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In order to meet the heavy backprojection calculation of the backprojection fltration (BPF) algorithm in circular cone-beam
computed tomography (CT), a fast backprojection method is developed, which uses the integral operator of the fxed scanning
angle integral interval.Te proposedmethod combines with Hilbert fltration and the flter of the Blackman window, and then, the
fast BPF (F-BPF) algorithm is obtained. Te experimental results of simulation data and real data demonstrate that the proposed
algorithm is fast enough for high-quality reconstructed images only with half-circle projection data.

1. Introduction

Cone-beam computed tomography (CT) technologies
have been widely applied in diferent applications [1–3],
such as micro-CT and cone-beam tomography used in
radiotherapy [4–6]. It is common that the size of the feld
of view (FOV) is smaller than that of an imaging object,
which leads to transverse truncation in projection data.
From such truncated data, conventional reconstruction
algorithms will generate various truncation artifacts,
such as Feldkamp–Davis–Kress (FDK) algorithm [7].
Even the iterative algorithm also gives inaccurate images
[8–10].

In recent years, the backprojection fltration (BPF) al-
gorithm for the reconstruction of CT images was proposed
based on PI-line segments in helical cone-beam CT [11–13],
which could realize the accurate reconstructed images of the
region of interest (ROI) [14, 15]. Due to the wide application
of circular cone-beam CT [16, 17], the BPF algorithm is
extended to the image reconstruction of circular cone-beam
CTon account of virtual PI-line segments [18].Te extended
BPF algorithm reconstructs the exact reconstructed images
in the middle plane and the approximate reconstructed
images in the nonmiddle planes. It provides a way to solve

the image reconstruction of truncation data caused by
limited FOV size [19].

In the process of the implementation of the BPF algorithm
in circular cone-beam CT, the scanning angles of the two end
points of each PI-line segment are diferent and need to be
calculated. Te scanning angle integration interval of all
reconstructed points in the backprojection calculation of the
FDK algorithm is the same. However, the scanning angle
integration interval of the points on diferent PI-line segments
in the backprojection calculation of the BPF algorithm is
diferent. It causes the heavy cost of the backprojection cal-
culation and the difculty of implementation using parallel
computation [20]. Te problem obstructs the use of the BPF
algorithm in practical circular cone-beam CT, although the
BPF algorithm can realize the image reconstruction with
truncation data in a short scan [21]. To solve it, the fast BPF (F-
BPF) algorithm was developed and verifed with numerical
simulation and the real data reconstruction in this paper.

Te rest of the paper is arranged as follows:Te theory of
the conventional BPF algorithm and the F-BPF algorithm is
described in Section 2. Both numerical simulation and real
data reconstruction are carried out to demonstrate the
proposed algorithm in Section 3. Finally, a conclusion is
given in Section 4.
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2. Theory

In the following, we briefy introduce the conventional BPF
algorithm and then propose the F-BPF algorithm in circular
cone-beam CT.

2.1.ConventionalBPFAlgorithm. Te implementation of the
conventional BPF algorithm mainly includes two steps. Te
frst step is to calculate the backprojection of the derivatives
of the weighted projection data on PI-line segments. Te
second step is to perform fnite Hilbert fltering on the
backprojection data along the PI-line segments. Te re-
construction formula of the BPF algorithm is given as fol-
lows [22]:
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→′, and λ1 and λ2 are the projection
angles of the two end points on the PI-line segment.

Combining (1) and (2), the reconstruction formula of the
conventional BPF algorithm can be written as follows:
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where (xc, λ1, λ2) is another representation of r
→ with its

coordinates on the PI-line segment, C denotes the projection
value along the PI-line segment, and (xc1, λ1, λ2) and
(xc2, λ1, λ2) are the representations of two end points of the
PI-line segment.

Generally, a group of equally spaced parallel segments on
diferent planes are selected as PI-line segments in circular
cone-beam CT, where the backprojection formula is written
as follows:
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where R is the distance from the X-ray source to the rotation
axis, S is the distance from the X-raysource to the detector,
(ud, vd) is the coordinate of the projection of r

→′ on the
detector, A �

����������
u2

d + v2d + S2
􏽱

, and P(ud, vd, λ) is the pro-
jection value of the coordinate position (ud, vd) at the
scanning angle λ.

2.2. F-BPF Algorithm. In circular cone-beam CT, the
conventional BPF algorithm must calculate the projection
angles of the two end points of every PI-line segment,
which leads to lower reconstruction efciency and is not
conducive to parallel computing. Tus, a fast approximate

backprojection method is proposed by use of the integral
function with a fxed integral interval.

Te proposed backprojection function is
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where the line connecting the X-ray source at the views of
0 and π is supposed to be parallel to the PI-line and in the
center of the imaging region, which implies that λ1 is close to
0 and λ2 is close to π.

From (2) and (5), the absolute uncertainty of new
backprojection is obtained by

2 International Journal of Optics



∆g r
→′

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽚

π

0

ds

r
→′

− r
→

0(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

z

zq
D r

→
0(q), β

→
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
q�s

− 􏽚
λ2

λ1

ds

r
→′

− r
→

0(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

z

zq
D r

→
0(q), β

→
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q�s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽚
π

λ2

ds

r
→′

− r
→

0(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

z

zq
D r

→
0(q), β

→
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
q�s

+ 􏽚
λ1

0

ds

r
→′

− r
→

0(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

z

zq
D r

→
0(q), β

→
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q�s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(6)

Let R0 be the radius of the imaging object and Rr � | r
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Note that |∆g( r
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)|⟶ 0 if λ1⟶ 0. Actually λ1 is close
to 0, so the new backprojection method is feasible.

By (4), the backprojection of the F-FBP algorithm can be
written as
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It is clear that the proposed algorithm possesses three
major advantages. First, it just needs the projection views
from 0 to π. Second, it reduces the time of data acquisition
and reconstruction greatly. Tird, similar to the back-
projection calculation of the FDK algorithm, the scanning
angle integration interval in the backprojection operation of
the BPF algorithm is fxed, so the proposed F-BPF algorithm
is suitable for parallel computing.

In the F-BPF algorithm, the Hilbert transform is
implemented in the frequency domain, which can avoid the
oddity in the time domain and improve reconstruction
efciency. Te Hilbert transform of x(t) can be written as
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To reduce or eliminate spectral energy leakage and barrier
efects, diferent window functions are used to truncate the
signal. Te three commonly used window functions in CT
image reconstruction are the Blackman window, the Hanning
window, and the Hamming window. Te expression for the
Blackman window function is as follows:
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Te expression for the Hanning window function is as
follows:
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Te expression for the Hamming window function is as
follows:
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Te time-domain diagrams of the Blackman window, the
Hanning window, and the Hamming window are shown in
Figure 1. It can be seen that the Blackman window function
has the fastest sidelobe decrease and can efectively suppress
truncation artifacts. Te Blackman window is added as the
flter to improve the imaging quality in the process of the
Hilbert transform [23].

3. Experimental Results and Analysis

In order to verify the efectiveness of the proposed F-BPF
algorithm, we used simulation data and real data for ex-
periments. Te CPU used in the experiments is Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz.

3.1. Simulation Experiments. In the following, the simulation
data were used to verify the efectiveness of the proposed al-
gorithm in this paper. We realized the proposed F-BPF al-
gorithm and the conventional BPF algorithm inMATLAB and
analyzed the experimental results of 256× 256× 256 standard
3D Shepp–Logan head phantom [24]. Te projection data of
360 angles are uniformly generated on the circular scanning
trajectory. Te conventional BPF algorithm used all the cone-
beam projection data, while the F-BPF algorithm used only the
data of 180 projection views from 0 to π.

In Figure 2, we display 2D slices in 3D images recon-
structed by use of the conventional BPF algorithm and the
F-BPF algorithm. Figure 2(a) shows the slice of the 3D
Shepp–Logan model, and Figures 2(b) and 2(c) show the
slices of the reconstruction results by use of the conventional
BPF algorithm and F-BPF algorithm, respectively. In Fig-
ure 3, we also show the profles of the images shown in
Figure 2. Figures 3(a) and 3(b) display the profles of
Figure 2(b) on the middle horizontal line and the middle
vertical line, respectively. Figures 3(c) and 3(d) show the
profles of Figure 2(c) on the middle horizontal line and the
middle vertical line, respectively. Te reconstruction and the
corresponding real profles are expressed by the dotted and
solid curves, respectively.

Te mean square error of the conventional BPF algo-
rithm is 0.0646 and that of the F-BPF algorithm is 0.0694.
Te time to reconstruct the slice using the conventional BPF
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Figure 1: Time-domain diagrams of the Blackman window, the
Hanning window, and the Hamming window.
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Figure 3: Profles of the reconstruction images in Figure 2. (a) Profle of Figure 2(b) on the middle horizontal line. (b) Profle of Figure 2(b)
on the middle vertical line. (c) Profle of Figure 2(c) on the middle horizontal line. (d) Profle of Figure 2(c) on the middle vertical line.

(a) (b) (c)

Figure 2: Reconstruction images by use of the conventional BPF algorithm and the F-BPF algorithm. (a) Shepp–Logan model. (b)
Reconstruction image using the conventional BPF algorithm. (c) Reconstruction image using the F-BPF algorithm.
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algorithm is 111.7 seconds, while the F-BPF algorithm only
costs 6.6 seconds. Te simulation experiments prove that the
proposed algorithm is efective and that its reconstruction
efciency has been greatly improved in contrast with the
conventional BPF algorithm.

Te comparative experiments on the parallel perfor-
mance of the BPF algorithm and the F-BPF algorithm are
also conducted, in which the program development software
is CUDA 9.0 and the GPU is NVIDIA Tesla K20M. Te
experimental results are shown in Table 1. It can be seen that
the acceleration ratio of the BPF algorithm is 289 and that
the acceleration ratio of the F-BPF algorithm is 997. Te
parallel performance of the F-BPF algorithm is improved
compared to that of the BPF algorithm.

3.2. Experiments of Real Data. Next, the real data were used
to further verify the efectiveness of the proposed F-BPF
algorithm. Te real data were obtained using the cone-beam
CT system, which used the X-ray source (Hawkeye 130,
Tales, France) and the fat-panel detector (4343F, Tales,
France) with a pixel size 0.148mm.

3.2.1. Reconstruction of the Printed Circuit Board. In order
to test the performance of F-BPF algorithm, we carried out
the experiments to reconstruct the ROI of the printed circuit
board (PCB) by the FDK algorithm with the complete data
and the F-BPF algorithm with the truncated data. Te rel-
evant parameters for experimental data collection were as

(a) (b)

Figure 4: Reconstructed images by use of the FDK algorithm and F-BPF algorithm. (a) FDK algorithm. (b) F-BPF algorithm.

(a) (b)

Figure 5: Reconstructed images using the F-BPF algorithm. (a) Without the Blackman window. (b) With the Blackman window.

Table 1: Te experimental results about the parallel performance of the BPF and F-BPF algorithms.

Algorithms Reconstruction time (CPU) (s) Reconstruction time (GPU) (s) Acceleration ratio
BPF 28595.2 98.945 289
F-BPF 1689.6 1.695 997
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follows:Te trajectory radius was 477mm, the distance from
the X-ray source to the fat-panel detector was 1265mm, the
size of the ROI was 542× 474× 284 voxels, and the pro-
jection data of 360 angles were uniformly generated on the
circular scanning trajectory. Te F-BPF algorithm used 180
projection views from 0 to π, and the FDK algorithm used
180 projection views evenly distributed over the 2π circular
trajectory.

Figures 4(a) and 4(b) display 2D slices in 3D images
reconstructed by use of the FDK algorithm with non-
truncated data and the proposed F-BPF algorithm with
truncated data. Te reconstruction time of the FDK algo-
rithm is 62minutes, and the proposed algorithm only costs
41minutes. From the reconstruction results, the two algo-
rithms reconstruct images with little diference, and the
correctness of the proposed algorithm is also demonstrated
by real data.

3.2.2. Reconstruction of the Spark Plug. We performed the
experiments on a spark plug to compare the reconstruction
results with and without the Blackman window in the
process of Hilbert fltration. In the circular cone-beam
confguration, the trajectory has a radius of 477mm and
a source-detector distance of 1265mm. Te size of the
reconstructed ROI is 512× 512× 512 voxels. Te cone-beam
data were generated with 180 projection views uniformly
distributed over the π circular trajectory.

In Figure 5, we display the 2D slices in 3D images
reconstructed with and without the Blackman window. In
Figure 6, we also show the profles in the images recon-
structed by the F-BPF algorithm along the middle hori-
zontal line with and without the Blackman window.
Reconstruction quality gets improved after adding the
Blackman window. So adding the Blackman window as
a flter in Hilbert fltration is efective in reducing noise in
real data reconstruction.

4. Discussion and Conclusion

In this paper, we have developed the F-BPF algorithm for
image reconstruction in circular cone-beam CT and then
performed simulation experiments and real data experi-
ments to validate the proposed algorithm. Te results of
simulation show that the proposed algorithm is reliable and
that its reconstruction efciency has been greatly improved
in contrast with the conventional BPF algorithm. Te ver-
ifcation is also demonstrated with real data of PCB, and the
images reconstructed by the FDK algorithm and the pro-
posed algorithm are comparable. Considering the noise
inevitably exists in real data, the reconstruction results of
a spark plug with and without the Blackman window imply
that adding the Blackman window is efective in reducing the
noise in Hilbert fltration.

Te experimental results show that the reconstruction
efciency of the proposed algorithm is a great improvement
over the conventional BPF algorithm, and a remarkable
merit of the proposed algorithm is that it can be perfectly
carried out with only half-circle projection data.Terefore, if
the proposed algorithm is used in an industrial cone-beam
CT system, it will shorten data acquisition and re-
construction time. If the algorithm is used in medical de-
vices, it will perform well in both saving data acquisition and
reconstruction time and reducing their radiation dose to
patients.
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