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To solve the problems of holes, noise, and texture information missing in the traditional incremental reconstruction of complex
surface objects, a 3D reconstruction method of depth image fusion surface dense point clouds is proposed, and texture feature
creation is combined to obtain a 3D reconstruction model that takes into account the main body and details of the reconstructed
object. First, the mechanism of surface dense reconstruction based on the patch-based multiview stereo (PMVS) algorithm is
analyzed. Combined with the principle of view angle selection of stereo images, surface point cloud density reconstruction is
performed. Ten, the depth value is optimized by the region growing method, and the optimization model is established. Te
depth image is fused into a dense surface, and the reconstructed part is supplemented by the depth information. Finally, the
Markov random feld (MRF) is introduced to describe the richness of image details, and combined with the calculating method of
the area coordinate, the texture coordinates are accurately calculated to reproduce the texture details of the 3D reconstruction
model. 3D reconstruction experiments are performed on multiple indoor and outdoor model surfaces, and the experimental
results show that the proposed method can achieve complete and accurate reconstruction of complex surface objects. Our method
provides technical support for complex surface topography detection and has industrial practical signifcance.

1. Introduction

3D reconstruction is always the most important step in
accurate 3D topography measurement. With the develop-
ment of computer technology and industrial technology,
methods of capturing 3D information have become more
feasible and have been applied in 3D topography mea-
surement, such as the classical methods of capturing 3D
information, laser 3D scanners, and depth cameras [1–3].
However, these active projection technologies have high
requirements for illumination, the high price of 3D scanners,
and the limited resolution of consumer-level depth cameras.
Due to the depth, noise, or the complexity of the special
surface, it is difcult for the scanner to completely restore the
3D structure of the surface during 3D reconstruction for the
weak texture non-Lambert surface and complex surface,
resulting in holes in the model, which cannot reproduce the
surface details well. 3D scene reconstruction technology

based on multiview stereo (MVS) has better performance in
terms of the reliability and adaptability of indoor and
outdoor scene reconstruction [4–6]. Especially with the
increasing resolution and decreasing cost of digital cameras,
dense 3D reconstruction based on multiview images has
become a hot topic in computer vision research. For ex-
ample, many algorithms represented by KinectFusion can
better restore the dense 3D model of the Lambert surface
through RGB-D data collected by consumer cameras [7].
However, this method is not suitable for the 3D re-
construction of large outdoor scenes. Complex surface
objects are blocked by surrounding objects, and there are
still some difcult problems to be solved, such as the blocked
part being difcult to convert from two-dimensional images
to 3D information [8, 9].

In view of the key issues of 3D reconstruction, relevant
research is mainly indicated by factors such as the intelligent
control of the number of feature matching points, accurate
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camera calibration, and point cloud densifcation; the ac-
curacy and speed of model reconstruction have also been
improved over time. Jhony et al. used a new registration
method of 2D-3D-free deformation transformation to im-
prove the model coincidence degree, which has a better
reconstruction efect on objects with a single texture or
smooth surface [10]. Prakoonwit et al. studied a new method
to quickly obtain the surface reconstruction of a 3D model
from a small amount of data and predicted whether the ftted
coordinate points contained features through the optimal
distribution of landmark points [11]. Tis method has the
best efect for simple small targets and has been widely used
in 3D face reconstruction [12, 13]. Sohaib et al. propose
a polarization-based photometric stereo vision shape re-
covery algorithm, which can efectively extract 3D surface
information for some complex parts with concave surfaces
[14]. Polarized 3D imaging technology has developed rapidly
due to its high accuracy, long operating distance, and small
impact from stray light. However, the problem of using the
polarization characteristics of target refected light to solve
the normal vector accurately has not been truly solved,
which has become the bottleneck restricting the develop-
ment of this technique [15, 16]. Te authors in [17] designed
a confdence propagation algorithm based on gray level
similarity probability to solve the problems of weak texture,
shadow, and depth discontinuity. Tis method has an ex-
cellent efect on the 3D point cloud densifcation of objects
in indoor environments. Qiao et al. proposes a 3D re-
construction hole repair algorithm based on structure from
motion (SFM) multiview 3D point cloud organic fusion,
which efectively solves the problem of hole repair on the
surface of objects [18]. Currently, the widely developed 3D
reconstruction method based on deep learning improves the
robustness of stereo matching and the reconstruction ac-
curacy, but it still does not solve the problem of holes in the
process of 3D reconstruction [19, 20].

Trough the abovementioned analysis, the existing
image reconstruction methods have made great progress in
improving the reconstruction accuracy and reducing the
error. However, when reconstructing objects with weak
textures and complex surfaces, the 3D point cloud recon-
structed by the existing algorithms is relatively sparse,
resulting in missing details of the reconstructed object
model. At present, the solutions to the problem of 3D re-
construction of weakly textured objects can be basically
divided into three types. Te frst is to improve the re-
construction quality by optimizing a certain step in 3D
reconstruction or one of the processes in the whole set of
algorithms. However, as the current 3D reconstruction
methods are all a set of systematic theories, a single opti-
mization of its local efect is less likely to improve the overall
efect. Te second is to combine some advanced intelligent
algorithms in many traditional 3D reconstruction modes.
Such schemes often achieve good results in academic ex-
periments, but the actual industrial vision detection envi-
ronment is complex and changeable, and the intelligent
algorithm is not robust to such external factors. Te third is
some hardware products developed by some companies,
which can indeed improve the reconstruction accuracy.

However, there are a wide variety of industrial products with
diferent sizes, so whether they have perfect compatibility is
the weakness of these products. Terefore, if the above
factors can be taken into account in the 3D reconstruction of
weak texture objects, it will essentially improve the reliability
and practicability of reconstruction. Te depth image ob-
tained by the depth camera contains depth information,
which can be used to realize 3D reconstruction by regis-
tration and splicing of multiview depth images in theory and
practice. However, the accuracy of the registration results
obtained by the existing consumer depth cameras cannot
meet the measurement requirements. Other problems, such
as low registration accuracy and blurred reconstruction
results, are still inevitable in the realization of 3D re-
construction by the binocular stereo image stitching
method.

In summary, this paper proposes a comprehensive 3D
reconstruction method that takes into account both the
main body and details of the reconstructed object. Especially
for high-light weak texture surfaces and outdoor large
structures, we proposed a 3D reconstruction method and
multiview surface technology based on depth image fusion
to obtain a 3D reconstruction model with high quality and
high precision to further realize accurate 3D measurements.

Te contributions of this work can be described as
follows:

(i) Te regional growth expansion method is used to
nonlinearly optimize the depth value, and the op-
timizationmodel is established.Te depth image was
fused to the dense surface, and the missing part was
reconstructed.

(ii) Markov random feld (MRF) is introduced to de-
scribe the texture details, and combined with the
accurate calculation of texture coordinates, the
texture details of the 3D reconstructed model can be
reproduced. Finally, complete reconstruction of a 3D
surface with rich texture information is realized.

2. Multiview Dense 3D Reconstruction
Mechanism Based on Depth Image Fusion

Te reconstruction points provided by feature matching are
naturally not dense in the 3D reconstruction by the motion
recovery structure of the camera. Terefore, to obtain dense
point clouds, frst, the patch-based multiview stereo (PMVS)
is adopted to improve the density of point clouds [21]. In
view of the limitations of this method in obtaining depth
information, the depth image fusion reconstruction method
is used to complete the unreconstructed part that is
reconstructed based on the PMVS algorithm, and fnally,
a complete 3D model is obtained.

2.1. Dense 3D Reconstruction of a Multiview Point Cloud
BasedonPMVS. Te patch-based multiview system (PMVS)
algorithm frst assumes some 3D rectangular patches in
space and makes the patches cover the object surface by
some regular expansion method. In principle, dense
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reconstruction using the PMVS algorithm can match almost
every pixel in the photo and reconstruct the 3D coordinates
of each pixel. As shown in Figure 1, the patch is a local
tangent plane approximate to the object surface, including
the center c(p), normal vector n(p), and reference image
R(p). In addition to the corresponding reference image
R(p), each patch p also corresponds to two image sets V(p)

and V′(p), where the initialized V(p) represents the set with
an angle less than 60° between the patch normal vector and
the ray where the patch is located. V′(p) represents a set with
a normalized correlation coefcient (NCC) greater than 0.4
between the patch projected onto the image and the ref-
erence image. Te p in V(p) is actually visible, while the
V′(p) in the patch cannot be recognized due to highlights,
motion blur, or self-occlusion. R(p) is a subset of V(p).

Te implementation process of PMVS includes three
steps: feature matching initialization, patch difusion, and
patch fltering.

Step 1. Feature matching initialization. By allowing the
polar line constraint with two-pixel errors to fnd the
same type of feature points in other images to form
a pair of matching points, the feature matching method
is used to generate a series of 3D space points from
these matching point pairs, arrange these points in the
order of distance from small to large, and then try to
generate patches one by one.
Step 2. Patch difusion. Dense patches are obtained by
difusion of sparse seed points, and the goal is to have at
least one patch in each mesh. Te new patches are
repeatedly generated through the aforementioned
patches; specifcally, given a patch p, a set of neigh-
borhood image blocks C(p) satisfying certain condi-
tions is obtained frst, and then the patch generation
process is carried out.
Step 3. Patch fltering. In the process of patch re-
construction, some patches with large errors may be
generated, so fltering is required to ensure the accuracy of
patches.Te frst flter implements fltering through visual
constraints, and the second flter also considers stricter
visual constraints.Te third flter, for each patch p, inV(p),
needs to map to the image block of patch p itself and all
adjacent image blocks to collect such a set of patches. If the
ratio between the number of patches in the eight neigh-
borhoods of patch p and the number of patches collected is
less than 0.25, then p is considered an abnormal value and
is fltered out. Tus, the point cloud of patch densifcation
based on the PMVS algorithm has been completed.

We take stainless-steel wire pair part with complex
surfaces as the research object. Its multiview image sequence
is shown in Figure 2(a). After the point cloud is densifed
using PMVS algorithm, iterative reconstruction is per-
formed using the incremental structure from motion. Te
iterative reconstruction result is shown in Figure 2(b). Tere
are obvious defects and holes in the reconstructed model.

Te results indicate that although the PMVS-based
method can achieve a relatively dense 3D model re-
construction, the passive method of acquiring depth

information by using multiview image acquisition has
limitations; that is, the reconstructed model will have serious
defects in the case of non-Lambertian surfaces or objects
with occlusion.

2.2. Detail Reconstruction Based on Depth Image Fusion.
A depth camera is an active method to acquire depth in-
formation of objects by actively projecting structured light.
Although the point cloud image obtained by the depth
camera contains depth information, due to its low resolution
and low matching accuracy, it is difcult to achieve accurate
three-dimensional reconstruction by using the multiview
depth point cloud image method. However, a depth camera
can be used to collect locally missing depth information.

2.2.1. Te Vision Angle Selection of Stereoscopic Images.
3D point clouds can be reconstructed from multiple un-
ordered images, but the selection of the spacing between
images is related to the reconstruction quality, so it is
necessary to make a more standard selection of the vision
angle. Te vision angle selection of the stereo image includes
two parts: global vision angle and local vision angle.

Tere are two specifc principles for selecting a global
vision angle:

(1) According to overlapping scenes and resolution
between images, the image with the same scale
should be selected as much as possible during
matching. Otherwise, the patch will be too large or
too small, and the calculation speed will be afected.

(2) If there is a wide baseline between images, an ap-
propriate length of baseline should be selected
without afecting the reconstruction accuracy. Te
selection criteria are shown in the following formula:

gR(V) � 
f∈FV∩FR

ωN(f)ωS(f),
(1)

where R represents the reference image, f represents the
feature points reconstructed from 3D, and FR and FV rep-
resent the selected visual angle. Te selected visual angle is
evaluated by (1).ωs is the evaluation coefcient of the current
image scale, and ωN is the evaluation coefcient of the angle
between the lines of the adjacent images. Te reasonable
selection of the vision angle is determined by summing the
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Figure 1: Schematic diagram of the patch and related parameters.
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coefcients of multiple vision angles. Te higher gR(V) is,
the more appropriate the selected vision angle is.

Te selection of the local viewing angle refers to taking
the current global viewing angle as a candidate vision angle.
Te selection criteria mainly include the following two
points:

(1) Determine candidate vision angles by NCC values:
calculate the NCC values of every two candidate
vision angles, and the viewing angle with a larger
NCC value is determined.

(2) Te visual line shall be sufciently scattered to ensure
that it is at least not coplanar. Each vision angle
corresponds to a visual line, which is calculated by
the angle between the polar planes, as shown in (2),
where ωe is the included angle of visual lines, so it is
better to choose some scattered vision angles.

lR(V) � gR(V) · ωe V, V
′

 . (2)

2.2.2. Depth Calculation and Optimized Fusion of Depth
Image. Te overall framework of the depth image fusion
method mainly adopts the region growth method to expand
[20], and the corresponding description is as follows:

Step 1. Te priority queue is established according to
the reconstructed confdence level
Step 2. Depth estimation from initial sparse feature
points
Step 3. Nonlinear depth optimization was carried out
for each seed point
Step 4. After each optimization, neighborhood pixels
are added to the queue by judging the following two
conditions: (1) there is no depth value in the neigh-
borhood; (2) the confdence of the current pixel is
higher than that of the neighboring pixels in
a certain range.

First, nonlinear optimization of the depth value was
carried out to establish an optimization model, as shown in
Figure 3. OR represents the center of the camera and follows

the visual line intersecting with the image at the center pixel.
Te pixel is used as the center to build the corresponding
patch. Te defnition of the depth image patch is slightly
diferent from that of the PMVS patch. Te defnition of
a depth image patch is on the pixel of the reference image,
which corresponds to a tiny plane in the space and repre-
sents the depth and normal vector of the pixel. Te initial
depth value of the pixel point (s, t) in the reference vision
angle is h(s, t), and the unit vector of the ray in the cor-
responding three-dimensional space is rR(s, t). Ten, the
point in the 3D space corresponding to the pixel is shown in
the following formula:

X(s, t) � OR + h(s, t)rR(s, t). (3)

To optimize the depth at the pixel (s, t) and the normal
vector in 3D, two variables hs(s, t) and ht(s, t) are in-
troduced on the patch with the pixel as the center to rep-
resent the 3D coordinates of each pixel in the patch. Ten,
the depth corresponding to the pixel (s+ i, t+ j) is as shown
in the following formula:

h(s + i, t + j) � h(s, t) + i∗ hs(s, t) + j∗ ht(s, t). (4)

Assume that the ray direction at (s+ i, t+ j) is approx-
imately rR(s, t); then, the three-dimensional coordinates
corresponding to the pixel (s+ i, t+ j) are shown in the
following formula:

X(s + i, t + j) � OR + rR(s, t)

h(s, t) + i∗ hs(s, t) + j∗ ht(s, t)( .
(5)

At this point, the calculation about the depth of pixels in
the depth map is complete. Te same as PMVS algorithm,
the pair perspective depth image is merged into the
neighborhood perspective by consistency constraint and
visibility constraint, and the depth of all pixels is merged
fnally to complete the depth information recovery of the
whole object.

2.3. Surface Texture Reproduction. Although the re-
construction efect of the depth image fusion dense point
cloud method is relatively complete, it basically retains the

(a) (b)

Figure 2: Dense 3D reconstruction process of the stainless-steel wire surface. (a) Image sequence. (b) Te 3D reconstruction results.
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three-dimensional morphological features of the object.
However, the model surface is not smooth enough, and there
are some redundant patches only through the reconstruction
of the point cloud. Moreover, even after the optimization
calculation of error compensation, such as camera cali-
bration, the fnal reconstructed model, and the actual object
cannot completely coexist. Terefore, the coordinates need

to be recalculated with the reconstructed model, and the
texture can be covered on the model as accurately as possible
after one-to-one correspondence with the original object.

Before calculating texture coordinates, the Markov
random feld (MRF) [22, 23] is used to describe the richness
of image details, and its expression is shown in the following
formula:

E(l) � 
Fi∈Faces

Edata Fi, li(  + 

Fi,Fj( ∈Edges

Esmooth Fi, Fj, li, lj ,
(6)

where Edata is the data item, Esmooth is the smooth item, and l
is the optimization quantity tag. MRF is built on the patches
of triangular mesh, and each patch corresponds to a vertex.
Its model is shown in Figure 4, where Fi represents the patch
and Edata represents the cost that label li assigned to patch Fi.
Te whole formula requires the minimum cost, so the
minimum value of E(l) is needed.

Te texture details to be considered in the data items are
refected in the average gradient and scale of the projected
triangle, that is, the area of the projected triangle. Edata is
described in the following formula:

Edata � −
Φ

Fi, li(  ∇ Ili
(p) 

�����

�����2
dp, (7)

where li stands for the angle of view,∇(Ili
(p)) is the gradient at

the projection point, and Φ(Fi, li) is the projection area of
a triangle. Te richer the texture, the stronger the gradient
response; in contrast, the gentler the gradient response. Te
next step is the calculation of smoothing terms, as shown in (8).
If Fi and Fj are adjacent and labels l are inconsistent, a penalty
constraint is added between them but not added if labels are
consistent. Terefore, the purpose of the smoothing item is to
keep the same angle of view between the adjacent patches,
which can connect the textures in the mesh into pieces.

Esmooth � li ≠ lj . (8)

After describing the texture details, the texture co-
ordinates are calculated. Te texture coordinates are cal-
culated by area coordinate calculation, and the relationship

between the projection of the triangular surface in the visual
angle is found from the texture image to be created and then
used to determine the correspondence between space and
area. As shown in Figure 5, the area coordinate is the ratio of
three small triangles formed by these four points to the area
of the whole large triangle.Te three dimensions add up to 1,
and each dimension is between 0 and 1. After converting to
the point pixel coordinates, the values can be assigned to the
triangular patch in the grid, and the texture is covered to
obtain the model with texture.

3. 3D Dense Reconstruction Process and
Analysis of Depth Image Fusion

Taking the image sequence in Figure 2 as an example and
using the vision angle selection principle, the results shown
in Figure 6 are obtained through camera pose recovery and
point cloud densifcation. It can be seen from Figure 6 that
the spatial position of the camera is above the dense point
cloud when 50 pictures are taken.

3.1. 3D Reconstruction by Depth Image Fusion. After the
point cloud denseness experiment is implemented, the depth
camera is used to shoot and reconstruct according to the
abovementioned theory to solve the problem that the non-
Lambert plane or object self-occlusion cannot be recon-
structed in incremental reconstruction. Te experimental
equipment is an Astra prodepth camera, as shown in
Figure 7(a). Te camera depth range is 0.6m to 8m, the

xR (s,t)

rR (s,t)

(s,t)

h (s,t)

OR

rR (s-1,t)

OR
rR (s,t)

rR (s+1,t)

Figure 3: Nonlinear optimization of depth values.
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resolution of the color image is 1280 ∗ 720@30 FPS, the
resolution of the depth image is 1280 ∗ 1024@7 FPS, and the
accuracy is +−1–3mm@1m. To solve the problem of non-
Lambertian surface mismatch, laser points are projected
onto the captured object, as shown in Figure 7(b) [18]. Te
depth image obtained after light averaging and smoothing is
shown in Figure 8. Here, the Figure 8(a) indicates the depth
image detail after light averaging and smoothing processing.

Te visualization efect of point cloud in the depth image is
shown in the Figure 8(b).

After the depth image point cloud is obtained, the thread
details that are not reconstructed in the incremental re-
construction are taken, and the MeshLab open-source
software is used to integrate and add them to the point
cloud of the main part, as shown in Figure 9. Te ap-
proximate curved part is the dense point cloud part of the

Fi

Fj

Figure 4: MRF model.

Texture image that needs to be
created

Triangular patches in meshes Projection of triangular patch in the
visual angle

Point area coordinates
Ap (Ax,Ay,Az)

Pixel coordinates of points
ux = Axx0 + Ayx1 + Azx2
uy = Ax y0 + Ay y1 + Az y2

P0 (x0,y0)

P1 (x1,y1)

P2 (x2,y2)

P

Figure 5: Texture coordinate calculation method.

Figure 6: Efect drawing of dense point cloud.
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stainless-steel wire, and the point part is the supplementary
detail part. It can be seen that the point cloud is well
supplemented in the non-Lambert plane and self-occlusion
area of the object. Figure 10 shows the dense reconstruction
efect after point cloud fusion.

To further test the reconstruction efect of our method
on objects with weak textures, the standard test image
Tsukuba was used as the experimental image to illustrate the
efectiveness of the method. In the standard test image
experiment, a parallax map was used instead of a depth map
as the control, and the control group was the graph cuts
(GC) algorithm, as shown in Figure 11(a), the algorithm in

studies of [24], as shown in Figure 11(b), and the algorithm
in this paper, as shown in Figure 11(c). In the fgure, (i) is the
original image, (ii) is the disparity image, and (iii) is the
reconstructed image. Te results are shown in Figure 11 (for
intuitive expression, the background was appropriately fl-
tered during reconstruction).

It can be seen from the experimental results that com-
pared with the control group, the method in this paper
essentially retains most of the original object features and is
more efective than the other two algorithms at compen-
sating for hole defects.

(a) (b)

Figure 7: Experimental equipment of the depth camera and laser projection. (a) Depth camera; (b) laser projection.

(a) (b)

Figure 8: Depth image after light averaging and smoothing processing. (a) Depth image details after averaging and smoothing;
(b) visualization of point cloud in depth map.

Figure 9: Te efect after the fusion of the main dense point cloud
and the detailed depth point cloud. Figure 10: Dense reconstruction efect after point cloud fusion.

International Journal of Optics 7



3.2. Reconstruction Experiment of Indoor and Outdoor
Objects. To further analyze the efectiveness and robustness
of the proposed reconstruction method, image sequences of
multiple groups of objects were taken. In addition to
stainless steel wire, three objects, as shown in Figure 12, were
also selected for the experiment. Finally, several sets of
reconstruction models of indoor objects are obtained, as
shown in Figure 13. It can be seen that the complete re-
construction is realized, and the texture of the reconstructed
model is well reproduced.

To refect the robustness of the reconstruction method,
surface reconstruction is performed again in the outdoor
scene. However, because the light intensity of natural light in
outdoor scenes is much greater than that of infrared speckle
emitted by depth cameras, the shooting efect of depth
cameras is extremely unsatisfactory. Since the disparity
image has a linear relationship with depth, the depth image
under each viewing angle takes two pictures with a binocular
camera, and a composite disparity image is used to replace
the depth image. Te selected object for outdoor re-
construction is shown in Figure 14. Using a binocular
camera, two images were taken after calibration and ste-
reoscopic correction, and as an example, the Figure 14(c)
shows the sequence image of a school motto stone. Taking
statue in the Figure 14(a) as an example, the SGBM algo-
rithm in the open-source computer vision library OpenCV is
used to obtain the disparity image and convert it into the
depth image, as shown in Figure 15. Due to the complex
outdoor environment and excessive noise points, the efect
of the parallax map is not very good, but the depth in-
formation of the detailed part is relatively complete after it is
converted into the depth image.

After reconstruction according to the abovementioned
method, the fnal three-dimensional model obtained is
shown in Figure 16.

To accurately verify the reconstruction accuracy of the
method in this paper, the vanishing point and the projective
geometry are used to measure the size, surface area, and
volume of the target object in the image [25]. Table 1 shows

the comparison between the measured parameters after
reconstruction and the actual parameters of the object itself.
Te statue and school motto stone are not compared in the
table because of their huge size.Te size error measured after
reconstruction is controlled within 1∼2mm.

To evaluate the efectiveness of our method more ob-
jectively, two performance indicators, the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM),
are selected for evaluation, as shown in Figure 17. It can be
seen from the fgure that the PSNR value of the object
reconstructed by our method is less than that of the tra-
ditional SFM method to varying degrees, indicating that the
reconstruction of the proposedmethod has less noise, higher
robustness, and better quality and can efectively describe
the characteristics of the object, while the SSIM value is
greater than that of the traditional SFM method, indicating
that the model reconstructed by the proposed method is
more complete and more similar to the original object. More
information about object morphology is retained. In addi-
tion, it can be seen from the fgure that the PSNR value of the
T-joint in our method is the smallest, and the SSIM value is
the largest, indicating that the size of the reconstructed
object itself cannot efectively afect the reconstruction efect.
Because the structure of the T-joint is relatively complex and
there are many occurrences on the surface, the surface

a-i a-ii a-iii

b-i b-ii b-iii

c-i c-ii c-iii

Figure 11: Comparison of original images, disparity maps, and reconstructionmaps of Tsukuba images. (a) GC algorithm, (b) the algorithm
of literature [24], and (c) the algorithm of this paper. (i) Te original image. (ii) Disparity map. (iii) Reconstructed image.

Figure 12: Indoor reconstruction experiment object.
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topography complexity of the object is an important factor
afecting the efect of the method proposed in this paper,
while the traditional SFM method does not have such

characteristics. Terefore, the method in this paper is more
anisotropic, and it is more accurate for use in actual in-
dustrial vision measurements.

(a) (b) (c)

(d)

Figure 13: Four kinds of object reconstruction in indoor environments: (a) reconstruction result of stainless a bolt joint; (b) reconstruction
result of a pagoda-shape joint; (c) reconstruction result of a T-joint; and (d) reconstruction result of a fower pot.

(a) (b) (c)

Figure 14: Outdoor objects with weak texture to be reconstructed. (a) Statue; (b) school motto stone; and (c) the sequence image of the
school motto stone.

International Journal of Optics 9



(a) (b)

Figure 15: Disparity image and depth image of the human sculpture. (a) Disparity image and (b) depth image.

(a) (b)

Figure 16: 3D reconstruction model of an outdoor object with weak texture. (a) 3D reconstruction model of the statue and (b) 3D
reconstruction model of school motto stone.

Table 1: Measurement parameters and actual parameters of the object surface after reconstruction.

Reconstructing
objects

Dimension
measurement

(mm)

Dimension
actual value

(mm)

Area
measurement

(mm2)

Actual
value of area

(mm2)

Volume
measurement (mm3)

Volume actual value
(mm3)

Butt joint 31.046 30 3909.519 3972.584 31822.010 31655.506
Pagoda joint 39.656 40 52018.742 51922.747 24015.465 23181.982
T joint 55.968 55 5749.830 5675.966 26709.902 25988.520
Flower pot 136.301 137 90010.088 89929.651 2188359.630 2189257.363
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4. Conclusions

In this paper, a dense 3D reconstruction method based on
depth image fusion with multiple views is proposed,
which takes into account both the main body and texture
details of the reconstructed object and obtains a 3D re-
construction model with high quality and relatively high
precision. Te depth image is used to fuse the multiview
dense point cloud obtained by the PMVS algorithm to
obtain a complete 3D model. Combined with the
reconstructed model, the texture coordinates are calcu-
lated, and a 3D surface with rich and accurate texture
information is obtained. To verify the efectiveness and
robustness of our method, a variety of indoor and outdoor
objects were selected for reconstruction. Te results show
that the reconstruction accuracy can be controlled to
within 1∼2mm, the structural similarity of the model is
90%, and the performance indices meet the measurement
requirements. Te method is also anisotropic, and its
reconstruction efect is less afected by the size of the
reconstructed object and more afected by the morpho-
logical complexity of the object itself. Te complete 3D
reconstruction method proposed in this paper has certain
technical support for 3D measurement.

Because the method proposed in this paper requires
image fusion and reconstruction frommultiple cameras, it is
difcult to unify the image parameters. How to quickly unify
the parameters of pictures taken in the early stage is the
primary problem to be solved in subsequent research. In
addition, further studies can be performed to combine the
proposed method with deep learning to achieve high-
precision 3D reconstruction of large and complex structures.
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