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In the paper, we applied the customized AI module to the OTDR device and, combined with the optical power monitoring
module, realized the AI-assisted optical network fault location mechanism for the high-density interconnection scenario of data
centers.Temechanism canmake full use of the data from optical links. Based on the link data, the AImodule can predict the links
that may fail, and then the target links will be monitored by the optical power module. Te mechanism can quickly locate and
respond to faulty links. Trough the test, the introduction of an AI model can improve the average fault detection efciency of the
link by 98.41%.

1. Introduction

As the data center gets bigger and bigger and the topological
structure becomes more and more complex, a data center
failure is a disaster that can cause the loss of huge amounts of
data and the interruption of large calculations. At the same
time, as the number of devices and links increases rapidly,
the frequency of failure in optical networks of data centers
increases and the number of alarms increases, which makes
it difcult to locate faults and takes more time to rectify
faults. How to locate the fault quickly and accurately from
a large number of alarm devices has proven to be a thorny
problem [1].

As reported by the Federal Communications Commis-
sion (FCC), more than one-third of service disruptions are
caused by fber-cable problems [2]. Terefore, automatic
monitoring and diagnosis of optical fber links are very
benefcial. By introducing machine learning (ML) in data
centers, it will not only revolutionize the (mainly manual
and human) approach to the traditional management of
fber-optic network fault management [3]. It also helps
optical network operators plan and schedule their mainte-
nance activities more efciently [4] and thereby save
CAPEX/OPEX and reduce the time to repair (MTTR) by
quickly discovering and pinpointing the link faults. Tis

enables operators to more easily meet service level agree-
ments (SLAs) and improve customer satisfaction by re-
ducing downtime and improving network quality. In 2018,
Rafque et al. [5, 6] proposed an optical layer fault detection
architecture based on machine learning and defned four
types of optical layer fault types. It was suggested to acquire
and collect optical power monitoring data through the
southbound interface of SDON, conduct data analysis
through the ANN algorithm, and upload data analysis re-
sults through the northbound interface. In the same year,
Huawei put forward the optical service fault prediction
scheme combining artifcial intelligence and big data
technology, mainly taking the bit error rate (BER) and
optical power as input to predict the optical service fault, and
cooperated with operators to carry out the initial verifcation
of the OTN live network. Te prediction accuracy is 85%,
which not only improves the robustness of their network but
also reduces the network cost of inspection. Chen et al. [7]
proposed a DNN-based optical transmission link fault de-
tection scheme in which the clustering module of un-
supervised learning and the DNN module of supervised
learning were integrated to analyze the internal relationship
between optical power and the alarm log to detect link faults.
However, the above work only realizes the fault prediction
and does not consider the problem of fault location.
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Te optical time-domain refectometer (OTDR) is the
most common way for quality evaluation and fault location
of optical fbers [8]. At present, the commonly used data
center fault monitoring scheme is to adopt optical switch
polling and optical power monitoring. However, in the case
of high-density interconnection of optical networks in data
centers, fault detection in this way still consumes a lot of
time, which is not conducive to troubleshooting and solving
faults. In [4], the author proposes an OTDR optimization
scheme based on LSTM. A LSTM model is used to predict
possible faults according to OTDR detection results.
However, this method requires continuous use of OTDR to
detect link conditions, and the existing data center operation
and maintenance data cannot be fully utilized. In this paper,
based on the model that was realized in [9], an AI auxiliary
judgment and failure location platform was designed and
implemented. By using the operational data collected from
optical network link, AI module predicts possible failure of
the link, platform will send instructions to the optical switch
according to the prediction result and monitor the optical
power of optical links that may fail. Once the optical power is
below the threshold, OTDR is enabled for link detection.
After the test, the average fault detection efciency of the link
increased by 98.41%.

Tis paper is organized as follows: Section 2 describes the
system architecture and equipment introduction. Section 3
introduces the AI model that is used in our system. Practical
application and performance analysis of the platform are
discussed in Section 4. Conclusions are drawn in Section 5.

2. The Architecture of the Platform

Te architecture diagram of our test is shown in Figure 1.
Te AI-assigned monitoring platform collects data from the
optical link in real-time.Tese data are used by the AI model
to predict the status of the optical link. According to the
prediction result, the platform issues instructions to the
optical switch array, which will switch the predicted failure

link in turn before the next instruction arrives. At the same
time, equipment A monitors the power of the link and starts
the OTDR to detect the link when the power is lower than
the threshold. Te above workfow is shown in Figure 2.

Figure 3 is the architecture of equipment A.
In Figure 3, the laser produces a 1650 nm laser burst

according to the pulse generator.Te pulse enters the optical
link through the circulator. Uplink light from the optical link
enters the WDM flter module through the circulator.
Uplink light and 1650 nm backward scattering light enter
modules B, which is used for OTDR data acquisition and
processing, and C, which is used to calculate optical power.
Te calculation result is sent to the AI-assisted monitoring
platform.

3. AI Model Used in the Platform

Tis section includes a theoretical introduction and the
results of the failure prediction model. Part A is mainly
about the LSTM model for each feature. Part B shows the
classifcation result of the SVM model.

3.1. LSTMModel. A typical LSTM neural network with cell,
input gate, forget gate, and output gate, as shown in Figure 4.
Memory-cell takes input from the output of the LSTM
neural network in the last iteration. Te input-gate obtains
a new input point from outside and processes newly coming
data. Forget-gate decides when to forget the output results,
which selects the optimal time lag for the input sequence.
Te output-gate takes all the results calculated and generates
output for the LSTM neural network cell. Compared with
traditional RNNs, LSTM avoids the problem of gradient
disappearance or gradient expansion while learning faster.

We chose six features for the training of the LSTM
model, such as laser bias current, input optical power, output
optical power, OSNR, temperature in the model, and de-
tection point temperature. We show LSTM results for the
four features below. Other results can be seen in the paper
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Figure 1: Diagram of AI-assisted failure location platform.
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[9]. Te left image shows the loss of the LSTM model in
training and validation, and the right image shows the
comparison of test data and the LSTM model’s prediction
result.

Figure 5 shows the results of using LSTM for Laser Bias
Current prediction. It can be seen from the results that the
validation loss is less than 0.001, and the model has high
accuracy in the prediction of laser bias current.

Figure 6 shows the results of using LSTM for input
optical power prediction. It can be seen from the results that
the validation loss is less than 0.005 and the model has high
accuracy in the prediction of input optical power.

Figure 7 shows the results of using LSTM for output
optical power prediction. It can be seen from the results that
there are a few less accurate numbers, but overall the results
are accurate.

Figure 8 shows the results of using LSTM for OSNR
prediction. According to the prediction results, the pre-
diction results of OSNR are relatively low compared with the
actual data, which will be optimized in the follow-up work.

3.2. SVM Model. Te SVM is essentially a binary classif-
cation algorithm that screens the support vectors from the
training data and uses them to establish a decision function
[10, 11]. In practical application, in the case of linear in-
separability, the kernel function of SVM can realize the
mapping from a low-dimensional space to a high-
dimensional space and transform the two types of points
in the low-dimensional space into linearly separable points,
as shown in Figure 9.

Te trained SVM model is used to classify the optical
network status data predicted by the LSTMmodel and judge
whether it belongs to the failure state. We compare the
classifcation results of the SVM model with the true results

and calculate the accuracy according to (1). Te calculation
accuracy is 90.63%. When we calculate the failure accuracy
according to (2). Te calculation result is 99.38%, which
means the AI module can predict almost all failures.

Accuracy �
TP + TN

TP + FP + TN + FN
, (1)

Failure Accuracy �
TN

TN + FN
, (2)

where TP represents true positive, TN represents true
negative, FP represents false positive, and FN represents false
negative.

As shown in Figure 10, to facilitate the presentation of
the results, we divided the SVM classifcation results into ten
pieces and counted the accuracy, TN, FN, and corre-
sponding true network failure numbers, respectively. By the
way, the fuctuation between each accuracy is related to the
result distribution.

From Figure 10, the number of TN is very close to the
actual number of failures, which means that the failure
prediction accuracy is very high. Results FN show that some
faultless links are predicted to be faulty links, and we will
compensate for this defciency by monitoring the optical
power of links predicted to be faulty.

4. Result Analysis

Tis section will show the performance of the platform in
practical application.

Figure 11 shows the details of link channel 3 in normal
condition when the optical switch array changes the link in
turn without an AI module. “Optical power” shows the
current power of channel 3, whose value is −7.979 dBm.
“Distance” represents the length of the optical link. “OTDR”
is set as “manual,” which means the parameters shown in the
fgure are the result of manually turning on the OTDR
probe. Figure 12 shows the logs of optical switch polling.

When the AI module predicts link failure, it will send an
instruction to the optical switch array and record some
prediction logs in platform. Figure 13 is the screenshot of the
recorded prediction logs. Figure 14 shows logs that the
optical switch array changes the link according to the AI
prediction result.

Figure 15 shows the monitoring results of optical power
when the link failure predicted by AI occurs. Te OTDR
mode is set to auto, which means that when the optical
power is abnormal, OTDR detection is automatically started.
Te optical power of link channel 3 currently detected is
−54.457 dBm. Te value of “distance” is 9852.35, which
means there is a breakpoint at 9852.35m. Te curve of the
OTDR detection is shown in Figure 16.

We can see from the fgure above that there is a dramatic
change in the curve near 10,000meters, which is the position
of the breakpoint.

Figure 17 shows the comparison of the time con-
sumption between the conventional polling detection
method and the AI-based detection method when a random
fault occurs in 1024 links.Te calculation formula is (3). Te
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Figure 2: Workfow of the proposed mechanism.
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introduction of an AI model increases the average failure
detection efciency of failure links by 98.41%.

Efficiency �
t1 − t2

t1
, (3)

where t1 represents the time consumption of discovering
failure links without using the AI model, and t2 represents
the time consumption of discovering failure links with the
AI model.
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Figure 3: Main components of the equipment A.
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Figure 4: Schematic diagram of the LSTM model.
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Figure 5: Laser Bias Current predicted by LSTM.
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Figure 6: Input optical power predicted by LSTM.
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Figure 7: Output optical power predicted by LSTM.
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Figure 8: OSNR predicted by LSTM.
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Figure 9: Schematic diagram of the SVM model.
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Figure 10: Te failure prediction result of the AI model.

Figure 11: Monitoring diagram of link channel 3 by the platform without AI module.

Figure 12: Logs of optical switch polling.
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Figure 15: Link channel 3 failure monitoring diagram assisted by AI module.

Figure 13: Screenshot of failure prediction result logs.

Figure 14: Logs of optical switch that is switched based on the predicted result.
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Figure 16: Diagram of OTDR detection curve.
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From the efciency curve, we can see that the in-
troduction of an AI model greatly reduces the time of failure
detection and improves the efciency of the equipment.

5. Conclusion

In this paper, we design an AI-assisted optical link failure
prediction and failure location platformbased onAImodule and
test its performance. Te optical power monitoring can com-
pensate for the shortage of the AI model, which may predict the
normal state as the failure state. At the same time, the in-
troduction of an AImodel increases the average failure detection
efciency of a failure link by 98.41%. Tis greatly improves the
efciency of failure detection and location in data centers.
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