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�e propagation properties of partially coherent circular �at-topped (FT) vortex hollow/nonvortex beams are studied in an-
isotropic turbulent plasma.�e analytical expression of the optical intensity of these beams is obtained by employing the extended
Huygens–Fresnel integral. �e e�ects of the source and turbulent plasma parameters on the intensity distribution of partially
coherent circular FT vortex hollow/nonvortex beams are analyzed numerically. �e results show that partially coherent circular
FT vortex hollow/nonvortex beams will �nally converge into a Gaussian intensity pro�le at increasing propagation distances. �e
results also showed that the partially coherent FT vortex hollow/nonvortex beams with higher coherence are less a�ected by
anisotropic turbulent plasma than the less coherent beams.

1. Introduction

�e propagation of laser beams in atmospheric turbulence
has received great interest in the past decades because of
their applications in remote sensing and free-space optical
communication systems [1–3]. On the other hand, hyper-
sonic turbulence (due to turbulence in the �ow of a high-
speed �ight vehicle) is an important factor in understanding
optical propagation and optical communication [4].In fact,
when an aircraft or spacecraft pierces the Earth’s atmosphere
with exceedingly high-speed (hypersonic), the gas envi-
ronment surrounding the hypersonic aircraft will rub
against the aircraft body causing a hypersonic plasma sheath
to surround the aircraft. Many experiments have con�rmed
that such a plasma sheath has anisotropic turbulence
properties [5, 6]. �e presence of anisotropic turbulent
plasma sheaths around the vehicles can have a strong in-
�uence on the communication characteristics between the
vehicles and radars. It can perturb communication and in
some circumstances may lead to a disconnection [7, 8].In
recent years, the propagation of various laser beams in
anisotropic turbulent plasma has been investigated exten-
sively [9–13].

Vortices are de�ned as phase singularities because they
consist of a dark center and a spiraling phase front, where the
phase is inde�nite in the center. In 1992, Allen et al. [14]
proved that a vortex beam can carry an orbital angular
momentum (OAM). Due to the perpendicularity and
completeness of OAM, the OAM has in�nite-dimensional
Hilbert space and can carry in�nite-dimensional informa-
tion, so it allows for an increase in the channel transmission
capacity. �us, it has been widely used in optical commu-
nication systems in free space and turbulent environments
[15].

In 1994, Gori [16] found the �at-topped beam is derived
from the fundamental Gaussian beam by introducing an
order of �atness parameter. In medical applications and
many practical applications, such as material processing and
inertial con�nement fusion, the �at-topped spatial beam
pro�le is often required. When the �at-topped beam passes
through a spiral phase plate, it becomes a �at-topped vortex
hollow beam [17, 18]. �e phase of the �at-topped vortex
hollow beam can be adjusted by the spiral phase plate. �e
main advantages of the �at-topped vortex hollow beam are
that it carries the orbital angular momentum that has many
applications in atomic optics, and the �at-topped vortex
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hollow beam keeps the dark hollow spot in the far �eld; these
can expand beam applications such as long-distance stealth
detection and invisible control. Very recently, some studies
have been conducted on the propagation of the partially
coherent FT beam and partially coherent �at-topped vortex
hollow beam [19–23].

To the best of our knowledge, there are no detailed
investigations on the propagation of vortex hollow/non-
vortex of a partially coherent circular FT beam in anisotropic
turbulent plasma.�is paper is devoted to studying the beam
evolution properties through anisotropic turbulent plasma
based on the extended Huygens–Fresnel formula, and the
analytical expressions for the intensity are derived. We will
focus our studies on the e�ects of the source and turbulent
plasma parameters on the intensity distribution, beam width
and beam quality, and the comparison of the intensity
distribution versus the propagation distance between par-
tially coherent circular �at-topped vortex hollow and
nonvortex beams in anisotropic turbulent plasma.

2. The Wave Structure Function through the
Anisotropic Turbulent Plasma

�e wave structure function describing a spherical wave
propagating in anisotropic turbulent plasma is shown in
Figure 1 and can be expressed as [24]

Dψ r1′−r2′( )�8π2k2z∫
1

0
dξ∫
∞

0
dκκΦn(κ)

1−J0 κ (1−ξ) r1−r2( )+ξ r1′−r2′( )
∣∣∣∣

∣∣∣∣( )[ ],

≃2Dsp(z) r1−r2( )2+ r1−r2( ) r1′−r2′( )+ r1′−r2′( )2[ ],
(1)

where

Dsp(z) �
π2k2z

3
∫
∞

0
κ3Φn(κ)dκ , (2)

where k � 2π/λ is the wave number, in which λ is the in-
cident wavelength and z is the beam propagation distance.
Dsp(z) � 1/ρ20(z), in which ρ0(z) is the coherence length of
a spherical wave propagation in anisotropic turbulent

plasma, κ ≡ (κx, κy) is the transverse spatial frequency, and
Φn(κ) is the anisotropic refractive index power spectrum of
turbulent plasma being transformed from the modi�ed von
Karman spectrum and is expressed as follows [25]:

Φn(κ) � a1
64π〈n21〉L

2
0 m1 − 1( )

1 + 100κL20( )
m1

exp −
κ
κ0

( ), (3)

where 〈n21〉 is the variance of the refractive index �uctuation,
m1 is a constant m1 � 4 − d,d is the fractal dimension of the
anisotropic turbulent plasma, and L0 is the outer scale of
anisotropic turbulent plasma. Here, a1 is a �tting parameter,
which can be expressed as a1 � 475(κ0)

2m1 where
κ0 � (2π/l0)

m1− 0.7 in which l0 represents the inner scale of
anisotropic turbulent plasma.�e relation between L0 and l0
can be expressed as follows [26]:

L0
l0
� R(3/4)e , (4)

where Re represents the Reynolds number. For the fully
developed turbulence in the mixing layer, Re � 5 × 105,
d � 2.6, and m1 � 1.4. If the outer scale L0 � 0.1m, then the
inner scale l0 � 5.3 × 10− 6m. Considering the large-scale
asymmetric structure of turbulence eddies on the path, the
anisotropic spectrum can be expressed as follows [24]:

Φn κ′( ) � a1
64π〈n21〉L

2
0 m1 − 1( )

1 + 100κL20( )
m1

exp −
κ
κ0′

( ), (5)

where κ′ � |κ′| �
��������������
ξ2xκ2x + ξ2yκ2y + κ2z
√

will be isotropic in the
stretched wave number space κ′ � (κx′, κy′, κz′), κx′ � ξxκx,
κy′ � ξyκy, κz′ � κz, and ξx and ξy are two anisotropy pa-
rameters representing scale-dependent stretching along the
x and y direction, respectively. It is noted that when
ξx � ξy � 1, Equation (5) reduces itself to isotropic power
spectrum Equation (3). Substituting Equation (5) into
Equation (2) and applying the Markov approximation, we
obtain

Dsp(z) �
32π3k2za1〈n

2
1〉L

2
0 m1 − 1( )

3
ξ2x + ξ2y( )
ξ3xξ

3
y

1
100L20
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4

U 4, 5 −m1,
1

100L20κ0
( ) × Γ(4),

(6)

whereU(a, b, z) is the con�uent hypergeometric function of
the second kind and Γ(·) is the gamma function.

3. The Partially Coherent Flat-Topped Vortex
Hollow Beam of Circular Symmetry in
Anisotropic Turbulent Plasma

In the Cartesian coordinate system, the electric �eld of a
circular �at-topped vortex hollow beam at the source plane
(z � 0) is expressed as follows [17]:

z

x

Figure 1: Sketch of hypersonic turbulence (�gure from [24]).
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where r′ � (x′, y′) is the position vector at the source plane,
N is the order of the circular �at-topped vortex hollow beam,
w0 denotes the beam width, and l is the topological charge.
Figure 2(b) shows the normalized intensity distribution of
the circular �at-topped vortex hollow beam for di�erent
values of N; when l � 0, Equation (7) will reduce to the
electric �eld of a �at-topped nonvortex beam (Figure 2(a)).

�e cross-spectral density characterizes the spatial
correlations of the �eld at pairs of points r1′ and r2′ at the
source plane and can be de�ned as follows [27]:

W r1′, r2′, 0( ) �〈E r1′, 0( )E∗ r2′, 0( )〉,
� A r1′( )A r2′( )g r1′ − r2′( ),

(8)

where E(ri′, 0) is the electric �eld of a fully coherent optical
vortex beam and ri′ is the position vector at the source plane,
i � 1, 2. �e angular brackets denote an ensemble average,
while the asterisk ∗ denotes the complex conjugate, A(ri′)
represents the amplitude, and g(r1′ − r2′) denotes the cor-
relation function between two points r1′ and r2′, which can be
expressed as follows [27]:

g r1′ − r2′( ) � exp −
r1′ − r2′( )2

2σ2
 , (9)

where σ denotes the spatial coherence length. �en the
cross-spectral density of a partially coherent �at-topped
vortex hollow beam of circular symmetry at the source plane
can be calculated as follows:
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(10)

By using the extended Huygens–Fresnel integral for-
mula, the cross-spectral density of the partially coherent
circular �at-topped vortex hollow beam in anisotropic
turbulent plasma can be expressed as follows [25, 28]:

Wout r1, r2, z( ) �
k

2πz
( )

2

BWin r1′, r2′, 0( )

exp −
ik

2z
r1 − r1′( )2 − r2 − r2′( )2[ ]{ }

×〈exp ψ∗ r1′, r1, z( ) + ψ r2′, r2, z( )[ ]〉d2r1′d
2r2′,

(11)

where ψ is the random part of the complex phase of a
spherical wave propagating through anisotropic turbulent
plasma. Over the ensemble of the statistical realization of the
random medium, we can write the equation as follows [29]:

〈exp ψ∗ r1′( , r1, z( ) + ψ r2′, r2, z( )[ ]〉 � exp −
Dψ r1′ − r2′( )

2
[ ]

≃ −Dsp(z) r1 − r2( )2 + r1 − r2( ) r1′ − r2′( ) + r1′ − r2′( )2[ ],
(12)
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Figure 2: Normalized intensity distribution at the source plane before beam passing through anisotropic turbulent plasma forw0 � 1 cm.(a)
Circular �at-topped nonvortex beam and (b) circular �at-topped vortex hollow beam.
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where J0 is the zero-order Bessel function and Dψ(r1′ − r2′) is
the wave structure function through anisotropic turbulent
plasma, which is given in Equation (1). Now, substituting
Equations (10) and (12) into Equation (11), we get
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Since the optical intensity of the partially coherent light
is given by I(r, z) � W(r, r, z) [27], then the optical intensity
of a partially coherent circular flat-topped vortex hollow
beam can be written as
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Using the following expression [30], we get

(x + iy)
n
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t
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and by applying the integral formula [31], we derive the
following equation:

􏽚
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Using the following expression for the Hermite function
Hq(x) [30], we get
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'e integration in Equation (14) can be evaluated, and
finally, we obtain

Iout(r,z) �
k

2πz
􏼠 􏼡

2

􏽘

N

m�1
􏽘

N

n�1

(−1)
m+n

N
2

N!

m!(N − m)!

N!

n!(N − n)!

􏽘

l

t�0

i
t
l!

t!(l − t)!

1
w0

􏼒 􏼓
l

􏽘

l

s�0

(−i)
s
l!

s!(l − s)!

1
w0

􏼒 􏼓
l

× (l − t)!

��π
a1

􏽲 1
a1

􏼠 􏼡

l− t

exp −
1
a1

k

2z
x􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

􏽘

(l−t/2)

d1�0

1
d1! l − t −2d1( 􏼁!

a1

4
􏼒 􏼓

d1
􏽘

l−t−2d1

t1�0

l − t −2d1( 􏼁!

t1! l − t −2d1 − t1( 􏼁!

×
ik

2z
x􏼠 􏼡

l− t−2d1− t1 1
2σ2

+ Dsp(z)􏼒 􏼓
t1

2− l+s− t1 i
l−s+t1

exp
c
2
1

b1
􏼠 􏼡

��π
b1

􏽲 1
��
b1

􏽰􏼠 􏼡

l−s+t1

Hl−s+t1
−i

c1��
b1

􏽰􏼠 􏼡}

× (t)!

��π
a2

􏽲 1
a2

􏼠 􏼡

t

exp −
1
a2

k

2z
y􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

􏽘

(t/2)

d2�0

1
d2! t −2d2( 􏼁!

a2

4
􏼒 􏼓

d2
􏽘

t−2d2

t2�0

t −2d2( 􏼁!

t2! t −2d2 − t2( 􏼁!

ik

2z
y􏼠 􏼡

t−2d2− t2

×
1
2σ2

+ Dsp(z)􏼒 􏼓
t2

2−s−t2 i
s+t2

exp
c
2
2

b2
􏼠 􏼡

��π
b2

􏽲 1
��
b2

􏽰􏼠 􏼡

s+t2

Hs+t2
−i

c2��
b2

􏽰􏼠 􏼡}.

(18)

Equation (18) is the analytical expression of the optical
intensity of the partially coherent circular FT vortex hollow
beam in anisotropic plasma turbulence, where

a1 � a2 �
n

w
2
0

+
1
2σ2

+
ik

2z
+ Dsp(z) ,

b1 � b2 �
m

w
2
0

+
1
2σ2

−
ik

2z
+ Dsp(z) −

1
a1

1
2σ2

+ Dsp(z)􏼔 􏼕
2

,

c1 �
1
a1

1
2σ2

+ Dsp(z)􏼢 􏼣
ik

2z
x −

ik

2z
x ,

c2 �
1
a1

1
2σ2

+ Dsp(z)􏼢 􏼣
ik

2z
y −

ik

2z
y .

(19)
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4. Numerical Results and Discussion

In this section, we numerically investigate the e�ects of the
source and turbulent plasma parameters on the evolution
properties of partially coherent circular FT vortex hollow
and nonvortex beams and the comparison of the intensity
distribution versus the propagation distance between par-
tially coherent circular FT vortex hollow and non-vortex
beams in anisotropic turbulent plasma. �e beam param-
eters are taken as follows (unless the other values of pa-
rameters are speci�ed in the �gure): the order of the circular
FT beamN � 3, the topological charge for the vortex hollow
beam l � 1and nonvortex beam l � 0, the beam width
w0 � 1cm, the wavelength λ � 1550nm, and the spatial
coherence length σ � 1mm, whereas the anisotropic tur-
bulent plasma parameters are taken as follows: the outer and
inner scales of the turbulence L0 � 0.1m and l0 � 5 × 10− 6m,

respectively, the refractive index �uctuation variance
〈n21〉 � 0.73 × 10− 20, and anisotropy parameters ξx � 2, ξy �
1 [24].

4.1.  e E�ects of the Turbulent Plasma Parameters on Beam
Evolution. Figures 3–5 have presented the intensity distri-
bution of partially coherent FT vortex hollow/nonvortex
beams under the in�uence of anisotropic turbulent plasma
parameters. From Figure 3, we can see that by increasing the
anisotropic parameter ξx, the axial intensity distribution of
both nonvortex and vortex hollow beams increases, while
the beam size becomes narrower as shown in Figures 3(a)
and 3(b). �e intensity distribution in Figure 3(a) shows a
circular FT beam pro�le evolving into a Gauss-like beam as a
result of the decreasing anisotropy parameter ξx, and from
Figure 3(b), it can be seen that decreasing the anisotropy
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Figure 3: Cross-sections of the intensity distribution of the partially coherent circular: (a) �at-topped nonvortex beam and (b) �at-topped
vortex hollow beam in anisotropic turbulent plasma for di�erent values of the anisotropy parameter ξx (z � 1m).
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Figure 4: Cross-sections of the intensity distribution of the partially coherent circular: (a) �at-topped nonvortex beam and (b) �at-topped
vortex hollow beam in anisotropic turbulent plasma for di�erent values of the outer scale L0 (z � 1m).
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Figure 5: Cross-sections of the intensity distribution of the partially coherent circular: (a) �at-topped nonvortex beam and (b) �at-topped
vortex hollow beam in anisotropic turbulent plasma for di�erent values of the refractive index �uctuation variance 〈n21〉 (z � 1m).
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Figure 6: Cross-sections of the intensity distribution of the partially coherent circular: (a) �at-topped nonvortex beam and (b) �at-topped
vortex hollow beam in anisotropic turbulent plasma for di�erent values of the spatial coherence length σ (z � 1m).
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Figure 7: Cross-sections of the intensity distribution of the partially coherent circular: (a) �at-topped nonvortex beam and (b) �at-topped
vortex hollow beam in anisotropic turbulent plasma for di�erent values of the order of the circular �at-topped beam N (z � 1m).
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parameter ξx leads to a decrease in the dark hollow center of
the vortex hollow beam; the pro�le of the partially coherent
FT vortex hollow beam evolves into the Gauss-like beam for
the lower value of ξx. �ese results indicate that the an-
isotropy in turbulent plasma reduces the turbulence e�ect on
the evolution behavior of intensity distribution.

Figure 4 shows the variations of the partially coherent FT
nonvortex and vortex hollow beams in anisotropic turbulent
plasma for di�erent values of the outer scale of the plasma
turbulence L0. It is observed that the pro�les of partially
coherent FT nonvortex and vortex hollow beams become
smaller with increasing L0, while the axial intensity drops as
L0 decreases as shown in Figures 3(a) and 3(b). We can see
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Figure 8: Cross-sections of the intensity distribution of the partially coherent circular �at-topped vortex hollow beam in anisotropic
turbulent plasma for di�erent values of the topological charge l at (a)z � 1m and (b)z � 2m.
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from Figure 4(a) that the intensity distribution pro�le for a
circular �at-topped beam evolves into a Gauss-like beam
with the decrease of L0. For a partially coherent FT vortex
hollow beam, Figure 4(b) indicates that when the outer scale
of the turbulence enlarges, the dark hollow center of the
beam increases.

Figures 5(a) and 5(b) show the partially coherent FT
vortex hollow and nonvortex beam in anisotropic turbulent
plasma for di�erent values of the variance of the refractive
index 〈n21〉. From these �gures, we can see that the axial
intensity drops as 〈n21〉 increases, and the beam size (FT
nonvortex and FT vortex hollow beams) becomes wide. �e
intensity distribution in Figure 5(a) presents a circular �at-
topped beam pro�le that evolves into a Gauss-like beam as a
result of increasing the variance of the refractive index 〈n21〉.
One can see from Figure 5(b) that for a small variance of the
refractive index 〈n21〉, the intensity distribution retains a
dark hollow pattern. In this case, the e�ect of turbulent
plasma on the beam is not noticeable, while for a large
variance of the refractive index 〈n21〉, the in�uence of the
variance of the refractive index 〈n21〉 on the propagation of
the beam becomes more noticeable, and the pro�le of the

hollow intensity is destroyed and becomes Gaussian
distribution.

4.2.  e E�ects of the Source Parameters on Beam Evolution.
Figures 6 and 7 present the modi�cations on the intensity
distribution of partially coherent FT vortex hollow and
nonvortex beams under the in�uence of the source pa-
rameters. To investigate the in�uences of spatial coherence
length σ on the spreading properties of partially coherent FT
nonvortex and vortex hollow beams, the cross-sections of
the intensity distribution of partially coherent FTnonvortex
and vortex hollow beams propagating in anisotropic tur-
bulent plasma for di�erent values of the spatial coherence
length σ are given in Figure 6. From Figures 6(a) and 6(b),
we can see that the axial intensity drops as σ decreases, while
the beam size does not change. As shown in Figure 6(b),
increasing the spatial coherence length σ increases the dark
hollow center of the partially coherent FT vortex hollow
beam. �erefore, when the partially coherent FT vortex
hollow beam propagates in anisotropic turbulent plasma, the
change of the intensity distribution is a�ected by the spatial
coherence of the source.
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Figure 10: �e normalized intensity distribution of the partially coherent circular FT vortex hollow beam and FT nonvortex beam in
anisotropic turbulent plasma for di�erent values of propagation distances: (a)z � 0m, (b)z � 1m, (c)z � 1.3m, and (d)z � 3m.
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Figure 7 shows the cross-sections of the intensity dis-
tribution of partially coherent circular FT nonvortex and
vortex hollow beams for different values of the order of the
circular flat-topped beam N. From Figures 7(a) and 7(b), we
can see that the beam size becomes wider with the increase in
N, and it is found that the partially coherent circular
nonvortex and vortex hollow beams with larger orders of the
circular flat-topped beam can keep the beam profile better
when the beam propagates in turbulent plasma. From
Figure 7(b), it is seen that increasing N can increase the dark
hollow center of the FT vortex hollow beam.

Figure 8 show cross-sections of normalized intensities
for partially coherent circular flat-topped vortex hollow
beams propagating through turbulent plasma for the dif-
ferent topological charge l. As can be seen, the beam with
larger l has the larger dark hollow center in the near field
(Figure 8(a)), and the beam with the different l will evolve
into a Gauss-like beam with an increase in the propagation
distance (Figure 8(b)) due to the influence of turbulent
plasma. It can be noted that the beam with larger l will lose
its initial dark hollow center slowly.

4.3. &e Comparison of the Intensity Distribution versus the
Propagation Distance. From Figure 9, we can see that the
intensity of both partially coherent FTnonvortex and vortex
hollow beams gradually decreases and becomes weaker with
increasing propagation distance z, and also, one can find
that the beam significantly expands during the propagation.
For comparison, the corresponding results of partially co-
herent flat-topped nonvortex and vortex hollow beams are
shown together propagating in anisotropic turbulent plasma
for different values of propagation distance z as shown in
Figure 10. From Figures 10(a)–10(d), as can be seen, the
partially coherent flat-topped vortex hollow beam propa-
gating in turbulent plasma can keep its initial dark center at a
short propagation distance (Figure 10(a)). As the propa-
gation distance z increases, the beam will lose its initial dark
center and evolve into a Gaussian-like beam. 'e reason for
this phenomenon is that as the transmission distance of the
dark hollow center beam increases, the dark hollow center
beam expands due to turbulence and diffraction, among
which the expansion towards the center of the dark hollow
causes the spot center to breakdown. It is worth noting that a
general optical beam will finally converge into a Gaussian
intensity profile at increasing propagation distances, and this
result is in a good agreement as shown by the authors in [32].

5. Conclusions

In this paper, the partially coherent circular FT vortex
hollow/nonvortex beams propagating in anisotropic tur-
bulent plasma have been investigated by using the extended
Huygens–Fresnel diffraction integral. We have analyzed and
discussed the dependence of the beam evolution on the
anisotropic turbulent plasma parameters, source parame-
ters, and the propagation distance by using numerical ex-
amples. It can be seen from our results that the partially
coherent circular FT vortex hollow/nonvortex beams evolve

into Gaussian-like beams because of a decrease in the an-
isotropy parameter ξx and outer scale L0 or increase in the
refractive index fluctuation variance 〈n2

1〉. It is found that
when the beam propagates in anisotropic turbulent plasma,
the partially coherent FT vortex hollow/nonvortex beams
with high order N and topological charge l of the circular FT
beam can keep the beam profile better. It is to be noted that
these results may be useful for optical communications.
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'e extended Huygens–Fresnel integral that we applied to
obtain the analytical expression of the optical intensity of
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wave structure function of a spherical wave propagating in
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