Research Article

Design and Numerical Analysis of a Novel Rectangular PCF (R-PCF)-Based Biochemical Sensor (BCS) in the THz Regime

Abdullah Al-Mamun Bulbul 1, Abbas Z. Kouzani 1,2, M. A. Parvez Mahmud 1,2 and Abdullah-Al Nahid 1

1Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
2School of Engineering, Deakin University, Geelong, VIC 3216, Australia

Correspondence should be addressed to Abdullah-Al Nahid; nahid.ece.ku@ku.ac.bd

Received 7 January 2021; Revised 22 January 2021; Accepted 5 February 2021; Published 19 February 2021

Copyright © 2021 Abdullah Al-Mamun Bulbul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel PCF-based sensor has been presented in this paper to sense different chemicals and biocomponents. The proposed biochemical sensor (BCS) comprises a simple arrangement of rectangular holes. The competence of this BCS in detecting analytes is evaluated employing the full-vector finite element method (FEM). Performance metrics prove the competence of this BCS in sensing various analytes that have a refractive index in the range of 1.33–1.48. The proposed BCS shows ultralow values for both the bulk absorption and confinement loss. This BCS attains a maximum of about 95.82% relative sensitivity at 2.5 THz. Also, the dispersion for this sensor is only 0.12 ± 0.011 ps/THz/cm at the same point of interest. These results prove that the proposed BCS will play a key role in sensing toxic chemicals, illegal drugs, biocomponents, etc. Besides, the simple rectangle-based PCF structure ensures the feasibility of fabrication by practicing the existing fabrication strategies.

1. Introduction

The terahertz (THz) band is gaining high popularity as an apposite operating region for diverse application fields like spectroscopy, sensing, astrophysics, hereditary, biomedical, and telecommunication [1–8]. This band offers a broad frequency band extending from 0.1 to 10 THz. An entire THz system requires 3 basic elements that include the waveguide, source, and detector. The development of THz source and detector elements in recent years has accelerated THz-based sensing. Besides, numerous THz waveguides, for instance, the Bragg waveguide [9], metal wires [10], metallic tubes [11], etc., have been proposed recently. However, most of these waveguides fail to achieve higher relative sensitivity. To avoid this problem, several photonic crystal fibre (PCF)-based THz waveguides have been proposed in recent years.

Researchers have successfully modelled PCF-based chemical and biosensors functioning in the THz band. As a sensor, PCF is applied to sense multiple chemical and biological elements, for example, the detection of adulteration [12], salinity [13], bane chemicals [14], blood components [5], and cholesterol [15]. This sensor resolves the snags of conventional fibres by maintaining higher diversity and standard values for optical parameters. Besides, this type of sensor is much faster than the existing detection systems. One of the splendid properties of this sensor is the tunability of the optical parameters through careful adjustment of the size, position, and structure of the core and cladding hole of the PCF. Also, this type of sensor offers a lot more advantageous features that includes higher relative sensitivity, lower material and confinement loss (CL), light weight, robustness, cheaper, etc. All these features have widened the potential application of PCF-based sensors in chemical and bio-sensing applications, which includes the study of RNA and DNA [16–18], detection of cancerous cells [19–21], classification and detection of alcohol [22–26], detection of formalin [27, 28], and surface plasmon resonance-based biosensors [29–31].

Since the last decades, several refractive index (RI)-based chemical and biosensors have been proposed. In [5],
a PCF-based biosensor is proposed. The model is a simple rectangle-based PCF (R-PCF) structure that will be capable to sense a wide variety of chemicals and biocomponents. Hence, there is still scope to model a chemical sensor comprising rectangles that will be capable to sense a wide variety of chemicals and biocomponents. Keeping the strut value constant, we have tuned the OPTmodel by ±10% to represent a comparison among their parameters for the two models resulted from the tuning of the strut value. The model represented in Figure 1 has resulted from the trial and error method. Through modelling different structures and comparing their optical parameters, this model has been chosen due to its dominant results. We have denoted this model as the optimum (OPT) model.
Figure 1: The x-y plane representation of the proposed R-PCF-based BCS.

Figure 2: Wave propagation profile for the proposed R-PCF-based BCS. (a) x-PoM and (b) y-PoM.

Table 1: Design parameters for three variations of the sensor model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Radius (μm)</th>
<th>PML (μm)</th>
<th>Strut (μm)</th>
<th>Cr (W) (μm)</th>
<th>Cr (H) (μm)</th>
<th>Cl1 (W) (μm)</th>
<th>Cl1 (H) (μm)</th>
<th>Cl2 (W) (μm)</th>
<th>Cl2 (H) (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT − 10%</td>
<td>675</td>
<td>67.5</td>
<td>10</td>
<td>370</td>
<td>360</td>
<td>180</td>
<td>900</td>
<td>180</td>
<td>360</td>
</tr>
<tr>
<td>OPT</td>
<td>750</td>
<td>75</td>
<td>10</td>
<td>410</td>
<td>400</td>
<td>200</td>
<td>1000</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>OPT + 10%</td>
<td>825</td>
<td>82.5</td>
<td>10</td>
<td>450</td>
<td>440</td>
<td>220</td>
<td>1100</td>
<td>220</td>
<td>440</td>
</tr>
</tbody>
</table>
3. Fabrication Feasibilities

In earlier stages, PCF fabrication was considered to be implemented using the stack and draw method [55], but this method fails to satisfactorily fabricate the PCF models with a complex and asymmetrical arrangement of holes [56]. To resolve these issues, several more methods have been advanced, which include drilling [57], sol-gel [58], extrusion [59], 3D-printing [46], etc. These methods are capable to fabricate complex PCF structures. The sol-gel method can potentially perform the fabrication of the PCF model with circular holes. On the other hand, both the 3D-printing and extrusion methods fabricate the asymmetrical PCF models, which include rectangular, square, and elliptical holes. The proposed BCS comprises a mono-rectangular core and a cladding with eight rectangular air holes. Hence, both 3D-printing and extrusion will be a suitable choice to fabricate the proposed R-PCF-based BCS. Besides, the fibre with rectangular holes guarantees the heterodyne detection [41, 42]. A few asymmetrical PCF models have been fabricated recently by the Max Planck Institute [46, 47]. The institute has successfully fabricated different PCF models comprising the elliptic, rectangle, etc. This clearly ensures the feasible fabrication of the proposed PCF structure comprising a simple arrangement of rectangles using the existing fabrication strategies.

The core of the BCS needs to be infiltrated with the target sample. There are several available techniques for the selective filling of PCF; for instance, selective filling by collapsing air holes [60], by splicing single-mode fibre [61], by femtosecond laser micromachining [62], etc. Among these strategies, we prefer the selective filling by the femtosecond laser micromachining method. This method comprises three steps. First, the PCF is spliced with a normal single-mode fibre. Then, the single-mode fibre is cut near to spliced junction using FL. Finally, selective laser drilling is performed to make a path to the core or target holes using FL. Through these three steps, the fibre will be prepared to be infiltrated with the target sample. The method has proved its higher efficiency, preciseness, and flexibility, and thereby, it has become a dependable technique of SF [63].

To assess the potentiality of the presented BCS in this paper, several optical parameters need to be calculated. These parameters are estimated separately for each analyte. Filling the core with the target analyte, light is injected into the core. Though the light should be bound into the core, a portion of light spreads outside the core region. The true sensing area, also known as the EA, is the measure of light spreading. The EA is evaluated following the equation, where E defines the transverse electric field [5, 33].

\[
EA = \frac{\left(\int \left| E \right|^2 dx \, dy \right)^2}{\int \left| E \right|^4 dx \, dy} \times \mu m^2. \tag{1}
\]

The numerical aperture (NA) is a measure of the range of angles of the incident light that can enter and exit from a fibre. It is a unitless parameter, which is a function of the EA, the speed of light (c), and the operating frequency (f). Higher NA is desirable for sensing applications, and this desired value results from lower EA. The value for this parameter is calculated using the following equation [64]:

\[
NA = \frac{1}{\sqrt{1 + \pi f^2 \left(EA \right)^2 / c^2}}. \tag{2}
\]

The EML is the loss of optical power due to the absorption of the fibre materials. Zeonex, the fibre material of the proposed BCS, is responsible for this loss. Appropriate designing of the PCF model and lessening the background region will keep the EML at a negligible level. Following the perturbation theory [33, 65], equation (3) has been used to compute this key parameter for the proposed BCS.

\[
EML = \frac{\sqrt{\varepsilon_0 / \mu_0} \int \eta_\Delta \varepsilon_\Delta^2 |E|^2 d\xi d\eta}{\int (1/2) (E \times H) d\xi d\eta}, \text{cm}^{-1}. \tag{3}
\]

The denominator of equation (3) represents the integral of the Poynting vector, where H stands for the magnetic field strength. ε_0 and μ_0 stand for the free space permittivity and permeability, respectively. η and α represent the RI and absorption coefficient, respectively.

The use of zeonex as a fibre material may introduce a negligible amount of material dispersion [66]. Hence, this dispersion can be avoided, and the only dispersion that needs to be considered is the waveguide dispersion. A PCF with flat dispersion facilitates the examination of the capability of the fibre to inherit multichannel signals. Therefore, the quality of signal propagation from the source to the sink can be evaluated through this parameter. The dispersion (D) for the proposed BCS is estimated using the following equation [67, 68]:

\[
D = 2 \frac{d\eta_{\text{eff}}}{c} \frac{d\omega}{d\omega} + \frac{\omega d^2 \eta_{\text{eff}}}{c d\omega^3}, \text{ps/THz/cm}, \tag{4}
\]

where ω and η_{eff} represent the angular frequency and the effective RI, respectively.

Another key parameter that has an impact on the sensing performance is the CL. This loss results from improper PCF structure and the leaky nature of the mode. Hence, a proper PCF model can result in a reduced CL value. The amount of CL is quantified using the following equation:

\[
CL = \frac{4 \pi f}{c} \times \text{Im} (\eta_{\text{eff}}), \text{cm}^{-1}. \tag{5}
\]

The most important optical parameter that directly computes the sensing performance of any PCF-based sensor is the relative sensitivity (RS). This parameter is directly proportional to the power fraction (P_γ), which quantifies the amount of light power present in the core compared with the entire injected power. The relative sensitivity for the proposed BCS is calculated using
\[
\text{RS} = \frac{P_f \times \eta_a}{\eta_{\text{eff}}} = \frac{\int_{\text{all}} \text{Re}(E_xH_y - H_xE_y)\,dx\,dy}{\int_{\text{all}} \text{Re}(E_xH_y - H_xE_y)\,dx\,dy} \times \left(\frac{\eta_a}{\eta_{\text{eff}}} \right), \%
\]

where \(\eta_a \) denotes the RI of the analyte.

5. Simulation Results

Different types of analytes or target samples are injected into the core region of the sensor separately and once at a time. Then, the light propagation through the core region of the proposed BCS provides us with different values for the optical parameters for different types of analytes.

5.1. Optimum Model Selection. To validate the selection of the OPT model as the BCS in this paper, we have first carried out the values of the optical parameters for the OPT – 10%, OPT, and OPT + 10% models. We have performed this simulation for the analyte with 1.44 RI.

The values of EffA in \(x \)- and \(y \)-PoM for the three models in the THz band are shown in Figures 3(a) and 3(b), respectively. Since EffA is a measure of how light is spread inside the PCF, the lower values for it is desirable. The lowest value of it is attained for the OPT – 10% model, whereas the highest value is found for the OPT + 10% model. The curve for the EffA for the OPT model lies between the other two models. The OPT model exhibits 98975 \(\mu \)m\(^2\) and 99121 \(\mu \)m\(^2\) in \(x \)- and \(y \)-PoM, respectively, at 2.5 THz.

The NA indicates the efficiency of a PCF in collecting light. A higher value of NA is expected for every PCF-based chemical sensor. Figure 4 depicts the values of NA in the THz band for the three models. The OPT – 10% model shows the highest NA, while the OPT attains a NA of 0.2104 at 2.5 THz.

The EML in \(x \)- and \(y \)-PoM are presented in Figures 5(a) and 5(b) separately. In the case of \(x \)-polarization, the OPT – 10% model has the lowest EML of about 0.0058 cm\(^{-1}\) at 2.5 THz. Again, the OPT – 10% model shows the lowest EML of about 0.0057 cm\(^{-1}\) at 2.5 THz in \(y \)-PoM. However, the OPT model has an EML of only 0.0058 cm\(^{-1}\) in the \(x \)- and \(y \)-polarization mode, respectively, at the same point which is very close to the lowest value.

Figure 6 represents the dispersion for the three models in the THz band. All three models show low dispersion, but the OPT and OPT + 10% model show lower dispersion compared with the OPT – 10% model. However, all three models exhibit nearly flat dispersion in the frequency band ranging from 1.5 to 3 THz.
from 2.4 to 3.0 THz. The values of dispersions are 0.1467 ± 0.0129, 0.1206 ± 0.0116, and 0.1206 ± 0.0116 ps/THz/cm in these frequency range for OPT -10%, OPT, and OPT $+10\%$ model, respectively.

The CL in x- and y-PoM for the three models are presented in Figures 7(a) and 7(b), respectively. All the models show ultra-low CL in the THz band. The lowest values in both x- and y-PoM are attained for the OPT model at 2.5 THz. The numerical values of CL for the OPT model in x- and y-PoM are 3.20×10^{-12} and 9.00×10^{-12} cm$^{-1}$ at 2.5 THz.

Figures 8(a) and 8(b) are the representation of the relative sensitivity for the three models in x- and y-PoM. The OPT $+10\%$ model exhibits dominant relative sensitivity in both x- and y-PoM compared with the other two models since relative sensitivity is a function of the core power fraction, which is higher for this model. The values of relative sensitivity attained at 2.5 THz for the OPT $+10\%$ model are 95.99 and 95.94%, respectively. On the other hand, the OPT model attains 95.20 and 95.13% relative sensitivity in x- and y-PoM, respectively, at the same frequency.

Table 2 represents the numerical values of the optical parameters for the three models. The optimum values are marked in italics. This italic marking shows that none of the three models is dominant for all the parameters. Considering a trade-off among the optical parameters, the OPT model has been chosen as the BCS in this paper. The OPT model maintains a balance between the losses and relative sensitivities. To attain higher power fraction, relative sensitivity, and NA as well as lower EML, EA, dispersion, and CL are the key objectives for any type of PCF-based sensors. As no particular model among the OPT -10%, OPT, and OPT $+10\%$ model has attained standard values for all the parameters at the same time, we have to select a model that has nearly attained typical values for the parameters. Hence, we have selected the OPT model as the BCS in this study.

5.2. Optimum Strut Selection. To evaluate the optimum value of strut for our BCS, we have varied the values of it and evaluated the optical parameters for each time. We have simulated the OPT model for three values of strut, i.e., 7.5 μm, 10 μm, and 12.5 μm. We have performed this simulation for the analyte with 1.44 RI.

Figures 9(a) and 9(b) show the value of EffA in the THz band in x- and y-PoM, respectively, for three dissimilar values of the strut. The 7.5 μm strut model has the lowest value for EffA at 2.5 THz in both x- and y-PoM. The values of EffA for the 10 μm strut model in x- and y-PoM are between the values of EffA for the other two models.
Figure 7: Representation of the CL for the three models in the THz band. (a) x-PoM and (b) y-PoM.

Figure 8: Depiction of the relative sensitivity for the three models as a function of the THz band. (a) x-PoM and (b) y-PoM.

Table 2: Comparison of the optical parameters for the three model sat 2.5 THz.

<table>
<thead>
<tr>
<th>Model</th>
<th>EffA_X (μm2)</th>
<th>EffA_Y (μm2)</th>
<th>NA</th>
<th>EML_X (cm$^{-1}$)</th>
<th>EML_Y (cm$^{-1}$)</th>
<th>Dispersion (ps/THz/cm)</th>
<th>CL_X (cm$^{-1}$)</th>
<th>CL_Y (cm$^{-1}$)</th>
<th>RS_X (%)</th>
<th>RS_Y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT – 10%</td>
<td>82939</td>
<td>83051</td>
<td>0.2288</td>
<td>0.0058</td>
<td>0.0057</td>
<td>0.1467 ± 0.0129</td>
<td>1.13 × 10$^{-12}$</td>
<td>3.11 × 10$^{-10}$</td>
<td>94.18</td>
<td>94.09</td>
</tr>
<tr>
<td>OPT</td>
<td>98975</td>
<td>99121</td>
<td>0.2104</td>
<td>0.0060</td>
<td>0.0058</td>
<td>0.1206 ± 0.0116</td>
<td>3.20 × 10$^{-12}$</td>
<td>9.00 × 10$^{-12}$</td>
<td>95.20</td>
<td>95.13</td>
</tr>
<tr>
<td>OPT + 10%</td>
<td>116435</td>
<td>116610</td>
<td>0.1946</td>
<td>0.0061</td>
<td>0.0061</td>
<td>0.1206 ± 0.0116</td>
<td>5.00 × 10$^{-12}$</td>
<td>1.38 × 10$^{-11}$</td>
<td>95.99</td>
<td>95.95</td>
</tr>
</tbody>
</table>
The values of the NA in the THz band for the 7.5 μm, 10 μm, and 12.5 μm strut models are shown in Figure 10. All three models show nearly equal values for the NA. However, the 7.5 μm strut model shows the highest value of 0.2136 for the NA at 2.5 THz. The value of NA for the 10 μm strut model is close to the maximum NA in the THz regime.

The amount of dispersion in the THz band for the three models with different strut values is shown in Figure 12. All these models show nearly flat dispersion from 2.4 to 3.0 THz. The 10 μm strut model exhibits the lowest dispersion at 2.5 THz. The values of dispersion are 0.1223 ± 0.0121, 0.1206 ± 0.0116, and 0.1206 ± 0.0116 ps/THz/cm for 7.5 μm, 10 μm, and 12.5 μm strut models, respectively.

The fluctuation of CL in the x- and y-PoM due to the variation in strut values is revealed in Figures 13(a) and 13(b), respectively. In both PoMs, the CL decreases sharply with the rise in frequency. Though the CL for the 12.5 μm strut model is the lowest initially, the 7.5 μm strut model has the lowest CL at 2.5 THz. The amount of the CL approach nearly zero immediately after 2.0 THz for the three models. However, the 10 μm strut model confirms a lower value of CL in both PoMs at 2.5 THz. The values of CL for the 7.5 μm strut model are 2.66 × 10^{-13} and 7.16 × 10^{-12} cm^{-1} in the x- and y-PoM, respectively, at 2.5 THz. Both these values are very close to the respective values of CL for the 10 μm strut model.

Figures 14(a) and 14(b) depict the values of relative sensitivity as a function of the THz band for the 7.5 μm, 10 μm, and 12.5 μm strut models in x- and y-PoM, respectively. The 7.5 μm strut model shows the highest relative sensitivity for both PoMs throughout the THz band. This model has attained 96.00% and 95.96% relative sensitivity at 2.5 THz for the x- and y-PoM, respectively. On the other hand, the 10 μm strut model shows higher relative sensitivity in both x- and y-PoM compared with the 12.5 μm strut model.
A numerical comparison among the values of optical parameters for the 7.5 \(\mu\)m, 10 \(\mu\)m, and 12.5 \(\mu\)m strut models is shown in Table 3. The standard values attained for each optical parameter are marked in italics. The table reflects that the 7.5 \(\mu\)m strut model has typical values for the optical parameters except for the EML and dispersion. On the other hand, the 10 \(\mu\)m strut model has attained nearly typical values for all the optical parameters maintaining lower losses and higher relative sensitivity. Accounting for this scenario, we have selected the 10 \(\mu\)m strut model in this paper as it balances among the optical parameters through maintaining comparatively lower loss along with higher relative sensitivity.

5.3. RI-Based Analyte Sensing. The optimum PCF structure and the optimum value for the strut have together modelled the proposed BCS of this paper. This sensor is then used to sense different chemicals with different RI. Injecting any particular chemical into the core region of the sensor, the optical parameters have been evaluated for that chemical using the finer mesh analysis. This strategy is repeated several times to evaluate the optical parameters for the chemicals with different RI values ranging from 1.33 to 1.48.

Figures 15(a) and 15(b) describe the effective sensing region in the THz band for the OPT model in \(x\)- and \(y\)-PoM, respectively. For both PoM, the value of EffA decreases with an increase in the light frequency. This property of this sensor indicated that the light intensity inside the core is higher for higher frequencies. The values of EffA are 104980, 104310, 103050, 101910, 100850, 99880, 98975, 98130, and 97341 \(\mu\)m\(^2\) for the chemicals with RI 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48, respectively, at 2.5 THz.

Figure 16 compares the NA of the proposed BCS for chemicals with different RI values. The proposed BCS maintains acceptable values for the NA throughout the THz band. The values of NA are 0.2045, 0.2052, 0.2064, 0.2075, 0.2085, 0.2095, 0.2104, 0.2112, and 0.2121 for the chemicals with RI 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48, respectively, at 2.5 THz.

The values of EML in the \(x\) and \(y\)-PoM for analytes with dissimilar RI are revealed in Figures 17(a) and 17(b) individually. The proposed model maintains low EML for both PoM. The model shows 0.0051, 0.0052, 0.0054, 0.0056, 0.0057, 0.0059, 0.0060, 0.0061, and 0.0062 cm\(^{-1}\) EML for the

![Figure 11: Representation of the EML in the THz band for the three different strut values. (a) \(x\)-PoM and (b) \(y\)-PoM.](image)

![Figure 12: Representation of the dispersion in the THz band for the three strut values.](image)
analytes with 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48 RI respectively at 2.5 THz in the x-PoM.

Figure 18 compares the dispersion of the proposed BCS for different analytes in the THz band. The model maintains ultra-low dispersion for all the analytes. Besides, the model exhibits nearly flat dispersion for the frequency band ranging from 2.4 to 3.0 THz. The values of dispersion found at 2.5 THz are 0.1185 ± 0.01225, 0.1185 ± 0.0123, 0.1201 ± 0.0127, 0.1212 ± 0.0129, 0.1215 ± 0.01325, 0.1184 ± 0.01215, 0.1206 ± 0.0116, 0.1176 ± 0.0112, 0.122 ± 0.0131 for the analytes with 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48 RI respectively.

The comparison of CL of the proposed BCS in the x- and y-PoM for different analytes are pictured in Figures 19(a) and 19(b), respectively. In both the propagation modes, the CL approaches absolute zero immediately after 2.0 THz. This indicates higher light confinement inside the core of the sensor model. The values of CL are 6.92 × 10^-10, 4.28 × 10^-10, 1.64 × 10^-10, 6.30 × 10^-11, 2.40 × 10^-11, 8.90 × 10^-12, 3.20 × 10^-12, 1.10 × 10^-12, and 3.00 × 10^-13 cm^-1 for the analytes with 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48 RI respectively.
Table 3: Comparison of the optical parameters for the three strut values at 2.5 THz.

<table>
<thead>
<tr>
<th>Strut (µm)</th>
<th>EffA_X (µm²)</th>
<th>EffA_Y (µm²)</th>
<th>NA</th>
<th>EML_X (cm⁻¹)</th>
<th>EML_Y (cm⁻¹)</th>
<th>Dispersion (ps/THz/cm)</th>
<th>CL_X (cm⁻¹)</th>
<th>CL_Y (cm⁻¹)</th>
<th>Cl (%)</th>
<th>RS_X (%)</th>
<th>RS_Y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>95849</td>
<td>96289</td>
<td>0.2136</td>
<td>0.0061</td>
<td>0.0059</td>
<td>0.1223 ± 0.0121</td>
<td>2.66 × 10⁻¹³</td>
<td>7.16 × 10⁻¹²</td>
<td>96.00</td>
<td>95.96</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>98975</td>
<td>99121</td>
<td>0.2104</td>
<td>0.0060</td>
<td>0.0058</td>
<td>0.1206 ± 0.0116</td>
<td>3.20 × 10⁻¹²</td>
<td>9.00 × 10⁻¹²</td>
<td>95.20</td>
<td>95.13</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>101775</td>
<td>101131</td>
<td>0.2076</td>
<td>0.0059</td>
<td>0.00564</td>
<td>0.1206 ± 0.0116</td>
<td>7.93 × 10⁻¹²</td>
<td>3.17 × 10⁻¹¹</td>
<td>94.24</td>
<td>94.16</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15: Comparison of the EAs in the THz band for different analytes with different RI. (a) x-PoM and (b) y-PoM.

Figure 16: Representation of the numerical apertures in the THz band for different RI.
with RI 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48, respectively, in the x-PoM at 2.5 THz.

The relative sensitivity profile in the x- and y-PoM are revealed in Figures 20(a) and 20(b), respectively. The proposed model shows higher relative sensitivity for the chemicals with higher RI. The relative sensitivities are 92.45, 92.79, 93.41, 93.95, 94.83, 95.20, 95.53, and 95.82% for the analytes with RI 1.33, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, and 1.48, respectively, in the x-PoM at 2.5 THz, whereas in the y-PoM, the proposed BCS has attained slightly lower relative sensitivities compared with the x-PoM.

The numerical comparison of the optical parameters for different analytes is presented in Table 4.

The performance indices of the proposed BCS are compared with the other sensors in Table 5. Compared with
Figure 19: Comparison of the CL of the proposed model in the THz band for different analytes. (a) x-PoM and (b) y-PoM.

Figure 20: Depiction of the relative sensitivity profiles of the proposed model for different analytes. (a) x-PoM and (b) y-PoM.

Table 4: Comparison of the sensing performance of the proposed model for different analytes at 2.5 THz.

<table>
<thead>
<tr>
<th>RI</th>
<th>EffA_x (μm^2)</th>
<th>EffA_y (μm^2)</th>
<th>NA</th>
<th>EML_x (cm^-1)</th>
<th>EML_y (cm^-1)</th>
<th>Disp. (ps/THz/cm)</th>
<th>Cl_x (cm^-1)</th>
<th>Cl_y (cm^-1)</th>
<th>Rs_x (%)</th>
<th>Rs_y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>104980</td>
<td>103690</td>
<td>0.2045</td>
<td>0.0051</td>
<td>0.0049</td>
<td>1.1185 ± 0.01225</td>
<td>6.92 × 10^-10</td>
<td>2.10 × 10^-9</td>
<td>92.45</td>
<td>92.45</td>
</tr>
<tr>
<td>1.34</td>
<td>104310</td>
<td>103290</td>
<td>0.2052</td>
<td>0.0052</td>
<td>0.005</td>
<td>1.1185 ± 0.0123</td>
<td>4.28 × 10^-10</td>
<td>1.28 × 10^-9</td>
<td>92.79</td>
<td>92.67</td>
</tr>
<tr>
<td>1.36</td>
<td>103050</td>
<td>102460</td>
<td>0.2064</td>
<td>0.0054</td>
<td>0.0052</td>
<td>1.1201 ± 0.0127</td>
<td>1.64 × 10^-10</td>
<td>4.80 × 10^-10</td>
<td>93.41</td>
<td>93.30</td>
</tr>
<tr>
<td>1.38</td>
<td>101910</td>
<td>101610</td>
<td>0.2075</td>
<td>0.0056</td>
<td>0.0054</td>
<td>1.1212 ± 0.0129</td>
<td>6.30 × 10^-11</td>
<td>1.80 × 10^-10</td>
<td>93.95</td>
<td>93.85</td>
</tr>
<tr>
<td>1.40</td>
<td>100850</td>
<td>100760</td>
<td>0.2085</td>
<td>0.0057</td>
<td>0.0066</td>
<td>1.0215 ± 0.01325</td>
<td>2.40 × 10^-11</td>
<td>6.70 × 10^-11</td>
<td>94.42</td>
<td>94.34</td>
</tr>
<tr>
<td>1.42</td>
<td>99880</td>
<td>99931</td>
<td>0.2095</td>
<td>0.0059</td>
<td>0.0057</td>
<td>0.1184 ± 0.01215</td>
<td>8.90 × 10^-12</td>
<td>2.50 × 10^-11</td>
<td>94.83</td>
<td>94.76</td>
</tr>
<tr>
<td>1.44</td>
<td>98975</td>
<td>99121</td>
<td>0.2104</td>
<td>0.006</td>
<td>0.0058</td>
<td>0.1120 ± 0.0116</td>
<td>3.20 × 10^-12</td>
<td>9.00 × 10^-12</td>
<td>95.20</td>
<td>95.13</td>
</tr>
<tr>
<td>1.46</td>
<td>98130</td>
<td>98340</td>
<td>0.2112</td>
<td>0.0061</td>
<td>0.006</td>
<td>0.1176 ± 0.0112</td>
<td>1.10 × 10^-12</td>
<td>3.00 × 10^-12</td>
<td>95.53</td>
<td>95.47</td>
</tr>
<tr>
<td>1.48</td>
<td>97341</td>
<td>97590</td>
<td>0.2121</td>
<td>0.0062</td>
<td>0.0061</td>
<td>0.122 ± 0.0131</td>
<td>3.00 × 10^-13</td>
<td>1.00 × 10^-12</td>
<td>95.82</td>
<td>95.77</td>
</tr>
</tbody>
</table>
the other sensors, the proposed model has typical values for all the optical parameters.

6. Conclusions

This paper presents a simple rectangular-based BCS operating in the THz regime. This BCS can effectively be applied for both biocomponents and chemicals detection purposes. The sensing performance of this sensor is evaluated for the frequency band that ranges from 1.5 to 3.0 THz. Besides, the proposed BCS comprises a simple arrangement of rectangles, which will ensure the feasible fabrication of this sensor. The sensor attains a maximum of 95.82% relative sensitivity at 2.5 THz. Also, this sensor suffers from a negligible amount of EML and CL. Due to its ultra-lower losses and ultra-higher relative sensitivities, this BCS model can effectively and efficiently be applied in biochemical sensing applications for different samples with dissimilar RI ranging from 1.33 to 1.48.

Data Availability

This is a simulation-based study, and no external data have been used.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Abdullah Al-Mamun Bulbul, Abbas Z. Kouzani, M. A. Parvez Mahmud, and Abdullah-Al Nahid conceptualized the study. Formal analysis was performed by Abdullah Al-Mamun Bulbul. Funding acquisition was done by Abbas Z. Kouzani and M. A. Parvez Mahmud. Abdullah Al-Mamun Bulbul and Abdullah-Al Nahid investigated the study. Methodology was developed by Abdullah Al-Mamun Bulbul, M. A. Parvez Mahmud, and Abdullah-Al Nahid. Project administration was carried out by Abbas Z. Kouzani and M. A. Parvez Mahmud. Resources were obtained by Abbas Z. Kouzani and M. A. Parvez Mahmud. Supervision was done by Abbas Z. Kouzani, M. A. Parvez Mahmud, and Abdullah-Al Nahid. Abbas Z. Kouzani and Abdullah-Al Nahid validated the study results. Abdullah Al-Mamun Bulbul, M. A. Parvez Mahmud, and Abdullah-Al Nahid contributed to study visualization. Writing of original draft was performed by Abdullah Al-Mamun Bulbul and Abdullah-Al Nahid. Review and editing were done by Abbas Z. Kouzani and M. A. Parvez Mahmud.

Acknowledgments

The authors are grateful to Deakin University, Geelong, VIC 3216, for providing resources for this research.

References

Table 5: Comparison of the proposed BCS with existing sensors.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>RI</th>
<th>Freq. (THz)</th>
<th>EffA (μm²)</th>
<th>NA</th>
<th>EML (cm⁻¹)</th>
<th>Dispersion (ps/THz/cm)</th>
<th>ConfL (cm⁻³)</th>
<th>Sensitivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>1.33, 1.35, 1.38</td>
<td>1.5</td>
<td>166000</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>2.93 × 10⁻¹⁴</td>
<td>79.91</td>
</tr>
<tr>
<td>[32]</td>
<td>1.33, 1.354, 1.366</td>
<td>1.0</td>
<td>144000</td>
<td>—</td>
<td>—</td>
<td>2.5 × 10⁻¹⁴</td>
<td>63.24</td>
<td></td>
</tr>
<tr>
<td>[14]</td>
<td>1.366, 1.394, 1.44</td>
<td>1.8</td>
<td>—</td>
<td>—</td>
<td>0.009</td>
<td>1.71 × 10⁻¹⁴</td>
<td>94.40</td>
<td></td>
</tr>
<tr>
<td>[33]</td>
<td>1.3326–1.3505</td>
<td>1.8</td>
<td>397340</td>
<td>—</td>
<td>—</td>
<td>0.004</td>
<td>4.87 × 10⁻¹¹</td>
<td>91.50</td>
</tr>
<tr>
<td>[34]</td>
<td>1.33, 1.354, 1.366</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.02 × 10⁻⁸</td>
<td>78.06</td>
<td></td>
</tr>
<tr>
<td>[69]</td>
<td>1.33, 1.354, 1.366</td>
<td>1.7</td>
<td>—</td>
<td>0.42</td>
<td>0.028</td>
<td>0.275</td>
<td>1.23 × 10⁻⁸</td>
<td>89.00%</td>
</tr>
<tr>
<td>[70]</td>
<td>1.41, 1.45</td>
<td>2.5</td>
<td>97341</td>
<td>0.2121</td>
<td>0.0051</td>
<td>0.1176 ± 0.0112</td>
<td>3.00 × 10⁻¹³</td>
<td>95.82</td>
</tr>
<tr>
<td>Proposed BCS</td>
<td>1.33–1.48</td>
<td>2.5</td>
<td>97341</td>
<td>0.2121</td>
<td>0.0051</td>
<td>0.1176 ± 0.0112</td>
<td>3.00 × 10⁻¹³</td>
<td>95.82</td>
</tr>
</tbody>
</table>

[40] M. Erdmanis, D. Viegas, M. Hautakorpi, S. Novotny, J. L. Santos, and H. Ludvigsen, "Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an..."