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To achieve low wavefront error and high throughput with vignetting-free target simulators, a concave-convex-concaveof-
axis spherical system is designed in this paper, which efectively eliminates astigmatism and coma of the system by felds of
view (FOVs) and aperture ofset and provides theoretical basis for the realization of 100% matching between the exit pupil of
the feld lens and entrance pupil of the three-mirror anastigmat (TMA) system. Only spherical mirror element is used in this
target simulator, which not only reduces the difculty of manufacturing and cost but also greatly reduces the difculty of
assembling and adjusting. It provides an efective scheme for the design of target simulator and has strong engineering
application value.

1. Introduction

With the rapid development of remote sensing, optical
systems are moving toward a large FOV and high reso-
lution in many felds, such as space exploration, earth
science, and military applications [1–3]. Tese optical
systems are generally characterized by large aperture, high
precision, and long focal length. In the detection process
of the optical system, it is necessary to use small-diameter
equivalent target to detect and monitor the manufacturing
accuracy of the system; so, the target simulator was born.
Sullivan et al. described the capabilities, design,
manufacturing and integration status, and uses of OSIM,
an optical simulator of the James Webb Space Telescope
(JWST) Optical Telescope Element (OTE) [4]. Toshihiro
proposed a design approach of a coaxis double TMA for
designing a target simulator with a large feld of view
(FOV) [5]. TMA optical systems have strong aberration
correction ability, so that it is easy to get larger FOV,

larger relative aperture, and better imaging quality [6, 7].
Taking the famous Large Synoptic Survey Telescope
(LSST) as an example, this coaxial TMA telescope with
a FOV of 3.5° is composed of an 8.4 m primary mirror,
a 3.4m second mirror, and a 5.0m tertiary mirror [8]. Of-
axis TMA systems have great potential to provide good
optical solutions to meet the requirement of high reso-
lution while maintaining a large FOV [9–12]. Of-axis
confgurations usually make the aperture stop ofset or the
FOV biased to avoid obscuration and achieve a large FOV
[13, 14].

In order to reduce the difculty of manufacturing, cost,
and installation of target simulator, a target simulator is
proposed and designed, which is consisted only with
spherical mirror. Also, the rotationally asymmetric aber-
rations which are mainly astigmatism and coma are
eliminated based on FOVs and aperture ofset. Te engi-
neering feasibility of the design of the target simulator has
been confrmed by simulation analysis.
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2. Selection of the Initial Configuration

For of-axis TMA systems with relay images, there are two
types of confguration design that are widely adopted:
concave-convex-concave systems and convex-concave-
convex systems [7, 15].

Te initial structure of the target simulator is from
Ofner spectrometer structure. Ofner spectrometer
consisted by three mirrors, and it is a fnite remote
imaging system. Concave-convex-concave systems have
a strong ability to correct spherical, coma, astigmatism,
and feld curvature aberrations. In this paper, the fnite
remote target simulator is realized by matching the exit
pupil of the feld lens with the entrance pupil of the
convex-concave-convex TMA system, and the optical
path is shown in Figure 1(a). To simulate the fnite optical
path of the imaging system, the image plane and exit
pupil of the imaging system are taken as the object plane
and entrance pupil of the target simulator, respectively,
as shown in Figure 1(b). Te exit pupil of the TMA
system is located behind the primary mirror (PM), and
all mirrors are spherical, which reduces the difculty of
processing and assembling of the system. Te marginal
ray tracing of the system is shown in Figure 2.

To match the optical path of the imaging system, we
focus on tracing the marginal ray behind the primary
image plane, and the propagation of the marginal ray is
illustrated in Figure 3. u is the paraxial ray’s incident
aperture angle with respect to the optical axis, u′ is the
corresponding exit aperture angle, y represents the
heights of the marginal ray, and t1, t2, t3, and t4 represent
the distance between the entrance pupil and PM, the
distance between PM and the secondary mirror (SM), the
distance between SM and the tertiary mirror (TM), and
the distance between TM and the image plane,
respectively.

We set transmission media refractive index as
n1 � n2′ � n3 � 1, n1′ � n2 � n3′ � −1. For PM, the optical
power can be determined as

φi � ni
′ − ni( 􏼁ci �

2
ri

, (1)

where i (i� 1, 2, 3, 4) represents the PM, SM, TM, and the
image plane, respectively, and ci and ri is the curvature and
radius.

By the paraxial ray tracing, the relationship between the
ray height and the ray slope on diferent mirrors can be
expressed as follows [16]:
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Similarly, the ray tracing of the chief ray can be expressed
as follows:
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According to the Seidel aberration theory, in a rota-
tionally symmetric optical system, fve monochromatic
aberrations, including spherical aberration (SI), coma (SII),
astigmatism (SIII), feld curvature (SIV), and distortion (SV),
can be simplifed as follows:
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where A and A represent the Snell invariant of the marginal
ray and chief ray, respectively, and H is the Lagrange in-
variant, which can be calculated as follows:
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In this paper, our main concerns are about the coma and
astigmatism of the TMA. For a general optical design
process, a specifc Seidel coefcient is expected to be zero to
meet diferent design requirements. An initial confguration
is obtained by setting reasonable initial values.

3. Off-Axis TMA Systems Design

Te parameters of the system are shown in Table 1.Te FOV
distribution of the object space is shown in Figure 4, and ray
tracing in diferent FOVs is marked with diferent colors.
Te PM, SM, and TM are tilted and eccentric to obtain the
initial confguration of the TMA system without central
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Figure 1: Imaging optical path.
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Figure 2: Principle diagram of the marginal ray tracing.
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Figure 3: Ray tracing of the initial coaxial TMA confguration.

Table 1: Design parameters.

Parameters Value
F number 10
Entrance pupil diameter 40mm
Spectral range 0.43∼0.8 μm
Magnifcation 1 :1
Detector pixel size 16 μm
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Figure 4: FOV distribution of the object space.
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Figure 5: Initial confguration of the of-axis TMA system.

Figure 6: Optical layout of the fnal target simulator.

Table 2: Parameters of fnal confguration.

Surfaces Radius Distance (mm) Decenter Y (mm) Tilt X (°)
OBJ Infnity 800.9 0 0
STO Infnity 767.5 0 0
Fold mirror Infnity −750 0 45
Field lens 1389.2mm 2250 0 0
PM −979.63mm −586 −80 4.66
SM −427.76mm 1032.5 98.6 −13.17
TM −1559.07mm −1434.08 443.3 −16.69
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obscuration, as shown in Figure 5. Te of-axis system is an
efective way to avoid the system blocking and vignetting.
Terefore, these two phenomena need not be considered in
the following analysis.

4. Design Results and Tolerance Analysis

4.1. Design Results. Te structure of the fnal optical system
is very compact, as shown in Figure 6. Te detailed pa-
rameters of the system are listed in Table 2. It can be seen in
Figure 7 that the spot radius in the spectral range of
0.43∼0.8 μm is within a single pixel. Figure 8 shows the

modulation transfer function (MTF) of the system and the
MTF is greater than 0.5 at 34 lp/mm.

4.2. Tolerance Analysis. Te tightness of the tolerance di-
rectly determines the difculty of the processing and as-
sembly of the system, so it is necessary to reasonably allocate
the tolerance of the system, and the tolerance distribution is
listed in Table 3.

We performed 100 simulations using Monte Carlo
analysis to predict the performance. Te difractions MTF of
the system in diferent FOVs under diferent probability
distributions are listed in Table 4.
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Figure 7: Spot diagram of the fnal target simulator.
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5. Conclusion

In this paper, by ray tracing of the concave-convex-
concave coaxial system, the initial confguration in which
the exit pupil of the TMA system is matched with the
entrance pupil of the feld lens is obtained, and the
astigmatism and coma of the system are eliminated based

on FOVs and aperture ofset. By optimizing the eccen-
tricity and tilt of the PM, SM, and TM, a low wavefront
error and high throughput with vignetting-free target
simulator is designed. Finally, we analyze the tolerance
and engineering feasibility of the system, which confrms
the validity of the target simulator that all mirrors are
spherical.
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Figure 8: MTF of the fnal target simulator.

Table 3: Tolerance settings.

Surfaces ∆x (mm) ∆y (mm) ∆z (mm) ∆θx ∆θy RMS/λ
Fold mirror — — 0.1 30″ 30″ 1/20
Field lens — — — — — 1/30
PM 0.05 0.05 0.05 40″ 40″ 1/30
SM 0.08 0.08 0.08 35″ 35″ 1/30
TM 0.05 0.05 0.05 40″ 40″ 1/30

Table 4: Monte Carlo tolerance analysis probability results of MTF.

Probability (%) Average MTF MTF of center area MTF of 0.707 area MTF of marginal area
10 0.632 0.675 0.625 0.616
50 0.620 0.621 0.602 0.558
90 0.608 0.615 0.565 0.534
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