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,is paper proposes an empirical model of the angle-of-arrival (AOA) variance for a Gaussian wave propagating through the weak
non-Kolmogorov turbulence. ,e proposed model is approximately expressed as the linear weighted average between the AOA
variances of the plane and spherical waves. ,e Monte Carlo method is applied to validate the proposed model. ,e numerical
simulations indicate that, under the geometrical optics approximation, the AOA variance for a Gaussian wave is insensitive to the
change of the diffraction parameter and can be closely approximated by a simple linear relationship in the refraction parameter.
,ese two properties ensure the validity of the empirical model.

1. Introduction

Optical wireless communication technology has attracted
widespread attention during the past few decades. It adopts
unguided laser beam propagating in randommedia to carry the
digital signal for data transmission with high data rates. ,e
random media, however, may contain numerous invisible
turbulent eddies, which fluctuate the refractive index inside the
randommedia and distort the equiphase wavefront of the laser
beam. Considering that the equiphase wavefront in the vacuum
is undistorted and uniform, AOA can be defined as the angle
between the normal vectors of the distorted and undistorted
equiphase wavefront. It is generally accepted that AOA could
hardly degenerate the quality of the imaging spot, but will lead
the focus position to deviate from the optimal point. ,is
phenomenon is equivalent to the geometric misalignment
between the receiving and transmitting antennas [1–3].

AOA stochastically fluctuates with the changes in both
temporal and spatial dimensions, and the degree of the AOA
fluctuation is conventionally described by its variance. In
recent years, theoretical models of the AOA variances for
plane and spherical waves have been fully analyzed based on

different turbulent power spectrums [4–15]. However, the
research on the AOA variance for a Gaussian wave still needs
further discussion. Gao et al. [16] proposed a heuristic model
of the AOA variance for a Gaussian wave propagation
through non-Kolmogorov turbulence, but lacked adequate
evidence to ensure the validity of the expressions. Regarded
as an increment to the previous literature studies, this paper
not only investigates the similar scenario but also conducts
simulations for experimental verification. ,e rest of the
paper is organized as follows. Section 2 presents the theo-
retical models of the AOA variances for different types of
laser beams. In Section 3, numerical simulations are per-
formed, followed by conclusions in Section 4.

2. Theoretical Models

2.1. AOAVariances for Plane and SphericalWaves. ,eAOA
variance for either plane or spherical wave can be calculated
by

σ2AOA �
DS(d)

(k d)2
, (1)
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where d is the aperture diameter of the collecting lens, k �

2π/λ is the angular wavenumber with the wavelength λ, and

DS(ρ) � 4π2k2
L 􏽚

1

0
dξ 􏽚

+∞

0
dκ × κΦn(κ)f(κ, ξ), (2)

is the phase structure function [1]. In equation (2), ρ is the
scalar separation between two observation points, L is the
propagation optical path length, ξ is the normalized path
coordinate, and κ is the scalar spatial wavenumber which
regularized the scale of the turbulence eddy. Φn(κ) and
f(κ, ξ) in equation (2) represent the turbulent power
spectrum and the weight function, respectively. ,is paper
applies the benchmark non-Kolmogorov model:

Φn(κ) � A(α)􏽢C
2
nκ

− α
, (3)

as the turbulent power spectrum, where α ∈ (3, 4) is the
general spectral power law value,
A(α) � Γ(α − 1)/4π2 cos απ/2 is a function related to α,
Γ(z) � 􏽒

+∞
0 xz− 1e− xdx is the gamma function, and 􏽢C

2
n is the

scalar generalized atmospheric structure parameter [14].,e
weight function for the plane wave fp(κ, ξ) and for the
spherical wave fs(κ, ξ) are defined as

fp(κ, ξ) � 1 − J0(κρ)( 􏼁 × 1 + cos
Lκ2

k
ξ􏼠 􏼡􏼠 􏼡,

fs(κ, ξ) � 1 − J0(κξρ)( 􏼁 × 1 + cos
Lκ2

k
ξ(1 − ξ)􏼠 􏼡􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where J0(x) � 􏽐
+∞
n�0(−1)n/(n!)2(x/2)2n is the Bessel function

of the first kind with zero order.
To achieve the closed-form expression of equation (1),

this paper invokes the geometrical optics approximation
(GOA) to reduce equation (2). For terrestrial horizontal
wireless optical communication link, the Fresnel length lF ����
λL

√
is usually in the order of magnitude of centimeter,

whereas d is designed in the order of magnitude of deci-
meter, i.e., d> lF is almost satisfied. For ρ> lF, the lens effect
of the turbulent eddy can be dealt with GOA, which yields
Lκ2/k≪ 1. Consequently, equation (4) leads to

fp(κ, ξ) ≈ 2 1 − J0(κρ)( 􏼁,

fs(κ, ξ) ≈ 2 1 − J0(κξρ)( 􏼁.
􏼨 (5)

Based on the equation for −3<p< − 1 and a> 0 [17]:

􏽚
+∞

0
x

p 1 − J0(ax)( 􏼁dx � −a
− p− 12pΓ

1 + p

2
􏼒 􏼓Γ

1 − p

2
􏼒 􏼓

− 1
,

(6)

the double integrals in equation (2) can be reduced to

􏽚
1

0
dξ 􏽚

+∞

0
dκ × κΦn(κ)fp(κ, ξ) ≈ − A(α)􏽢C

2
nρ

α− 222− α
× Γ

2 − α
2

􏼒 􏼓Γ
α
2

􏼒 􏼓
− 1

,

􏽚
1

0
dξ 􏽚

+∞

0
dκ × κΦn(κ)fs(κ, ξ) ≈ −

1
α − 1

A(α)􏽢C
2
nρ

α− 222− α
× Γ

2 − α
2

􏼒 􏼓Γ
α
2

􏼒 􏼓
− 1

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

,us, based on GOA, the AOA variances for plane and
spherical wave can be rewritten as

σ2AOA,p ≈ − π2LA(α)􏽢C
2
ndα− 424− α × Γ

2 − α
2

􏼒 􏼓Γ α
2􏼐 􏼑

− 1
,

σ2AOA,s ≈
σ2AOA,p

α − 1
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

It is found that under GOA, the AOA variances are
independent to λ. ,is property has been confirmed under
various situations [15, 16, 18].

2.2. AOA Variances for a Gaussian Wave. ,e Gaussian
beam is a representative type of the electromagnetic wave,
with normally distributed transverse electric field and in-
tensity [19]. ,e mathematical description of a Gaussian

wave usually depends on the wavelength λ and the waist
radius w0. For the optical wireless communication, more
parameters are necessary to determine the location of both
the transmitter and the receiver. ,e curvature parameter
Θ0 � 1 − L/R0 and the Fresnel ratio Λ0 � 2L/kW2

0, two
nondimensional scalars, are related to the transmitter,
where R0 is the radius of curvature of the phase wavefront
at the transmitter and W0 is the radius where the intensity
reduces to 1/e2 of the axial values at the transmitter.
Similarly, there are also three nondimensional scalars, the
refraction parameter Θ � Θ0/Θ20 + Λ20, the complementary
parameter Θ � 1 − Θ, and the diffraction parameter
Λ � λL/πW2, related to the receiver, where
W � W0

�������

Θ20 + Λ20
􏽱

is the beam radius in a vacuum at the
receiver.

It is known that both plane and spherical waves are
particular types of the Gaussian waves; therefore, their AOA
variances should take the form as follows:
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σ2AOA,p � σ2AOA,G(Λ � 0,Θ � 1),

σ2AOA,s � σ2AOA,G(Λ � 0,Θ � 0).

⎧⎨

⎩ (9)

For the given Gaussian wave with arbitrary values of Λ
and Θ, it is difficult to achieve the analytic formulae of
σ2AOA,G. As an alternative, σ2AOA,G may be approximatively
expressed by σ2AOA,p and σ2AOA,s. On the one hand, according
to the definition of Λ, it follows that

lim
λ⟶0
Λ � 0. (10)

On another hand, equation (8) implies that, under GOA,
both σ2AOA,p and σ2AOA,s are independent to λ. ,us, a
heuristic inference can be made that σ2AOA,G may be in-
sensitive to the change of Λ when d> lF, i.e.,

σ2AOA,G ≈ σ
2
AOA,G(Λ � 0). (11)

Furthermore, σ2AOA,G(Λ � 0) may be closely approxi-
mated by a simple linear relationship in Θ, i.e.,

σ2AOA,G(Λ � 0) ≈ Θσ2AOA,p +(1 − Θ)σ2AOA,s. (12)

Equation (12) is inspired by [20], which investigated the
on-axis scintillation index for a Gaussian wave in the sat-
uration regime.

3. Numerical Simulations

,is section adopts the Monte Carlo method to validate
equations (11) and (12), respectively. In our simulations, the
distorted equiphase wavefront is generated by the stochastic
phase screen with the first 496 terms of the Zernike poly-
nomials, whose theoretical formulae are presented in Section
4.1. Afterwards, over 50 points are stochastically sampled on
the surface of the distorted equiphase wavefront, and the
corresponding AOA can be computed by their normal
vectors. For each combination of optical parameters, the
simulations are repeated 100 times, and the AOA variance
can be statistically estimated by the empirical data. Other
default settings are listed as follows: α ∈ 3.2, 3.5, 3.8{ },
􏽢C
2
n � 1.0 × 10− 15m3− α, λ � 1.55 × 10− 6 m, k ≈ 4.05 × 106

rad/m, L � 4000m, and d � 0.1m> lF � 0.078m.
To validate equation (12), Λ is fixed at 0, whereas Θ is

assigned to 11 points linearly spaced between and including
0 and 1. Particularly, Θ � 1 refers to the plane wave, and
Θ � 0 refers to the spherical wave. ,e simulation results are
depicted in Figure 1, where the dots stand for the experi-
mental values, and the lines stand for the theoretical values.
It can be identified that there is linear relationship between
σ2AOA,G(Λ � 0) and Θ. ,us, equation (12) is valid within the
range of the allowable error.

To validate equation (11), Θ is fixed at 0.5. Considering
that the optical wireless communication systems usually
adopt the collimators to parallel the outgoing beam at the
transmitting antenna, Λ is assigned to 11 points linearly
spaced between and including 0 and 0.5. Figure 2 illustrates
the simulation results. It is evident that due to the obser-
vational errors, the experimental values of σ2AOA,G fluctuate
around the theoretical values of σ2AOA,G(Λ � 0), and the

margin of the relative error is less than 15%. ,us, equation
(11) is valid for d> lF. ,is phenomenon can be explained
physically.,e validity of equation (11) is associated with the
validity of equation (10). ,e condition “d> lF” ensures the
validity of GOA, which implies that diffraction effects are
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Figure 1: Validation of equation (12).
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Figure 2: Validation of equation (11).
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negligible and can be generally characterized by the limiting
case with λ⟶ 0. Hence, equation (10) is valid under GOA.

4. Conclusions

,is paper investigates the AOA variance for a Gaussian
wave propagating through the weak non-Kolmogorov tur-
bulence along a horizontal link. An empirical model is
deduced from the results of plane and spherical waves under
the GOA. ,e stochastic phase screens based on the Zernike
terms are generated to validate the proposed model. ,e
numerical simulations indicate that, under the GOA:

(1) ,e AOA variance for a Gaussian wave is insensitive
to the change of the diffraction parameter

(2) ,eAOA variance for a Gaussian wave can be closely
approximated by a simple linear relationship in the
refraction parameter

,ese two points ensure the validity of our proposed
model.

It should be pointed out that the phase screen based on
the Zernike terms is capable of characterizing the low-fre-
quency component, but is insufficient to describe the high-
frequency component. However, the high-frequency com-
ponent, associated with the small-scale turbulent eddies,
makes little contribution to the phase fluctuation of laser
beam. Considering that AOA is directly connected with the
phase fluctuation, the forementioned weakness could hardly
invalidate the conclusions.

4.1. Stochastic Phase Screen with Zernike Polynomials. ,e
Zernike polynomials are a set of binary functions orthogonal
on the unit disk, whose expressions in the polar coordinate
system take the form [21]:

Zj(ρ, θ) � Zn,m(ρ, θ)

�
�����
n + 1

√
Rn,m(ρ)Am(θ),

(13)

where j � (n, m) is the index ordered by Noll’s sequence, ρ is
the radius, and θ is the azimuth. Rn,m(ρ) is the radial
component:

Rn,m(ρ)

� 􏽘
n−m/2

k�0

(−1)k(n − k)!

k!(n + m/2 − k)!(n − m/2 − k)!
ρn− 2k

,

(14)

and Am(θ) is the angular component:

Am(θ) �

�
2

√
cosmθ, m> 0,

�
2

√
sinmθ, m< 0,

1, m � 0.

⎧⎪⎪⎨

⎪⎪⎩
(15)

Let Ψ be the distorted equiphase wavefront. It can be
decomposed as [22, 23]

Ψ � 􏽘
+∞

j�1
cjZj, (16)

where cj are undetermined coefficients. To generate the
stochastic phase screen, the covariance between cj1 and cj2
should be

cov cj1, cj2􏼐 􏼑 � B(α)
d

r0
􏼠 􏼡

α− 2

Nn1,n2Mm1,m2 ×(−1)
n1+n2− m1− m2

2 ,

(17)

where j1 � (n1, m1), j2 � (n2, m2), r0 is the Fried coherent
length, and

B(α) �
23− α

α
8

α − 2
Γ

2
α − 2

􏼒 􏼓􏼒 􏼓
α− 2/2

× Γ
α
2

􏼒 􏼓Γ− 1
−
α
2

􏼒 􏼓Γ(α + 1).

(18)

Nn1,n2 is the factor related to the radial degrees:

Nn1,n2 � Γ
n1 + n2 − α + 2

2
􏼒 􏼓

× Γ− 1 n1 + n2 + α + 4
2

􏼒 􏼓

× Γ− 1 n1 − n2 + α + 2
2

􏼒 􏼓

× Γ− 1 n2 − n1 + α + 2
2

􏼒 􏼓

×
��������������
(n1 + 1)(n2 + 1)

􏽰
,

(19)

and Mm1,m2 is the logical Kronecker symbol related to the
azimuthal frequencies:

Mm1,m2 �((mod(j1− j2,2) � 0)∨(m1m2� 0))∧(m1� m2).

(20)

,e covariance matrix C about cj􏽮 􏽯 is real and symmetrical,
so there must be a unitary matrix U such that S � UCUT is
diagonal. U can be obtained by the singular value decom-
position. R is a Gaussian random variable, with zero mean
and variance given by S. ,e components of the vector UTR

are the desired Zernike coefficients cj.
,e influences ofΘ and Λ on the stochastic phase screen

can be delivered by r0. In the weak fluctuation region [24],

r0 � 2.1 −
4(α − 1)Γ(α/2)

π2A(α)􏽢C
2
nk2LΓ(1 − α/2)

⎛⎝ ⎞⎠

1/α− 2

× 25− α
b +(α − 2)Γ

α
2

􏼒 􏼓Λ
α
2􏼒 􏼓

1/2− α
, (21)
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where

b �

1 −Θα− 1

1 −Θ
, Θ≥ 0,

1 +|Θ|α− 1

1 − Θ
, Θ< 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

4.2. Tangent Plane and Normal Vector. ,e equiphase
wavefront generated by the stochastic phase screen can be
regarded as a surface S in the three-dimensional space.
Mathematically, S can be described by the implicit
function

F(x, y, z) � 0. (23)

If these partial derivatives zF/zx, zF/zy and zF/zz are
continuous over S, and

zF

zx
􏼠 􏼡

2

+
zF

zy
􏼠 􏼡

2

+
zF

zz
􏼠 􏼡

2

≠ 1, (24)

S is called smooth.
For arbitrary point P0 � (x0, y0, z0) ∈ S, its tangent

plane is
zF

zx
P0( 􏼁 × x − x0( 􏼁 +

zF

zy
P0( 􏼁 × y − y0( 􏼁 +

zF

zz
P0( 􏼁 × z − z0( 􏼁 � 0,

(25)

and the corresponding normal line takes the form as follows:

x − x0( 􏼁

zF/zx P0( 􏼁
�

y − y0( 􏼁

zF/zy P0( 􏼁
�

z − z0( 􏼁

zF/zz P0( 􏼁
. (26)

,e normal vector n
⇀

� (zF/zx(P0), zF/zy(P0), zF/zz(P0))

is orthogonal to the tangent plane.
For the stochastic phase screen with the Zernike poly-

nomials, the equiphase wavefront takes the form as

Ψ(x, y) − z � 0 (27)

with the normal vector n
⇀

� (zΨ/zx, zΨ/zy, −1). Particu-
larly, n0

⇀
� (0, 0, −1) is the normal vector of the undistorted

equiphase wavefront.
Since AOA can be defined as the angle between the

normal vector of the distorted and undistorted equiphase
wavefront, it follows that

∠AOA � arccos
n
⇀

· n0
⇀

|n
⇀

| · n0
⇀􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� arccos
1

���������������������

(zΨ/zx)2 +(zΨ/zy)2 + 1
􏽱 .

(28)
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