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Sum squeezing of the field amplitude is studied in the nondegenerate and degenerate frequency upconversion process under the
short interaction time. It is shown that sum squeezing can be converted into normal squeezing via sum-frequency generation in
the nondegenerate frequency upconversion process, while the amplitude-squared squeezing of the fundamental mode directly
changed into the squeezing of the harmonic in the degenerate frequency upconversion process. All reachable conditions of
uncorrelated modes for obtaining a sum squeezing in two modes and its dependence on the squeezing of individual field modes
are investigated. It is found that the squeezed states are associated with large number of pump photons. It is also confirmed that the
higher-order squeezing (sum squeezing) is directly associated with coupling of the field and interaction time.

1. Introduction

Over the past years, the squeezing [1–6] in quantized
electromagnetic fields has received a great deal of attention
because of its wide applications in many branches of science
and technology, especially for low quantum fluctuations
[7–9] having potential application in optical telecommu-
nication [10], quantum cryptography [11, 12], and others. It
is a consequence of uncertainty relations. A state is squeezed
when the quantum fluctuation (amplitude noise or phase
noise) in one variable is reduced below the symmetric limit
at the expense of the increased quantum fluctuation in the
conjugate variable such that the Heisenberg uncertainty
relation is not violated. It has been focused on theoretical as
well as experimental evidences of squeezed states in various
nonlinear optical processes, such as harmonic generation
[13–16], multiphoton processes [17–20], and Raman and
hyper-Raman processes [21–25]. Hong and Mandel [26, 27]
and further Hillery [28] have introduced the notion of
higher-order squeezing of quantised electromagnetic field as
generalization of the much discussed normal squeezing and
followed by [29] for improving the performance of many

optical devices. Squeezing and photon statistical effect of the
field amplitude in optical parametric processes and in
Raman and hyper-Raman scattering has been reported by
Perina et al. [30] in which it is demonstrated that squeezing
accompanies antibunching very often, but not always. In
some cases, squeezing may occur and antibunching may not
and vice versa. Kim and Yoon [31] have also studied higher-
order sub-Poissonian statistics of light and pointed out the
nonclassical measure of the higher-order sub-Poissonian
photon statistics of the number state is half as same as that of
the known lowest order. Recently, Prakash and Mishra
[32, 33] have also reported the higher-order sub-Poissonian
photon statistics and their use in detection of Hong and
Mandel squeezing and amplitude-squared squeezing. An-
other type of seminal paper on higher-order squeezing,
called sum and difference squeezing, was proposed by
Hillery [34] for the two modes which are in fact the simplest
versions of multimode higher-order squeezing. ,ese con-
cepts have been generalized to include three modes for sum
and difference squeezing [35–37] as well as an arbitrary
number of modes for sum and difference squeezing [38–40].
Furthermore, more recently, Prakash and Shukla [41],
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Mukherjee et al. [42], and Mukherjee et al. [43] have also
studied and reported about sum and difference squeezing
and their detections in some nonlinear optical processes.

,e objective of this paper is to study the sum squeezing
in the nondegenerate and degenerate frequency upconver-
sion process under the short-time scale based on a fully
quantum approach. It is a higher-order squeezing of the
radiation field to achieve significantly larger quantum noise
reduction. Since higher-order squeezing is the higher powers
of the field amplitude, which is directly associated with the
large numbers of photons that make it possible to achieve
significantly larger noise reduction than ordinary squeezing.
,is motivates us to study sum squeezing (higher-order) in
the frequency upconversion process in the line of seminal
paper [34]. ,e paper is organized as follows. Section 2 gives
the definition of one- and two-mode higher-order squeez-
ing. Sum squeezing of the field amplitude in the nonde-
generate frequency upconversion process is investigated in
Section 3. Detection of sum squeezing of two-mode field in
this process is also studied in Section 3. In Section 4, sum
squeezing of the field amplitude in the degenerate frequency
upconversion process is studied and the relation between
sum squeezing and amplitude-squared squeezing is estab-
lished. Finally, we conclude the paper in Section 5.

2. Definition of One- and Two-Mode Higher-
Order Squeezing

Suppose a single mode of radiation field having frequencyωa

with creation and annihilation operators a† and a, respec-
tively, and defining amplitude-squared squeezing in terms of
operators Y1 and Y2 given by

Y1 �
1
2

A
2

+ A
†2

􏼐 􏼑,

Y2 �
1
2i

A
2

− A
†2

􏼐 􏼑,

(1)

where A � a exp(iωat) and A† � a† exp(− iωat) are slowly
varying operators.

Equation (1) obeys the commutation relation

Y1, Y2􏼂 􏼃 � i 2NA + 1( 􏼁, (2)

where A†A � NA is the number operator.
Relation (2) leads to the uncertainty relation (Z � 1):

ΔY1ΔY2 ≥􏼪NA +
1
2
􏼫. (3)

Equation (3) exists amplitude-squared squeezing if it
follows the condition:

ΔYj􏼐 􏼑
2
<􏼪NA +

1
2
􏼫, (4)

where j� 1 or 2 and ΔY1 and ΔY2 are the uncertainties in the
quadrature operators Y1 and Y2, respectively.

A quantum state is amplitude-squared squeezed in the
Y1 direction if (ΔY1)2< 〈NA + (1/2)〉 and is amplitude-
squared squeezed in the Y2 direction if (ΔY2)2< 〈NA +

(1/2)〉.

Now, for two modes having frequency ωa and ωb with
creation (annihilation) operators a†(a) and b†(b), let us
introduce two operators which correspond to real and
imaginary parts of the product of the field amplitudes as

W1 �
1
2

AB + A
†
B
†

􏼐 􏼑, (5)

W2 �
1
2i

AB − A
†
B
†

􏼐 􏼑, (6)

where A� a exp(iωat) and B� b exp(iωbt) are slowly varying
operators.

Equations (5) and (6) follow the commutation relation

W1W2􏼂 􏼃 �
i

2
NA + NB + 1( 􏼁, (7)

and satisfy the uncertainty relation (Z � 1):

ΔW1 ΔW2 ≥
1
4
〈NA + NB + 1〉, (8)

where NA �A†A and NB �B†B are the number operators.
Sum squeezing in the Wj direction exists if

ΔWj􏼐 􏼑
2
<
1
4
〈NA + NB + 1〉, (9)

where j� 1 or 2 and ΔW1 and ΔW2 are the uncertainties in
the quadrature operators W1 and W2, respectively.

A state is sum squeezed in the W1 direction if (ΔW1)2<
(1/4)〈NA + NB + 1〉 and is sum squeezed in the W2 di-
rection if (ΔW2)2< (1/4)〈NA + NB + 1〉.

3. Sum Squeezing in the Nondegenerate
Frequency Upconversion Process

Frequency upconversion, shown in Figure 1, is a three-wave
interaction nonlinear optical phenomenon, in which two
input photons (a signal and a pump photon) at different
frequencies, ωa and ωb, annihilate and another photon at
their sum frequency, ωc, is simultaneously generated in the
nonlinear optical medium.

It serves as basic building blocks for the implementation
of quantum optical experiments. By using this technique,
near-infrared light can be converted to light in the visible or
near-visible range and therefore detected by commercially
available visible detectors with high efficiency and low noise.
It can be realized in nonlinear crystals, but the relatively low
conversion efficiency requires a high-power laser or a res-
onant cavity [44]. ,is model is chosen to make a realistic
one, and our theoretical discussions hold for all similar
models.

,e Hamiltonian of this process may be written as (�h�1)

H � ωaa
†
a + ωbb

†
b + ωcc

†
c + g abc

†
+ a

†
b
†
c􏼐 􏼑, (10)

where a†(a), b†(b), and c†(c) are the creation (annihilation)
operators of the A, B, and Cmodes, respectively, and g is the
coupling constant between the two modes of the order of
102–104 per second and is proportional to the nonlinear
susceptibility of the medium as well as the complex
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amplitude of the pump field [4, 30, 45]. However, to take
care of complex g, we have used |g|2 in the place of g2 [4].

Using the interaction Hamiltonian of equation (10) in
the coupled Heisenberg equation of motion,

_A(t) �
zA(t)

zt
+ i[H, A(t)], Z � 1, (11)

where the dot denotes time derivative.
Equation (11) leads to

_A � − igB
†
C,

_B � − igA
†
C,

_C � − igAB,

(12)

where A, B, and C are slowly varying operators, which are
defined by A� a exp(iωat), B� b exp(iωbt), and C� c
exp(iωct), with the relation ωa+ωb �ωc. ,e operators A(t)
and A†(t) induce a slower dependence on time as compared
to fast variation during the interaction between modes.

,e system evolution during a short period of time is
practically relevant because the actual interaction is in fact
very short. Hence, the interaction time is taken to be short, of
the order of 10− 10 s, and a nanosecond or picosecond pulse
laser can also be used as the pump field for time resolved
measurements [4, 44]. For real physical situation in the
short-time scale gt ≪ 1 (gt∼10− 6), the expectation value of
mean pump photon numbers is very large
(〈A†A〉 � |α|2≫ 1) and it is possible to obtain much simpler
approximate analytical formulas describing the variances
[4].

Using Taylor’s expansion on A(t) as A(t) � A(0) +

t _A(0) + (t2/2!) €A(0) + . . . . . . and keeping terms up to sec-
ond order in t, we have

A(t) � A + t − igB
†
C􏼐 􏼑 +

t2

2!
− ig _B

†
C + B

† _C􏼒 􏼓􏼔 􏼕, (13)

where _A � − igB†C and €A(0) � [− ig( _B
†
C + B† _C)] and after

simplification, we get

A(t) � A + t − igB
†
C􏼐 􏼑 +

t2

2!
− ig igAC

†
C􏼐 􏼑 + B

†
(− igAB)􏽨 􏽩

orA(t) � A + t − igB
†
C􏼐 􏼑 +

g2t2

2!
C
†
C − B

†
B􏽨 􏽩A

orA(t) � A − igtB
†
C +

1
2
|g|

2
t
2

NC − NB( 􏼁A,

(14)

where C†C � NC andB†B � NB.

A
†
(t) � A

†
+ igtB

†
C +

1
2
|g|

2
t
2

NC − NB( 􏼁A
†
. (15)

Similarly,

B(t) � B − igtA
†
C +

1
2
|g|

2
t
2

NC − NA( 􏼁B
†
, (16)

B
†
(t) � B

†
− igtAC

†
+
1
2
|g|

2
t
2

NC − NA( 􏼁B. (17)

Also,

C(t) � C − igtAB −
1
2
|g|

2
t
2

NA + NB + 1( 􏼁C, (18)

C
†
(t) � C

†
− igtA

†
B
†

−
1
2
|g|

2
t
2

NA + NB + 1( 􏼁C
†
. (19)

Let us examine squeezing in the C mode, and we define
two general quadrature components:

X1C(t) �
1
2

C(t) + C
†
(t)􏽨 􏽩, (20)

X1C(t) �
1
2

C(t) − C
†
(t)􏽨 􏽩. (21)

Using equations (18) and (19) in equations (20) and (21),
we obtain

X1C(t) � X1C +|g|tW2 −
1
2
|g|

2
t
2

NA + NB + 1( 􏼁X1C, (22)

X2C(t) � X2C − |g|tW1 −
1
2
|g|

2
t
2

NA + NB + 1( 􏼁X2C. (23)

At t� 0, for uncorrelated modes, we get

ΔX1C(t)􏼂 􏼃
2

� ΔX1C( 􏼁
2

+|g|
2
t
2

· ΔW2( 􏼁
2

− 〈NA + NB + 1〉 ΔX1C( 􏼁􏽨 􏽩
2
,

(24)

ΔX2C(t)􏼂 􏼃
2

� ΔX2C( 􏼁
2

+|g|
2
t
2

· ΔW1( 􏼁
2

− 〈NA + NB + 1〉 ΔX2C( 􏼁􏽨 􏽩
2
.

(25)

If initially the C mode is in a coherent state, then

Virtual state
2

Virtual state

Ground state
1

ωb

ωc

ωa

Figure 1: Energy level diagram of the frequency upconversion
process.
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ΔX1C( 􏼁
2

� ΔX2C( 􏼁
2

�
1
4
, (26)

and equations (24) and (25) reduce to

ΔX1C(t)􏼂 􏼃
2

−
1
4

� |g|
2
t
2 ΔW2( 􏼁

2
−
1
4
〈NA + NB + 1〉􏼔 􏼕,

(27)

ΔX2C(t)􏼂 􏼃
2

−
1
4

� |g|
2
t
2 ΔW1( 􏼁

2
−
1
4
〈NA + NB + 1〉􏼔 􏼕.

(28)

Equations (27) and (28) establish the relation between
sum squeezing and normal squeezing in the frequency
upconversion process. We find that if the input state is sum
squeezed in the W2 or W1 direction, then normal squeezing
will occur in the X1C or X2C direction, respectively. ,is
result suggests a method for detection of nonclassical
properties of radiation in the frequency upconversion
process.

We plot a graph (Figures 2 and 3) between left-hand side
of equations (27) and (28) say SS and SS′, respectively, versus
|gt|2 with typical values (ΔW2)2 � (ΔW1)2 � (1/4) so that it
could satisfy equation (9).

,e steady fall of the curves infers that the sum
squeezing exists and responses nonlinearly to the number
of pump photons. It shows that when |α|2 increases, the
degree of sum squeezing also increases, i.e., SS is getting
more negative. ,is confirms that the squeezed states are
associated with large number of pump photons. It also
confirms that the higher-order squeezing (sum squeezing)
is directly associated with the coupling of the field and
interaction time. Hence, optimum squeezing can be re-
alized in short-time scale.

Comparing Figures 2 and 3, we inferred that the depth of
nonclassicality is increasing with an increase of |β|2. Hence,
it is inferred that a higher multiphoton absorption process is
suitable for generation of optimum squeezed light.

It is also of interest to study sum squeezing in the Cmode
as a function of time; we define the quadrature operators as
follows:

W1C(t) �
1
2

A(t)B(t) + A
†
(t)B

†
(t)􏽨 􏽩, (29)

W2C(t) �
1
2i

A(t)B(t) − A
†
(t)B

†
(t)􏽨 􏽩. (30)

Under short-time approximation, we keep terms up to
first order in “gt” in Taylor’s expansion to get

A(t) � A(0) + t _A(0) + . . . . . . , (31)

B(t) � B(0) + t _B(0) + . . . . . . . (32)

Using equations (31) and (32) in equations (14)–(17)
gives

A(t) � A − igtB
†
C, (33)

A
†
(t) � A

†
+ igtBC

†
, (34)

B(t) � B − igtA
†
B, (35)

B
†
(t) � B

†
+ igtAB

†
. (36)

Using equations (33)–(36) in equation (29), we find

W1C(t) �
1
2

AB + A
†
B
†

􏼐 􏼑 − igt B
†
B C − C

†
􏼐 􏼑 + A

†
A B − B

†
􏼐 􏼑􏽮 􏽯􏽨 􏽩.

(37)

As the wave function of the system starts as a coherent
state at t� 0 and evolves as a squeezed state at a later time
[46], we use the initial coherent state.

Now, initially we consider a quantum state as a product
of coherent states |α> and |β> for the pump modes A and B,
respectively, and |c> for the sum-frequency mode C, i.e.,

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

0

Ss

|α|2 = 5 

|α|2 = 10 

−5

|gt|2

Figure 2: Variation of the sum squeezing SS with |gt|2 in the
nondegenerate frequency upconversion process (when 〈NB〉 �

|β|2 � 10).
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|gt|2 
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|α|2 = 5 
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Figure 3: Variation of the sum squeezing SS′ with |gt|2 in the
nondegenerate frequency upconversion process (when 〈NB〉 �

|β|2 � 20).
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|ψ〉 � |α〉A|β〉B|c〉C. (38) Using equation (38) in equation (37), we obtain

􏼪ψ W
2
1C

􏼌􏼌􏼌􏼌 |ψ􏼫 �
1
4

􏼢α2β2 + α∗2β∗2 + 2|α|
2
|β|

2
+|α|

2
+|β|

2
+ 1 − igt􏼠2αβ∗|β|

2
c − 2αβ∗|β|

2
c
∗

+ 2α|α|
2β2 − 2α|α|

2
|β|

2

+ 2α∗β∗c|β|
2

− 2α∗β∗c∗|β|
2

+ 2α∗|β|
2
|α|

2
− 2α∗β∗2|α|

2
+ αβc − αβc

∗
+ αβ2 − α∗β∗2 − α|β|

2
+ α∗|β|

2

− α|α|
2

+ α∗|α|
2

+ α∗β∗c − α∗β∗c∗ − α + α∗􏼡􏼣,

(39)

〈ψ W1C

􏼌􏼌􏼌􏼌 |ψ〉2 �
1
4

􏼢α2β2 + α∗2β∗2 + 2|α|
2
|β|

2
− igt􏼠2α β∗ |β|

2
c − 2α β∗ |β|

2
c
∗

+ 2α|α|
2β2 − 2α|α|

2
|β|

2

+ 2α∗β∗c|β|
2

− 2α∗β∗c∗|β|
2

+ 2α∗|β|
2
|α|

2
− 2α∗β∗2|α|

2
􏼡􏼣.

(40)

ΔW1C(t)􏼂 􏼃
2

�〈W2
1C(t)〉 − 〈W1C(t)〉2

�
1
4

􏼢|α|
2

+|β|
2

+ 1 − igt􏼠αβc − αβc
∗

+ αβ2 − α∗β∗2 − α|β|
2

+ α∗|β|
2

− α|α|
2

+ α∗|α|
2

+ α∗β∗c

− α∗β∗c∗ − α + α∗􏼡􏼣.

(41)

,e numbers of photons are

NA(t) � A
†
(t)A(t) � NA + igt ABC

†
− A

†
B
†
C􏼐 􏼑, (42)

NB(t) � B
†
(t)B(t) � NB + igt ABC

†
− A

†
B
†
C􏼐 􏼑. (43)

Using equation (38), we obtain

1
4
〈NA(t) + NB(t) + 1〉 �

1
4

[|α|
2

+|β|
2

+ 1

+ 2igt αβc
∗

− α∗β∗c( 􏼁].
(44)

Subtraction of equation (44) from equation (41) yields

ΔW1C(t)􏼂 􏼃
2

−
1
4
〈NA(t) + NB(t) + 1〉

�
− igt

4
αβ − α∗β∗( 􏼁 c + c

∗
( 􏼁 + αβ2 − α∗β∗2􏼐 􏼑 + |α|

2
+|β|

2
+ 1􏼐 􏼑 α∗ − α( 􏼁􏽨 􏽩

�
gt

2
2|αβc|sin θ1 + θ2( 􏼁cos θ3 + αβ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌sin θ1 + 2θ2( 􏼁 − |α|

2
+|β|

2
+ 1􏼐 􏼑|α|sin θ1􏽨 􏽩,

(45)

where α � |α|exp(iθ1), β � |β|exp(iθ2), and c � |c|exp(iθ3).
Equation (45) means that squeezing of W1C will occur

whenever θ1 and θ2 < 0 and θ3 > 0. It suffices to choose
θ1 � θ2 � − (π/3) and θ3 � (π/2), and the square bracket
becomes nonnegative.

Let us now study the dependence of sum squeezing for
two-mode states on squeezing of individual modes in which
the modes are uncorrelated, i.e., mode in a coherent state at
t� 0.

We define for two-mode sum squeezing as [34]
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WCφ �
1
2

e
iφ

A
†
B
†

+ e
− iφ

AB􏼐 􏼑. (46) ,e squeezed state exists if ΔWCφ < (1/2) for some φ.
Using equation (46), we obtain

〈W2
Cφ〉 �

1
4
〈e2iφ

A
†
B
†

􏼐 􏼑
2

+ A
†
B
†
AB + ABA

†
B
†

+ e
− 2iφ

(AB)
2〉

�
1
4
〈e2iφ

A
†
B
†

􏼐 􏼑
2

+ 2B
†
BA

†
A + A

†
A + B

†
B + 1 + e

− 2iφ
(AB)

2〉,

(47)

〈WCφ〉
2

�
1
4
〈e2iφ〈A†

B
†〉2 + 2〈A†

B
†〉〈AB〉 + e

− 2iφ
〈AB〉

2〉􏽨 􏽩. (48)

Hence, the variance of field is

ΔWCφ􏽨 􏽩
2

�〈W2
Cφ〉 − 〈WCφ〉

2

�
1
4

􏼨e
2iφ 〈 A

†
B
†

􏼐 􏼑
2
〉 − 〈A†

B
†〉2􏼔 􏼕 + 2〈B†

BA
†
A〉 +〈B†

B〉 +〈A†
A〉 + 1

− 2〈A†
B
†〉〈AB〉 + e

− 2iφ 〈(AB)
2〉 − 〈AB〉

2
􏽨 􏽩􏼩.

(49)

Using equation (9) in equation (49), we find

ΔWCφ􏽨 􏽩
2

−
1
4
〈NA + NB + 1〉 �

1
4

􏼨e
2iφ 〈 A

†
B
†

􏼐 􏼑
2
〉 − 〈 A

†
B
†

􏼐 􏼑〉2􏼔 􏼕 + 2〈B†
BA

†
A〉

− 2〈A†
B
†〉〈AB〉 + e

− 2iφ 〈(AB)
2〉 − 〈AB〉

2
􏽨 􏽩􏼩.

(50)

A state is squeezed if the term in brackets becomes
negative. ,is term is smallest when

arg 〈(AB)
2〉 − 〈AB〉

2
􏽨 􏽩 − 2φ � π. (51)

If φ satisfies (51), then

ΔWCφ􏽨 􏽩
2

−
1
4
〈NA + NB + 1〉 �

1
2

[〈NANB〉 − |〈AB〉|
2

− 〈(AB)
2〉 − 〈AB〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌].
(52)

,erefore, a state is sum squeezed if and only if

〈(AB)
2〉 − 〈AB〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>〈 NANB( 􏼁〉 − |〈(AB)〉|

2
. (53)

If the modes are uncorrelated, then equation (53)
becomes

〈A2〉〈B2〉 − 〈A〉
2
〈B〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>〈NA〉〈NB〉 − |〈A〉〈B〉|

2
. (54)

Let us consider the first case. If the modes are uncor-
related, i.e., there is no linear relationship between A and B
or <A>�<B>� 0 and neither the A nor the B mode is
squeezed [34], then

〈A2〉 − 〈A〉
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 〈NA〉 − |〈A〉|

2
, (55)

〈B2〉 − 〈B〉
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 〈NB〉 − |〈B〉|

2
. (56)

Furthermore, if none of the A and Bmodes are squeezed,
i.e., at coherent state, none of the pairs can be sum squeezed
[34], i.e.,

〈A2〉〈B2〉 − 〈A〉
2
〈B〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 〈NA〉〈NB〉 − |〈A〉〈B〉|

2
. (57)

Comparing equations (54) and (57), we find that the A
and B modes are not sum squeezed.

In the second case, if the A mode is squeezed and the B
mode is in a coherent state of amplitude β, then we have
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〈A2〉〈B2〉 − 〈A〉
2
〈B〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � |β|

2 〈A2〉 − 〈A〉
2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

> |β|
2 〈NA〉 − |〈A〉|

2
􏼐 􏼑,

(58)

where <NB>� |β|2 for coherent states and the inequality in
equation (54) is fulfilled; hence, state is sum squeezed.

In the third case, if the B mode is squeezed and the A
mode is in a coherent state of amplitude α, we then have

〈A2〉〈B2〉 − 〈A〉
2
〈B〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � |α|

2 〈B2〉 − 〈B〉
2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

> |α|
2 〈NB〉 − |〈B〉|

2
􏼐 􏼑,

(59)

where <NA>� |α|2 and the inequality in equation (54) is
satisfied hence the A and B modes are sum squeezed.

Finally, if A and B modes are squeezed, then we have

〈A2〉〈B2〉 − 〈A〉
2
〈B〉

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>〈NA〉〈NB〉 − |〈A〉〈B〉|

2
. (60)

,is satisfies condition (54) and hence the state is sum
squeezed.

4. Sum Squeezing in Degenerate Frequency
Upconversion Process

If all the two pump modes are of the same frequency
(ωa �ωb), the process reduces to second harmonic genera-
tion described by the Hamiltonian H′ given by

H′ � ωaa
†
a + ωcc

†
c + g a

2
c
†

+ a
†2

c􏼐 􏼑. (61)

Equation (15) leads to coupled Heisenberg equations of
motion:

_A � − 2igA
†
C,

_C � − igA
2
.

(62)

Using Taylor’s expansion upto second order in gt, we
obtain

C(t) � C − igtA
2

− g
2
t
2 2A

†
A + 1􏼐 􏼑C, (63)

C
†
(t) � C + igtA

†2
− g

2
t
2 2A

†
A + 1􏼐 􏼑C

†
. (64)

Using equations (20) and (21), this gives

X1C(t) � X1C + gtY2 − 4g
2
t
2

NA +
1
2

􏼒 􏼓X1C, (65)

X2C(t) � X2C − gtY1 − 4g
2
t
2

NA +
1
2

􏼒 􏼓X2C. (66)

If the C mode is initially in a coherent state at t� 0, then
we obtain

ΔX1C(t)􏼂 􏼃
2

−
1
4

� |gt|
2 ΔY2( 􏼁

2
− 〈NA +

1
2
〉􏼔 􏼕, (67)

ΔX2C(t)􏼂 􏼃
2

−
1
4

� |gt|
2 ΔY1( 􏼁

2
− 〈NA +

1
2
〉􏼔 􏼕. (68)

From equations (67) and (68), we infer that X1C becomes
squeezed if Y2 is squeezed and X2C is squeezed if Y1 is
squeezed. In other way, the C mode is squeezed in the X1C

direction if the fundamental modes are sum squeezed in the
Y2 direction and the Cmode is squeezed in the X2C direction
if the fundamental modes are sum squeezed in the Y1 di-
rection. ,ese equations show that the amplitude-squared
squeezing of the fundamental can be turned directly into the
squeezing of the harmonic in the degenerate frequency
upconversion process. ,is result suggests a way to detect
higher-order squeezing in this process.

We plot a graph (Figure 4) between left-hand side of
equation (67) or (68) say SSW and |gt|2 with typical values
(ΔY2)2 � (ΔY1)2 � (1/4) so that it could satisfy equation (4).

Figure 4 shows that the plot responses nonlinearly to
increase photon numbers. ,is confirms that the squeezed
states are associated with large number of pump photons. It
also confirms that the higher-order squeezing (sum
squeezing) is directly associated with the coupling of the field
and interaction time. Hence, optimum squeezing can be
realized in short-time scale.

5. Conclusions

In this paper, we have concluded that sum squeezing can be
turned into normal squeezing via sum-frequency generation
in the nondegenerate frequency upconversion process. It is
also established that the amplitude-squared (higher-order)
squeezing of the fundamental can be converted directly into
the squeezing of the harmonic in the degenerate frequency
upconversion process. ,ese findings suggest a method for
generation and detection of higher-order squeezing in the
frequency upconversion process. It is observed that the sum
squeezing will occur conditional to the case of first-order
coupling, while to the case of second-order coupling gives
unconditional sum squeezing in nondegenerate as well as in
the degenerate frequency upconversion process.

We have examined all possible conditions for an un-
correlated two-mode state. If both modes are not squeezed,
then the state is not sum squeezed. If one mode is squeezed
and the second one is in a coherent state, then the state is
sum squeezed. Finally, if both modes are squeezed, then the
state may or may not be sum squeezed in the nondegenerate
frequency upconversion process.,e steady fall of the curves
infers that the sum squeezing exists and responses

0.0 0.2 0.4 0.6 0.8 1.0
−10

−8
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−2

0

S s
w
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|gt|2 

Figure 4: Variation of the sum squeezing SSW with |gt|2 in the
degenerate frequency upconversion process.
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nonlinearly to the number of pump photons. It shows that
the squeezed states are associated with large number of
pump photons. It also confirms that the higher-order
squeezing (sum squeezing) is directly associated with the
coupling of the field and interaction time. Hence, optimum
squeezing can be realized in short-time scale. It is found that
the depth of nonclassicality is increasing with an increase of
the number of pump photons. Hence, it is inferred that a
higher multiphoton absorption process is suitable for gen-
eration of optimum squeezed light.

,ese findings suggest and may help in selecting a
suitable process to generate optimum squeezing of the ra-
diation and further can be useful as a resource to improve
high-quality optical telecommunication [47]. ,e results
obtained in this paper are of interest for new experiments on
the study of nonlinear optical processes in dielectric media
using ultrashort intense laser pulses as exciting radiation,
and the effects of damping and decoherence as well as
higher-order time terms could be investigated.
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,e data used to support the findings of this study are
available from the corresponding author upon request.
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[8] K. Wódkiewicz, “On the quantum mechanics of squeezed
states,” Journal of Modern Optics, vol. 34, no. 6-7, pp. 941–948,
1987.

[9] H. J. Kimble and D. F. Walls, “Introduction,” Journal of the
Optical Society of America B, vol. 4, no. 10, pp. 1450–1741,
1987.

[10] H. Yuen and J. Shapiro, “Optical communication with two-
photon coherent states—part I: quantum-state propagation
and quantum-noise,” IEEE Transactions on Information
<eory, vol. 24, no. 6, pp. 657–668, 1978.

[11] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum
cryptography without Bell’s theorem,” Physical Review Letters,
vol. 68, no. 5, pp. 557–559, 1992.

[12] J. Kempe, “Multiparticle entanglement and its applications to
cryptography,” Physical Review A, vol. 60, no. 2, pp. 910–916,
1999.

[13] L. Mandel, “Squeezing and photon antibunching in harmonic
generation,” Optics Communications, vol. 42, no. 6, pp. 437–
439, 1982.

[14] M. Hillery, “Squeezing of the square of the field amplitude in
second harmonic generation,” Optics Communications,
vol. 62, no. 2, pp. 135–138, 1987.
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