
𝜔
is small. However, when 𝑓

𝜔
is chosen as 0.3 (see Figures

4(b1)–4(b4)), 𝐼
𝑧
becomes strong, and the spots of 𝐼 and 𝐼

𝑝

show a little distinction. As 𝑓
𝜔
is further increased to 0.5, 𝐼

and 𝐼
𝑝
show obvious difference (see Figures 4(c1)–4(c4)). In
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other words, the contribution of the longitudinal component
𝐼
𝑧
would become significant, and the nonparaxial conclusions

of elliptical Gaussian beam should be adopted when 𝑓
𝜔
is

large.

4. Conclusions

In this paper, based on the vectorial Rayleigh-Sommerfeld
diffraction integral formulae, we have derived the analytical
expressions for a vectorial elliptical Gaussian beam’s non-
paraxial propagating in free space, and the paraxial approxi-
mation expression has also been examined as a special case.
The evolution of the beam’s intensity and shape with different
elliptic coefficient 𝛼 and different waist width related param-
eter 𝑓

𝜔
is illustrated by numerical examples. Results show

that, with increasing propagation distance 𝑧, all contours
of the transverse cross sections of nonparaxial propagation
of the elliptical Gaussian beams preserve Gaussian type
when 𝑓

𝜔
is small, while all contours of the transverse cross

sections of nonparaxial propagation of the elliptical Gaussian
beams would change to Gaussian-like type when 𝑓

𝜔
is large.

Meanwhile, whether parameter 𝑓
𝜔
is large or small, the peak

intensity value decreasedwith increasing the propagation dis-
tance, and the larger the elliptic coefficient 𝛼 is, the faster the
peak intensity value decreases. In addition, numerical results
also show that no matter what value of elliptic coefficient 𝛼
is, when parameter 𝑓

𝜔
is small, the paraxial approximation

of elliptical Gaussian beam is effective; when parameter 𝑓
𝜔
is

large, the nonparaxial conclusions of the elliptical Gaussian
beam should be adopted. These characteristics of vectorial
elliptical Gaussian beam might find applications in modern
optics.
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