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Hyperspectral remote-sensing images have the characteristics of large transmission data and high propagation requirements, so
they are faced with transmission and preservation problems in the process of transmission. In view of this situation, this paper
proposes a spectral image reconstruction algorithm based on GISMT compressed sensing and interspectral prediction. Firstly,
according to the high spectral correlation of hyperspectral remote-sensing images, the hyperspectral images are grouped
according to the band, and a standard band is determined in each group. *e standard band in each group is weighted by the
GISMT compressed sensing method. *en, a prediction model of the general band in each group is established to realize the
remote-sensing image reconstruction in the general band. Finally, the difference between the actual measured value and the
predicted value is calculated. According to the prediction algorithm, the corresponding difference vector is obtained and the
predicted measured value is iteratively updated by the difference vector until the hyperspectral reconstructed image of the relevant
general band is finally reconstructed. It is shown by experiments that this method can effectively improve the reconstruction effect
of hyperspectral images.

1. Introduction

Hyperspectral images are a set of images with spectral
resolutions in the order of 10− 2λmagnitude, which typically
contain hundreds of spectral bands and each of which is
imaged separately. In the ultraviolet to mid-infrared region,
the hyperspectral image is imaged by the hyperspectral
sensor in the satellite for each target region in each band.
*is kind of acquisition of hyperspectral images can obtain
rich spectral information and spatial information in the
target area. However, due to the high acquisition band of the
hyperspectral spectrum, the data of the hyperspectral image
are huge, and the transmission and the processing are
difficult. *erefore, how to effectively solve the problems of
acquisition, transmission, and preservation of hyperspectral
images has become the key to the effective application of
hyperspectral technology.

Among the existing hyperspectral reconstruction
methods, Zhao [1] proposed a method of compressed

sensing reconstruction of hyperspectral images based on
variable sampling rates, providing a new idea of using
different sampling rates for the reference band and the
nonreference band [1]. Wand and Fend [2] proposed a
multihypothesis prediction compressive sensing re-
construction algorithm based on the space spectrum asso-
ciation. For the reconstruction of nonreference bands, image
blocks of nonreference bands were predicted according to
the adjacent images of nonreference bands and the recon-
structed images of reference bands [2]. In the literature [3], a
fast sparse decomposition algorithm based on image de-
composition on the overcomplete atomic library was pro-
posed. *e greedy clustering algorithm was used to remove
the redundancy between the spectra of images and
strengthen the correlation of each spectrum band [3]. Jia
et al. [4] proposed a prediction method of reference bands to
ordinary bands, by adding the prediction of reference bands
in adjacent groups to ordinary bands [4].*esemethods also
play a guiding and helpful role in the study of this paper.
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However, these methods fail to make full use of the spectral
correlation information between various bands of hyper-
spectral images to improve the quality of reconstruction, and
for the reconstruction of reference bands, they cannot ef-
fectively reduce the sampling rate of information.

*erefore, in view of this situation, this paper designs a
hyperspectral image reconstruction method based on
GISMT compression sensing and interspectral prediction.
*e significance of this paper mainly has two aspects: the
innovation of the sampling mode and the innovation of
image reconstruction [5]. First of all, the images of every
band of the hyperspectrum are not reconstructed. In fact,
hyperspectral data are grouped according to the spectral
correlation of the hyperspectrum. One standard band is
determined for each group, while the rest are general bands.
Secondly, the GISMT algorithm is used to reconstruct the
image data of standard bands to obtain the reconstructed
images of each group of standard bands. *e GISMT algo-
rithm is a kind of algorithm based on compression percep-
tion, compressed sensing theory as a new kind of effective
mechanism of image acquisition and samplingmethod, which
is different from traditional. It has the following character-
istics: (1) the signal sparse sex is no longer subject to the
bandwidth size limit and depends on the sparse signal itself,
namely, the content and structure of the important in-
formation in the signal; (2) signal sampling and compression
processing are completed simultaneously; (3) while retaining
complete key information, fewer measurements are obtained
after sparse representation; and (4) it can reconstruct the
original signal from a small number of measured values with
high quality and express the signal structure completely.
Compared with the common image compression processing
mechanism, the difference lies in that the pure image com-
pression mechanism needs to meet certain conditions and
preconditions, and compress and discard redundant data to
reduce information quantity and ensure image quality [6].
However, the compression sensing theory does not need to
satisfy the criteria of the Nyquist sampling theorem and
directly conduct the sampling and compression process of
signals. *e simple and efficient GISMT algorithm optimizes
and solves the improved joint sparse representation model to
realize the remote-sensing image reconstruction algorithm
[7]. By adjusting the optimal p value, the redundancy between
data is reduced to a certain extent, and the number of ob-
servations needed for signal reconstruction is greatly reduced.
*e image reconstruction of the hyperspectral reference band
achieved by the GISMT algorithm is simpler and more effi-
cient in calculation, which can not only reduce the compu-
tational complexity but also better suppress the noise and

ringing effect and protect the image edge details. *en, a
spectral prediction model is established, and the prediction of
the general bands in each group is carried out according to the
model, so as to get the difference between the predicted values
and the collected values of the actual general bands [8]. Fi-
nally, the difference vector of the difference value is recon-
structed, the predicted value is updated according to the
vector, and the original image of the band is restored. *is
algorithm makes full use of the characteristics of hyper-
spectral correlation, reduces the amount of data acquisition,
and through experimental verification, this algorithm can
improve the effect of hyperspectral image reconstruction.

2. Background

2.1. Spatial Correlation of Hyperspectral Images. *e hyper-
spectral image correlation reflects the degree of correlation
between adjacent pixels in the spatial position of the image
[9]. In this paper, a hyperspectral remote-sensing image is
selected and partially magnified 16 times, as shown in
Figure 1(a). Subjectively, the gray value between the locally
adjacent pixels does not change much. Objectively, the
histogram of the gray distribution of the part is shown in
Figure 1(b). *e abscissa is the gray value of the image, and
the ordinate is the frequency at which the grayscale appears.
It can be clearly seen from the histogram that the gray value
between the local adjacent pixel points is concentrated
between 43 and 90, which indicates the hyperspectral re-
mote-sensing image has a certain correlation in the spatial
direction.

2.2. Interspectral Correlation of Hyperspectral Images. *e
interspectral correlation of hyperspectral data refers to the
correlation of adjacent band pixels in the same spatial po-
sition, which includes statistical correlation and structural
correlation: the pixel values of each band image of hyper-
spectral data are the same regional features and the reflection
value of each band [10]. Because the wavelengths of adjacent
bands are similar, the adjacent band images have similar
gray values, which is called statistical correlation, and its size
depends largely on the spectral resolution. Also, the ground
objects have the same goal, and they have the same spatial
topology, which is called structural correlation [11]. It
mainly analyzes statistical correlation here. Assuming that
the pixel values of the bandm and the band n in the p-th row
and the q-th column are f(p, q,m) and f(p, q, n), respectively,
the interspectral correlation coefficient between the band m
and the band n is as follows:

R(m, n) �


K
p�1

F
q�1 f(p, q, m) − um  f(p, q, n) − un 

���������������������������������������������


K
p�1

F
q�1 f(p, q, m) − um 

2


K
p�1

F
q�1 f(p, q, n) − un 

2
 , (1)

where um and un are the mean values of the gradations of the
m-th band and the n-th band image, respectively. In this
paper, a hyperspectral remote-sensing image is selected, as

shown in Figure 2(a), which is the 45th band grayscale
image, and Figure 2(b) is the 49th band grayscale image.
Calculated by using formula (1), the correlation coefficient of
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these two bands of grayscale is 0.99653, so the spectral
correlation of the remote-sensing images in the visible light
is high, which provides the basic guarantee for the sub-
sequent interspectral prediction.

2.3. Compressed Sensing (eory. *e trend of “three fea-
tures” in remote-sensing data development brings a high
data rate to a remote-sensing image [12]. In order to reduce
complexity of calculation and increase the speed of calcu-
lation, this paper uses the thought of block compressed
sensing and TV method to realize the reconstructive algo-
rithm of the remote-sensing image [13]. Firstly, it is based on
block sampling, dividing the original remote-sensing image
into some nonoverlapped image pieces of the same size, and
acquiring an improved joint sparse representation model by
basic prior knowledge. Random sampling is implemented in
each subimage. Finally, the TV method and ALM re-
constructive algorithm are used to get few of measurements
to rebuild the original remote-sensing image from all pieces
of the image in compressed sampling.

An application premise of the compressed sensing
theory is that signals must be sparse or compressible. A
discrete signal of length N is set as follows: x(m),
m ∈ [1, 2, 3, . . . , M] according to the signal theory, the signal

x(m) can be represented by a linear combination of basis
ψ � [ψ1,ψ2,ψ3, . . . ,ψM]:

x � 
M

m�1
ψmam � ψa, (2)

where x, a ∈ RM∗1, ψ ∈ RM∗M. When signal x(m) has only ψ
nonzero coefficients K≪M on the basis ψ, am is called the
sparse basis of signal x(m) and the signal is considered to
have sparsity or compressibility. *e commonly used sparse
bases are sine basis, cosine basis, and so on.

In the coding measurement model of compressed
sensing, the observed values obtained are not samples of the
signal itself, but the projected values of the signal from high
dimension to low dimension. *e random projection pro-
cess of the signal is a very critical step in the theory of
compressed sensing, which greatly reduces the sampling rate
of the signal. Each observation is a combinatorial function of
the original signal.

Suppose that signal x is projected onto a set of obser-
vation vector ϕ � [ψ1,ψ2,ψ3, . . . ,ψM]T to get the observa-
tion value ym � 〈x ∣ ψT

m〉; that is,

y � ϕx, (3)

where x ∈ RM∗1, y ∈ RN∗1, and ϕ ∈ RM∗N. Substituting
equation (2) into equation (3), we can get

(a) (b)

Figure 1: (a) 16 times hyperspectral remote-sensing image. (b) Grayscale values of hyperspectral remote-sensing images.

(a) (b)

Figure 2: (a) 45th band grayscale image. (b) 49th band grayscale image.
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y � ϕx � ϕψa � Θa. (4)

Among them, Θ � ϕψ � RN∗M. Since the observed di-
mension is much smaller than the signal dimension, x needs
to be solved first by solving a in equation (4) and then
substituting it into equation (2) to solve x.

*e compressed sensing theory points out that if the
original signal is to be reconstructed accurately, the mea-
surement matrix must satisfy the principles of incoherence
and limiting isovolumency.

3. The Algorithm of Image Reconstruction

3.1. Correlation Analysis and Band Selection of Hyperspectral
Remote-Sensing Images. *e spatial properties of hyper-
spectral images are very similar to those of ordinary natural
images. *e spectral images of each band can be regarded as
a common grayscale image, but there is a strong correlation
between these grayscale images. In this paper, based on the
strong interspectral correlation of the hyperspectral image
and combined with the reconstruction method of the gray
image, a hyperspectral image compression sensing re-
construction method based on the correlation between
spectra is proposed:

(1) Calculating the interspectral correlation of hyper-
spectral images. Suppose Y ∈ QM×M×n be only the
hyperspectral experimental image. ym,n,r represents
the pixel value of the pixel position (m, n) of the r-th
band, and yr represents the average value of the pixel
values of all the pixels in the r-th band. *e calcu-
lation formula is as follows:

yr �
1

M × M


M

m�1


M

n�1
ym,n,r. (5)

(i) Suppose ym,n,r � ym,n,r − yr, and the calculation
formula of the correlation between the r-th band and
the r+ 1-band is as shown in equation (6).

(ii) It is shown that c ∈ [0, 1].

c r,r+1 �


M
m�1

M
n�1ym,n,r ym,n,r+1�������������


M
m�1

M
n�1y2

m,n,r




M
m�1

M
n�1y2

m,n,r+1

. (6)

(2) Grouping the bands of hyperspectral images
according to the interspectral correlation. First, the
total number of groups t is determined according to
the total number of bands of the hyperspectral
image, and the size of the group is h. *ere is one
standard band and h − 1 general bands in each group;
that is, a total of t standard bands are determined.
*e research shows that taking 10 bands is most
suitable. If the number of bands is less than 10, the
reconstruction is performed according to the actual
number of bands. Because of the band correlation of
hyperspectral remote-sensing images, the second

band of each group is generally selected as the
standard band.

3.2. Sparse Representation of the Reference Band and Random
Projection. *e reference band is processed first. *e ran-
dom projection matrix selects the Gaussian measurement
matrix commonly used in the theory of compressed sensing.
*e results show that the Gauss matrix satisfies the con-
strained isovolumicity and are irrelevant to almost any
sparse or compressible signal, fully complying with the
requirements of random projection matrices. Suppose the
Gaussian measurement matrix ϕ ∈ QM×N, and it obeys
normal distribution with a mean of 0 and a variance of
1/

��
M

√
. p1,1, p2,1, . . . , pt,1 are t reference bands, which are all

sampled at a large sampling rate.
In this paper, a biorthogonal wavelet basis ψ is selected to

represent hyperspectral images sparsely. Biorthogonal
wavelet basis is a generalization of the concept of orthogonal
wavelet basis. In order to overcome the shortcoming of the
orthogonal wavelet, the biorthogonal wavelet is introduced
to construct a finite-length filter with linear phase. *at is,
equations (2) and (4) can be reduced as follows:

ym  � ϕψam,1, m � 1, 2, . . . , t, (7)

where ym (m�1,2,3,...,t) is the measured value. For simplified
expression, suppose Y � ym m�1,2,...,t, and then equation (4)
is reduced as follows:

Y � ϕψam,1, m � 1, 2, . . . , t. (8)

In the random projection of hyperspectral images, the
measurement matrix and the measurement method used in
each band of each group are the same, so the image domain
has a strong spectral correlation hyperspectral image, which
is also very high in its measurement domain.

3.3. Reference Band Image Reconstruction Algorithm. In the
reconstruction process of the standard band, it is only
necessary to reconstruct the standard band of each group
since each group has a standard band. *is paper designs a
GISMT reconstruction algorithm based on compressed
sensing.

Assuming anN-dimensional signal x ∈RN, the transform
coefficient vector of x in the Ψ domain can be expressed as
ΨTx. If there are only K nonzero elements (N>>K) or only
K larger components in the transform coefficient ΨTx, the
signal x can be considered to be K sparse or approximately K
sparse. Suppose there is a randomly projected M×N-di-
mensional (M<<N) measurement matrix A. *e linear
projection of the signal x yields the M-dimensional mea-
surement y, which is mathematically expressed as y�Ax,
and the measured value y is the original signal x. *e
sampled and compressed sampled signals are processed
simultaneously, including all the information of the original
signal x. *e purpose of solving the problem of compressed
sensing reconstruction is to reconstruct a complete original
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signal x by using a small number of measured values y after
compression sampling. *e mathematical expression is as
follows (constrained optimization problem):

min
x

‖ψx‖p

s.t. y � Ax,
(9)

where p is a value of 1 or 0. ‖∗‖1 represents a norm which
stands for the sum of the absolute values of all elements in
the vector. ‖∗‖0 represents the 0 norm, which stands for the
number of nonzero elements in the vector.

Image prior knowledge plays a key role in the perfor-
mance of image reconstruction algorithms. *e remote-
sensing image itself has two basic prior knowledge features,
namely, local smoothness and nonlocal self-similarity [14].

Local smoothness is a key technique for smoothing
images directly in the spatial domain, which is based on the
premise that the images processed by high-pass filtering are
sparse. On this basis, local smoothing processing of image
can be achieved. *at is, selecting a feature module in the
image and finding the similar module according to the
similarity of adjacent pixels. *e basic models of local
smoothing include mean filtering model, median filtering
model, Gaussian filtering model, bilateral filtering model,
and total variational filtering model. Local smoothness can
be represented by 2D.

Nonlocal self-similarity was first used in image desic-
cation. *e algorithm uses the similarity between pixels in
the neighborhood to remove noise. In the process of pro-
cessing, the pixel points in a neighborhood can be extended
to the corresponding pixel points on different image blocks.
Since the image block contains muchmore information than
a single pixel, the nonlocal self-similarity processing of
image block is better than that of pixel. Nonlocal self-
similarity can also be applied in image reconstruction. *at
is, for images with high redundancy of image blocks, the
image blocks with high redundancy can be superimposed for
three-dimensional transformation, that is, 3D representa-
tion [15]. *e relationship between 2D and 3D is shown in
Figure 3.

*e local smoothness describes the smoothness of the
local region segmentation of the remote-sensing image in
the 2D spatial domain, that is, the gray area of the adjacent
pixel. *ere is similarity in the degree values, while the
nonlocal self-similarity describes the repeated texture or
structural features of the nonlocal regions in the 3D
transform domain of the remote-sensing image. In order to
realize the high quality reconstruction of remote-sensing
images, two effective regularization parameters are designed
based on regularization to represent these two basic prior
knowledge features. Considering the overall sparsity of re-
mote-sensing images, the expression is more sparse [16]. By
controlling the values of the two regularization parameters,
respectively, it can more adaptively represent the local 2D
sparsity of the spatial domain of the remote-sensing image
and the nonlocal 3D sparseness of the transform domain.
*e improved joint sparse representation model of remote-
sensing images is as follows:

ψcos(x) � τ · ψL2Dx
����

����p
+ λ · ψN3Dx

����
����p

, (10)

where τ and λ indicate the bound term of regularization,
which balance the sparsity of two prior knowledge features.
*e joint sparse is denoted by cosine.

Specifically, ‖ψL2Dx‖p corresponds to local flatness prior
knowledge. It maintains the local continuity of the image
and can suppress the noise effectively. Suppose the Laplace
distribution is presented by the gradient image of the re-
mote-sensing image, and then depict the sparsity of the local
2D spatial domain by utilizing the filtered image with certain
sparsity through filtered convolution for the remote-sensing
image; the mathematical representation is as follows:

ψL2Dx
����

����p
� ‖Dx‖p � Dvx

����
����p

+ Dhx
����

����p
, (11)

where D is the gradient operator and Dh and Dv represent
horizontal and vertical gradient operators, respectively.

Depict the overall self-similarity of nonlocal 3D trans-
form domain through the combination of coefficient sparsity
of all image blocks in 3D groups; its the mathematical
representation is as follows:

ψN3Dx
����

����p
� Θx

����
����p

� 
n

i�1
T
3D

Zxi( 
����

����p
. (12)

In this formula, Θ represents the column vector of all
conversion coefficients of image x. Substitute joint sparse
representation formula (10)–(12) into formula (9), and
depict two inherent sparsities of the remote-sensing image
on the basis of reducing the image sampling rate while
retaining characteristics of the original image. *en, the
target function based on the reconstruction problem of
compressed sensing joint sparse remote-sensing image will
be obtained as follows:

min
x

τ · ‖Dx‖p + λ · Θx

����
����p

s.t. y � Ax.
(13)

Based on the regularization thought, the auxiliary var-
iable Dx� d will be introduced. Transform the bound op-
timization problem of formula (10) into unbound optimize
problem of model (14) to solve

min
x,d,u

1
2
‖Ax − y‖

2
2 +

α
2

‖x − u‖
2
2 +

η
2
‖Dx − d‖

2
2 + τ · ‖d‖p

+ λ · Θu

����
����p

.

(14)

a b c d e f

2D

3D

a, b......f

a

b
c

d
e

f

Figure 3: *e relationship between 2D and 3D.
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In this formula, regularization items are α and η⟶∞,
formula (13) has the same solution with formula (14), and
alternating minimization will be adopted to find the
solution.

(1) x subproblem:
D and u are given, and the solution of x can be found
using the following formula:

min
x

1
2
‖Ax − y‖

2
2 +

α
2

‖x − u‖
2
2 +

η
2
‖Dx − d‖

2
2. (15)

*e approximate solution of x obtained from expres-
sion (13) is as follows:

x � F
− 1 F ηDTd(  + F(A)∗∘F(y)

η F DT
h Dh(  + F DT

v Dv( (  + F(A)∗∘F(A)
 .

(16)

In the formula, F is two-dimensional Fourier
transform, F− 1 is inverse two-dimensional Fourier
transform, ∗ is conjugate complex numbers, and ∘ is
component-specific multiplication.

(2) Subproblem of u:
D and x are given, and u can be solved using the
following formula:

min
u

α
2

‖x − u‖
2
2 + λ Θu

����
����p

. (17)

Regarding r as observations of some type noises of x,
formula (18) can be equivalently transformed as

min
u

1
2
‖u − r‖

2
2 +

λ
α



n

k�1
T
3D

Zuk( 
����

����p
. (18)

In this formula, suppose every element of u and r
follows independent distribution with a kind of zero
mean value and σ2 variance; besides, Gaussian process
is not needed in the middle. Due to u, r ∈RN, Θu, and
Θr ∈ RK, the greatest probability of a three-di-
mensional conversion coefficient vector at each itera-
tion is existed in two equations:

1
N

u
(k)

− r
(k)

�����

�����
2

2
� σ2,

1
K
Θ(k)

u − Θ(k)
r

�����

�����
2

2
� σ2.

(19)

Combining (16) into (15), formula (20) can be acquired:

u � min
u

1
2
Θu − Θr

����
����
2
2 +

Kλ
Nα
Θu

����
����p

. (20)

A general threshold function (GST) is proposed to
realize the iterative contraction mechanism, so as to
solve the sparse minimization problem of the non-
convex Lp-norm.
*e general threshold function GST is as follows, and
the specific implementation process is given in refer-
ence [7]:

T
GST
p (y; λ) �

0; if |y|≤ τGSTp (λ),

sgn(y) · SGSTp (|y|; λ); if |y|> τGSTp (λ).

⎧⎪⎨

⎪⎩

(21)

According to the GST function, the approximate so-
lution of each iteration ui is as follows:

ui � T
GST
p Θri

;
Kλ
Nα

 . (22)

(3) d subproblem:
u and x are given, and define dref �Dx; d can be
solved using the following formula:

min
d

η
2

d − d
ref

�����

�����
2

2
+ τ‖d‖p. (23)

Use the GSTfunction, the approximate solution of each
iteration di is as follows:

di � T
GST
p d

ref
i ;

τ
η

 . (24)

In conclusion, a flow chart that summarizes the algo-
rithm is shown in Figure 4.

3.4. Nonreference Band Image Reconstruction Algorithm.
Image reconstruction of the nonreference band is completed
on the basis of image reconstruction of the reference band.
First of all, we build a spectral multidirectional prediction
model and use this model for prediction of the nonreference
band image. *e predicted value of the nonreference band
can be obtained with the spectral multidirectional prediction
model. As a result, we can obtain the difference between the
predicted value and the actual measured value, reconstruct
the measurement difference, and update and modify the
predicted value. *en, iterative operation looms above the
reference to the original value of the data, so as to realize for
the band of reference image reconstruction.
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Interspectral multidirectional prediction is used to
predict nonreference wave bands in a wave band group. *e
data source that will be predicted is the reference wave band
pm,1 in this group, the reference wave band pm− 1,1 in the last
group, and the reference wave pm+1,1 in the next group. *is
paper predicts the nonreference wave band of the z group
through three reconstructed reference wave bands, namely,
pm,1, pm− 1,1, and pm+1,1; therefore, the prediction model is
established as follows:

pm,n
′ � αxm,1 + βxm− 1,1 + cxm+1,1, (25)

where α, β, and c are predictive coefficients, in
α � ((h − f) + 1)/h, β � ((f − 1)/(2h)), and λ � ((f − 1)/
(2h)), h is the band number in the group, and f is the band
position in the group. Based on the group strategy stated
above, the higher the nonreference band is in the group, the

more relevant it is to the reference band within the group, in
the prediction model, for the nonreference band with the top
position, the reference band of the same group has a larger
weight; for the nonreference band with lower position, the
reference band of the last group and next group has a larger
weight. When the first group of bands is used for prediction,
β � 0; when the last group of bands is used for prediction,
c � 0.

*e specific reconstruction algorithm is as follows.
First of all, conduct measure difference, according to the

predicted value pm,n
′ solved by formula (21) of the prediction

model and utilize the measurement matrix ϕ that is similar
to the reference image; the measured value qm,n

′ � ϕpm,n
′ of

the predicted value can be obtained, the practical mea-
surement value of the nonreference wave band pi,j obtained
through random projection is qm,n � ϕpm,n, and then the
difference between two measured values is follows:

i = 0

η(i) < ηmax

iter = 0

iter ≤ T

i = i + 1

N

Y

Y

N

Update: u(i+1): u(i+1) = GST (Θr, Kλ/Nα, p, J)

Update : η(i+1): η(i+1) = ωη(i)

Defined: dref: dref = Dx(i+1)

End

At the end of the traversal, the reconstructed
image x is obtained

Start

Update: d(i+1): d(i+1) = GST (dref, τ/η, p, J)

Update: x(i+1): x = F−1
F(ηDTd) + F(A)∗°F(y)

η(F(DT
hDh) + F(DT

VDV) + F(A)∗°F(A)

Figure 4: Algorithm flowchart based on GISMT remote-sensing image reconstruction.
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qm,n
′ � ϕ pm,n − pm,n

′  � ϕΔp. (26)

In the formula, Δp is the difference between the original
value pi,j of the current band and the multidirectional
predicted value pi,j

′ , and the corresponding measurement
difference is qm,n

′ , which equals the difference obtained
through randomly projecting the difference vector.

Afterwards, reconstruct and restore the difference vector
from the measured difference Δq with the GISMTalgorithm.
*e hyperspectral image has a strong interspectral relevance;
therefore, after multidirectional interspectral prediction, the
predicted value pm,n

′ is very close to the original value pm,n;
thus, the obtained measured value is more sparse than the
original value pm,n, so the reconstructed difference Δq and
the restored difference vector Δq are more effective than
reconstructing qm,n and restoring pm,n.

At last, the measured value pm,n
′ is corrected by recon-

structed and restored p, and then the updated measured
value pm,n

′ � pm,n + Δx will be acquired. Obviously, the
updated measured value is closer to the original value.
Iterate the above stated steps, including the measured
difference, reconstruct difference, and correct predicted
value, which can allow the predicted value to keep
approaching the original value, when the reconstructed
difference vector Δp is less than δ; that is, when the pre-
dicted value stops updating, cease iteration, and the pre-
dicted value at this time can be regarded as a practical value.
*e reconstructed algorithm of the ordinary image is
shown in Figure 5.

4. Analysis of Experiment and Its Results

*e experimental data are HIS data of HJ-1A star launched
in September 2008, this paper chooses the hyperspectral
remote-sensing data of HIS 2 class products in the Da
Xing’an Ling of Heilongjiang province as the data source,
and the band number was 255. *is paper chooses the
hyperspectral image numbered 3070541 to perform the
experiment. Demonstrating the second image and the third
image of the seventh group of No. 1019906 image, namely,
the 72nd and 73rd bands, among these bands, the 72nd band
is the standard band of the seventh group, while the 73rd
band is the ordinary band of this group. *e measurement
matrix of this experiment is the Gaussian measurement
matrix, the sampling rate of the reference band is 0.21, while
the ordinary band is 0.07, and the sparse matrix is a bio-
rthogonal wavelet base. *is paper chooses the MT-Bayes
algorithm that has a good reconstructed effect at present and
the GPSR algorithm as a comparison experiment, and the
grouped reference band and the nonreference band method
will also be used for reconstruction (the specific imple-
mentation process of GPSR is presented in [4]). *is paper
will present the reconstructed effect of the 72nd and the 73rd
band of the original image, and the 72nd reconstructed effect
is shown in Figure 5. *e reconstructed effect of the 73rd
band is shown in Figure 6. From Figure 6, it can be perceived
that due to the high sampling rate of the reference image, the
reconstructed effect that the three methods exerts on the
reference image has a slight difference. It can be seen from

Figure 7 that the reconstructed effect of interspectral mul-
tidirectional prediction used in this paper is much better
than the former two algorithms in reconstructing non-
reference images.

As shown in Figure 6, the original image has high
resolution and prominent details. Figure 6(b) is close to the
original image, and the reconstruction effect is good.
Figure 6(c) has a vague outline, while Figure 6(d) has few
details. Visually, this algorithm is superior to the other two
algorithms.

As shown in Figure 7, the original image has high
resolution and clear contour. Figure 7(b) is close to the
original drawing with perfect details. Figure 7(c) is not clear
in detail, and Figure 7(d) is partially distorted. Visually, the
proposed algorithm has more details and clear outlines.

*e reconstructed effect can be measured by PSNR (peak
signal-to-noise ratio), and the calculation formula is as
follows:

PSNR � 20 log10
1

����
MSE

√ . (27)

In this formula, MSE is mean square error, and the
calculation formula of MSE is as follows:

MSE �
1

mn


m

i�1


n

j�1
xi,j − xi,j




2
. (28)

In this formula, m and n are the width and height of the
single band of hyperspectral image, respectively, xi,j is the
pixel value that the original image at point (i, j), and xi,j is the
pixel value that the reconstructed image at point (i, j).

*is paper chooses a band group to calculate PSNR with
the 67th band as the reference image. *e comparison of
PSNR results of the reconstructed image between the MT-
Bayes algorithm, GPSR algorithm, and proposed algorithm
is shown in Table 1.

It can be perceived from Table 1 that the algorithm put
forward in this paper has a better reconstructed effect in the

Prediction model

Predictive value

Measure the difference

Update forecast

The real value

Is it greater
than zero?

Y

N

Figure 5: *e reconstructed algorithm of the ordinary image.
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72nd band of the standard band. From the PSNR of other
nonreference bands in this group, it can be seen that, with
low sampling rate, the interspectral multidirectional pre-
diction model presented in this paper prominently promotes
the reconstructed effect of the nonreference image.

*e selection of the sampling rate of the reference and
nonreference bands has a great influence on the perfor-
mance of the reconstructed algorithm. We define the av-
erage sampling rate R � (1/N) × rh + ((N − 1)/N) × rl,
whereN is the size of the band group, rh is the sampling rate
of the reference band, and rl is the sampling rate of the
nonreference band.*is paper compared the average PSNR
of three reconstructed algorithms by selecting different
average sampling rates, and the results are shown in
Table 2.

It can be found from Table 2 that compared with the
GPSR algorithm and the MT-Bayes algorithm, the average
PSNR improved 4-5 dB under the different average sampling
rates with the grouping and prediction methods for the
reference image presented in this paper; therefore, the

reconstructed effect of the algorithm proposed in this paper
under different sampling rates raises prominently.

5. Conclusion

Certain difficulties have been brought to the transmission
process due to large data volume and more band data of the
hyperspectral image. To this end, this paper proposed a new
hyperspectral reconstructed algorithm based on GISMT
compressed sensing and interspectral prediction. First, the
group collected hyperspectral remote-sensing image data
according to the interspectral relevance features of the
hyperspectral image and confirmed a standard band in each
group, and other bands are ordinary bands. *e group
adopted a new GISMT algorithm based on compressed
sensing to reconstruct the image type.*en, they established
an interspectral prediction model in the light of interspectral
relevance.*ismodel mainly predicts the difference between
the target bands and the former and latter bands. After that,
they reconstructed a remote-sensing image of the ordinary

(a) (b)

(c) (d)

Figure 6: *e comparison of the reconstructed effect of the 72rd reference band. (a) Original. (b) MT-Bayes. (c) GPSR. (d) Proposed
algorithm.
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band in each group according to this model. *e experi-
ment proved that compared with reconstructed algorithms
of other hyperspectral remote-sensing image, this algo-
rithm can remarkably improve the reconstructed effect of

the image, which has certain practical application
significance.
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(a) (b)

(c) (d)

Figure 7: *e comparison of the reconstructed effect of the 73rd reference band. (a) Original. (b) MT-Bayes. (c) GPSR. (d) Proposed
algorithm.

Table 1: *e effect comparison of PSNR.

Band image
Algorithm 72 73 74 75 76 77 78
MT-Bayes 33.58 27.36 26.69 26.44 27.81 26.51 27.34
GPSR 33.71 28.19 28.58 29.08 28.86 27.71 28.23
Proposed
algorithm 34.34 32.89 33.47 33.21 34.17 33.20 33.76

Table 2: *e effect comparison of PSNR.

0.12 0.17 0.22 0.27 0.32 0.37
MT-Bayes 28.84 30.36 32.16 33.88 35.77 37.71
GPSR 29.35 31.26 32.95 34.35 36.21 37.91
Proposed algorithm 33.88 35.70 37.11 35.33 39.38 42.17

10 International Journal of Optics

mailto:cangsheng163@163.com
mailto:cangsheng163@163.com


References

[1] Y. Zhao, Study on Reconstruction of Hyperspectral Images
Based on Dictionary Learning and Compressed Sensing,
Yanshan University, Qinhuangdao, China, 2013.

[2] L. Wand and Y. Fend, “Compressed sensing reconstruction of
hyperspectral images based on spatial-spectral multihypo-
thesis prediction,” Journal of Electronics and Information
Technology, vol. 37, no. 12, pp. 3000–3008, 2015.

[3] X. H Ma and S. X. Guo, “Compressed sensing and sparse
decomposition of hyperspectral remote sensing image,”
Journal of Jilin University:Science Edition, vol. 53, no. 4,
pp. 767–772, 2015.

[4] Y. B. Jia, Y. Fend, X. L. Yuan et al., “Block compressed sensing
sampling and reconstruction using spectral prediction for
hyperspectral images,” Journal of Applied Sciences, vol. 32,
no. 3, pp. 281–286, 2014.

[5] S.-H. Hsien, T.-H. Huang, C.-S. Lu, Y.-C. Chen, and S.-C. Pei,
“A secure compressive sensing-based data gathering system
via cloud assistance,” IEEE, vol. 6, no. 1109, pp. 31840–31853,
2018.

[6] L. Xue, Z. Wang, and Y. Chen, “Multi-target tracking algo-
rithm based on TLD under dynamic background,” In-
ternational Journal of Hybrid Information Technology, vol. 8,
no. 7, pp. 267–276, 2015.

[7] L. Gao, J. Liu, C. Qian, and R. Local, “Optimization or-
thogonal matching pursuit for sparse signal reconstruction in
compressive sensing,” IEEE Transactions on Information
(eory, vol. 5, no. 38, pp. 1766–1780, 2017.

[8] Y. Zhang, “*eory of compressive sensing via ℓ1-minimiza-
tion: a non-RIP analysis and extensions,” Journal of the
Operations Research Society of China, vol. 1, no. 1, pp. 79–105,
2013.

[9] J. Zhang, C. Zhao, D. Zhao, and W. Gao, “Image compressive
sensing recovery using adaptively learned sparsifying basis via
L0 minimization,” Signal Processing, vol. 103, pp. 114–126,
2014.

[10] X. Kang, S. Li, and J. A. Benediktsson, “Spectral-spatial
hyperspectral image classification with edge-preserving fil-
tering,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 52, no. 5, pp. 2666–2677, 2014.

[11] B. Huang, H. Song, H. Cui, J. Peng, and Z. Xu, “Spatial and
spectral image fusion using sparse matrix factorization,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 52, no. 3,
pp. 1693–1704, 2014.

[12] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-res-
olution using deep convolutional networks,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 2, pp. 295–307, 2016.

[13] W. Xie, Y. Li, and C. Ge, “Reconstruction of hyperspectral
image using matting model for classification,” Optical Engi-
neering, vol. 55, no. 5, article 053104, 2016.

[14] J. Zabalza, J. Ren, J. Zheng et al., “Novel segmented stacked
autoencoder for effective dimensionality reduction and fea-
ture extraction in hyperspectral imaging,” Neurocomputing,
vol. 185, no. 12, pp. 1–10, 2016.

[15] J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, and W. Gao,
“Image compressive sensing recovery via collaborative spar-
sity,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 2, no. 3, pp. 380–391, 2012.

[16] W. Zhao and S. Du, “Spectral-spatial feature extraction for
hyperspectral image classification: a dimension reduction and
deep learning approach,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, no. 8, pp. 4544–4554, 2016.

International Journal of Optics 11


