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The photocatalytic decolorization of cobalamin was carried out in aqueous solution of different types of catalysts including ZnO,
TiO, (Degussa P25), TiO, (Hombikat UV100), TiO, (Millennium PC105), and TiO, (Koronose 2073) by using UVA source of irra-
diation. The effect of various parameters such as photocatalyst amount, cobalamin concentration, type of catalyst, pH of aqueous
solution, light intensity, addition of H,O,, flow rate of O,, type of current gas, and temperature on photocatalytic oxidation
was investigated. The results indicated that the photocatalytic decolorization of cobalamin was well described by pseudo-first-
order kinetics according to the Langmuir-Hinshelwood model. The effect of temperature on the efficiency of photodecolorization
of cobalamin was also studied in the range 278-298 K. The activation energy was calculated according to Arrhenius plot and was
found equal to 28 + 1 kJ-mol~! for ZnO and 22 + 1 kJ-mol~! for TiO, (Degussa P25). The results of the total organic carbon (TOC)
analysis indicate that the rate of decolorization of dye was faster than the total mineralization. Decolorization and mineralization of
cobalamin in the absence of light and/or catalyst were performed to demonstrate that the presence of light and catalyst is essential
for the decolorization of this cobalamin. The results show that the activity of different types of catalysts used in this study was of

the sequence: ZnO > TiO, (Degussa P25) > TiO, (Hombikat UV100) > TiO, (Millennium PC105) > TiO, (Koronose 2073).

1. Introduction

Frank and Bard in 1977 stated that it was possible to use
TiO; to degrade the organic compound in water [1]. Photo-
degradation of organic and inorganic pollutants on differ-
ent types of semiconductors has been studied by several
researchers. Dyes have become one of the important industry
pollutants that lead to environmental contamination. To find
a general process for treatmentof the color of dye used in
dyeing processes is very difficult due to the complexity and
variety of these types of industrial wastewater [2]. In recent
years, the interest has been focused on the use of semicon-
ductor in photocatalytic decolorization of different types of
wastewater where the band gap for zinc oxide is (~3.2e.V).
In addition, their photocatalytic activities are shown only
under UV irradiations. However, the presence of colored
compounds on the surface of the semiconductor can absorb a
radiation in the visible range and then is excited by a process
called photosensitization process. The hydroxyl group radical
(*OH), which is formed by the photocatalytic process, from

the photosensitization processes, will oxidize all the organic
compounds to CO; and H,O (mineralization) [3]. Several
processes were used for the treatment of pollutants such
as biodegradation, catalytic oxidation, chemical treatment
(chlorine, ozone, hydrogen peroxide), and degradation by
high-energy ultraviolet light [4, 5]. One of the active
methods to treat the colored wastewater is advance oxidation
process (AOP) including photocatalysis degradation systems
which use a semiconductor (TiO, or ZnO) and UV light [6].
Titanium dioxide is one of the best materials which have
good ability to destroy the organic materials and active spe-
cies to un-harmful material by using light/semiconductor
system [7].

The photocatalytic activity of semiconductors can be
enhanced by using different techniques [8-15]. Zhou et al.
showed that doping of titanium dioxide with gold (Au-
TiO,) nanocomposites gives higher activity in visible-light
for degradation of Rhodamine-B (RhB) in water [8].

Wang et al. observed that the calcination temperature of
TiO, (P25) at 500°C caused to double the activity of TiO,
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Fi1GURE 1: Structure of cobalamin.

(P25) for photocatalytic degradation of methyl orange (MO)
[9]. Wu et al. studied a comparison between the photocat-
alytic activity (PC) and photoelectrocatalytic activity (PEC)
of methylene blue (MB) [11]. They have noticed that the
photoelectrocatalytic activity is more efficient than photocat-
alytic activity. There are different studies using doped metal
on TiO, surface to enhance the activity of catalyst or to
reduce the band gab of semiconductor [10-15].

Heterogeneous photocatalysis is a method used for the
degradation of various types of organic pollutants in water
and wastewater [16]. Different types of semiconductors such
as TiO,, ZnO, CdS, and ZnS and irradiation source of UV
or visible lights can be used in photocatalysis systems. In
the process of irradiation of the semiconductor with energy
equal or greater than the band gap, the electrons in valence
band are promoted to the conduction band leaving a hole
behind. The holes at the valence bond have an oxidation
potential of +2.6 V with normal hydrogen electrode (NHE)
at pH = 7. This energy is enough to oxidize water molecule or
hydroxide and produce hydroxyl radicals or oxidize wastewa-
ter containing various types of dyes [17, 18]. The photosensi-
tization process is defined in summary term as photocatalytic
decolorization of dyes, and this process also follows the
mechanism of free radical, where the adsorbed dyes molec-
ules on the semiconductor surface have ability to absorb a
radiation in with short wavelength or in the visible region
[19-21]. Therefore the excited colored dye either in singlet or
triplet states shall inject an electron to the conduction band
for the chosen semiconductor [22].

Porphyrins are aromatic compounds that have a highly
conjugated system and composed of four smaller 5-mem-
bered heterocycles. They are called pyrroles that contain one

nitrogen and four carbon atoms. In porphyrins, one carbon
is typically referred to as the mesocarbon, serving the con-
nection of each of the four pyrrole rings [23]. Porphyrins are
intensely colored cyclic molecules which occur in nature as in
green leaves and red blood cells. Porphyrins are characterized
by the presence of four modified pyrrole subunits intercon-
nected at their & carbon atoms with methane bridges (=CH-)
[24].

Cobalamin, also known as vitamin By, is a complex
organometallic compound which is formed by the situated
cobalt atom in a corrin ring [25]. The structure of cobalamin
is shown in Figure 1.

The central metal ion in the cobalamin is cobalt. While
four of the six coordination sites are provided by the corrin
ring, the fifth is provided by a dimethylbenzimidazole group.
The sixth coordination site, the center of reactivity, is variable
as it can be a cyano group (—CN), a hydroxyl group (-OH),
a methyl group (-CH3), or a 5'-deoxyadenosyl group (here
the C5’ atom of the deoxyribose forms the covalent bond
with Co), respectively, to yield the four cobalamin forms
mentioned above [26].

Cobalamin is soluble in water and has the molecular
formula Ce3HgsCoN;4014P, mole mass 1355.37 g/mol. The
systematic (IUPAC) name is a-(5,6-dimethylbenzimidazolyl)
cobamidcyanide. It can be produced industrially only
through bacterial fermentation-synthesis. Cobalamin con-
sists of a class of chemically-related compounds (vitamers)
such as cyanocobalamin, methylcobalamin, adenosylcobal-
amin, and hydroxocobalamin. The various forms of isomers
of By, are all deeply red colored, due to the color of
the cobalt-corrin complex [27]. Photolysis of cobalamin in
aqueous solution produced hydroxocobalamin. The kinetics
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of photolysis was found to follow zero-ordar kinetics at dif-
ferent pH and the rate was catalysed by both hydrogen and
hydroxyl ions [28].

The idea of this work was derived from the announce-
ment of NineSigma company in October 2010 about decol-
orization of porphyrin species proposal number 66645
(rapid decolorization of porphyrin species). The company
aimed to decolorize porphyrin species to prevent staining
or noticeable transfer to cloth and other absorbant surfaces.
The aim of this study was to investigate the photocatalyst
decolorization of cobalamin using different types of catalyst,
namely, ZnO, TiO, (Degussa P25), TiO, (Hombikat UV100),
TiO, (Millennium PC105), and TiO, (Koronose 2073). The
effect of different parameters was studied to estimate the best
condition for decolorization of cobalamin.

2. Experimental

Photocatalytic reactions were carried out in a batch photore-
actor with the radiation source type Philips (CLEO), Poland,
mercury lamps containing 6 lamps with 15W for each.
Aqueous suspensions of zinc oxide (ZnO) or titanium diox-
ide (TiO,) containing cobalamin in beaker, under magnetic
stirring, were irradiated in light of wavelength 365 nm with
an irradiation intensity of (0.5-3 mW-cm™2). In all experi-
ments, the required amount of the catalyst was suspended in
100 cm® of aqueous solution of cobalamin. After illumina-
tion, 2mL was taken from the reaction suspension, cen-
trifuged at 4,000 rpm for 15 minutes in an 800 B centrifuge,
and filtered to remove the particles. The second centrifuge
was found necessary to remove fine particle of the zinc oxide
or titanium dioxide (TiO,). After the second centrifuge, the
absorbance of the cobalamin was measured at 361 nm and
550 nm, respectively, using Cary 100Bio UV-visible spectro-
photometer shimadzu. The measurements at the two wave-
length produced equivalent results, when compared with the
prepared calibration curves.

The photocatalytic decolorization rate of cobalamin is
described by pseudo-first-order kinetics according to the
Langmuir-Hinshelwood model, so the rate of photocatalytic
decolorization of cobalamin could be expressed by the fol-
lowing:

Ct = Coeik% (1)

where C; represents cobalamin concentration at time t of
irradiation, C, is the initial concentration, k is the apparent
reaction rate constant of the pseudo-first-order kinetics, and
t is irradiation exposure time [3]:
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FiGure 2: Effect of the masses of catalyst on photodecolorization
efficiency of cobalamin.

The photodecolorization efficiency (P.D.E) of cobalamin
was calculated from a mathematical equation adapted from
measurements of decolorization used before [29]:

C,—C

o

P.D.E = x 100, (3)

where C,is the initial concentration of cobalamin, C;
represents cobalamin concentration at time ¢ of irradiation.

3. Results and Discussion

3.1. Effect of Mass Catalyst of ZnO or TiO,. The photodegra-
dation efficiency of cobalamin increased with the increase of
the amount of catalyst up to an optimum value and then
decreased slightly with the increase of the amount of catalyst
as shown in Figure 2. One possible explanation for such
behavior is that it is believed that an increase in the number
of catalyst will increase the number of photons absorbed and
the number of cobalamin molecules adsorbed. Therefore, the
photodegradation rate can be expected to be enhanced on
increasing the amount of catalyst due to the increase in total
surface area available for contaminant adsorption. However,
a further increase of the catalyst concentration may cause
light-screening effects [30]. These screening effects reduce
the specific activity of the catalyst [31].

3.2. Effect of Initial Dye Concentration of ZnO or TiO,. The
effect of the initial concentration of cobalamin on the photo-
catalytic decolorization was studied by varying the initial
concentration over a wide range. At a fixed pH and amount
of catalyst, photocatalytic experiments were carried out at
different initial concentrations of cobalamin. The results in
Figure 3 show that the rate constant of photodecoloriza-
tion decreased with increasing the initial cobalamin con-
centration [32]. This behavior can have the explanation that
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FiGure 3: Effect of initial dye concentration on rate constant.

the initial concentration of the cobalamin increases because
the path length of the photons log in the solution decreases
and in low concentration the reverse effect is observed,
thereby increasing the number of photon absorption by the
catalyst in lower concentration [33].

3.3. Effect of pH. The results in Figure 4 show that the photo-
decolorization efficiency increased with the increase of the
pH value of solution to pH 9.01 for ZnO and pH 6.59 for
TiO, (Degussa P25) and then decreases. The production of
hydroxyl radicals is also a function of pH. Therefore, pH is an
important parameter in photocatalytic reactions. The pho-
todecolorization of cobalamin was studied at different pH.
In all the experiments, pH was adjusted by using appropriate
amounts of base (NaOH) or acid (HCI) solutions [34-37].
The zero point charge (ZPC) is equal to 9.01 for ZnO and
6.59 for TiO, (Degussa P25) and the semiconductor surface
will remain positively charged in acidic medium and neg-
atively charged in alkaline medium, because the ionization
state of the surface of semiconductor is according to the fol-
lowing reactions:

7ZnOH + HY — ZnOH,"

(4)

7ZnOH + OH™ — ZnO~ + H,0
TiOH + HY — TiOH," (5)
TiOH + OH™ — TiO™ + H,O0. (6)

This behavior can be explained when the pH value of
the solution is increased up to a maximum value and then
decreased, this is because in alkaline medium the surface area
of photocatalyst possesses much negative charge [38—41].

3.4. Effect of Temperature. The effect of temperature on pho-
tocatalytic decolorization of cobalamin in water solution was
investigated in the range of 278.15-298.15 K. The results in
Figure 5 show that the degradation efficiency of cobalamin
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FIGURE 5: Arrhenius plot.

gradually increased with increase in the temperature. The
increase in temperature would lead to generating the free
radicals [42]. Therefore, the rise in temperature helped
the reaction to compete more efficiently than electron-hole
recombination [43]. The increasing of temperature may
increase the oxidation rate of cobalamin and also reduce the
adsorption capacities associated with cobalamin and dis-
solved oxygen [44]. Generally the rise in temperature can
affect the amount of adsorption [45]. Arrhenius plot shows
that the activation energy for photocatalytic decoloriza-
tion of cobalamin is equal to 28 + 1kJ mol™! for ZnO and
22 + 1kJ mol~! for TiO, [46].

3.5. Effect of Light Intensity. The effect of light intensity on
the decolorization efficiency for cobalamin was examined
at constant initial cobalamin concentration (40 ppm). It is
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FIGURE 6: Effect of initial light intensity on the rate constant.

found that the percentage of decolorization and photodecol-
orization for cobalamin increases with increasing the light
intensity as shown in Figure 6. The light intensity was studied
in the range (0.5-3) mW-cm~? by changing the high and
lowering the lamps. From these results it is found that the
decolorization rate for cobalamin increased with increase in
the light intensity [47]. This behavior can be explained that
the UV irradiation production the photons required for the
electron transfer from the valence band to the conduction
band in the catalyst. photocatalyst and the energy of a photon
is related to its wavelength and the overall energy input to a
photocatalytic process is dependent on light intensity. The
rate of decolorization for cobalamin increases when more
radiations fall on the catalyst surface and hence more *OH
radicals are generated on catalyst surface [48, 49].

3.6. Effect of Current Gas. The results in Figures 7 and 8
show that the photodecolorization efficiency for cobalamin
increased with the presence of the oxygen gas (O,) but
decreased or was extremely slow in the presence of the nitro-
gen gas (N,). This behavior can be explained that in the
presence of nitrogen gas (N;) and TiO, (Degussa P25) will
production grey-blue in color may be attributed to the shar-
ing of lattice oxygen from the surface. The results indicated
that the presence of oxygen is necessary [50, 51]. The
presence of oxygen in the solution plays an important role in
the photocatalytic decolorization of cobalamin. This behav-
ior can be explained that the oxygen molecule acts as an
electron acceptor and minimizes the chance of electron-hole
pair recombination [52].

3.7. Effect of Addition of H,O,. Hydrogen peroxide (H,0,)
plays an important role in the production of hydroxyl
radicals. The effect of addition of hydrogen peroxide H,O,
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FiGure 7: Effect of type of gas on photodecolorization of cobalamin
by ZnO.
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F1GuUre 8: Effect of type of gas on photodecolorization of cobalamin

on the decolorization rate was studied for photocatalytic
decolorization of the cobalamin. The results in Figure 9
show that the decolorization rate increase in with increases
concentration of hydrogen peroxide H,O, from 0.1 to
1.5 mmol/L, becomes maximum at 1.5 mmol/L and then
*OH starts decreasing from 1.5 to 4.0 mmol/L with increase
in the concentration of hydrogen peroxide H,O, [53].

This behavior is due to increasing the concentration of
hydroxyl radical since it inhibits the hole-electron recombi-
nation according to the following equations:

H,0, +e; —* OH+ OH (7)

H,0, + *0, —* OH + OH + O,. (8)



6
0.35 7
0.3 A
0.25 1
= 0.2+
k=
E
~ (.15 A
<
0.1 A
o rl.././.\I\._\._\_.
0 T T T T |
0 1 2 3 4 5
Concentration of HyO,/mmol-L~!
- ZnO
—- TiO;

Ficure 9: Effect of addition of H,O, on rate constant.

At high concentration of hydrogen peroxide H,O, the
photocatalytic processes decrease because of its hydroxyl rad-
ical scavenging effect, according to the following equations
[54]:

H,0, +* OH — H,0 + HO,® (9)

HO,®* +* OH — H,0+ 0, (10)

3.8. Type of Catalyst. The results in Figure 10 show the
relationship between the photodecolorization of cobalamin
with irradiation time in the existence of oxygen gas by using
different types of TiO,, under the experimental conditions,
initial cobalamin concentration of 40 ppm, solution pH
equal to 7.8, light intensity equal to 1.3 mW-cm~2, TiO, con-
centration 175 (mg/100 mL), and the temperature equal to
298.15 K. The results show that the activity of different types
of catalyst used in this study was of the sequence:

TiO, (Degussa P25) > TiO,(Hombikat UV100) >

TiO, (Millennium PC105) > TiO, (Koronose 2073).
(11)

3.9. Mineralization of Cobalamin. The results in Figures 11,
12, and 13 show the relationship between the TOC degrada-
tion % with irradiation time and it is found that the TOC
degradation % increased with the increase of the irradiation
time. These results indicate that the color photodegradation
for cobalamin is faster than the decrease of total organic
carbon (TOC). From these results it is found that the ZnO
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F1GURE 11: Mineralization of cobalamin.

is more active than the TiO, (Degussa P25). The efficiency of
these catalyst arrangements is as follows:

ZnO > TiO; (Degussa P25). (12)

4. Conclusions

Complete decolorization of cobalamin was achieved in less
than thirty minutes. PH was changed at the end of reaction
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Figure 13: TOC degradation % and P.D.E for cobalamin by TiO,
(Degussa P25).

towards 7 (neutral). The photocatalytic process can be
expressed by both the pseudo-first-order reaction kinetics
and the Langmuir-Hinshelwood kinetic model.

The controlled experiment indicates that the presence of
UV light, oxygen, and catalyst was essential for the effective
destruction of cobalamin. It is important to choose optimum
degradation parameters to obtain a high photocatalytic
decolorization rate.

The enhancement of decolorization efficiency of cobal-
amin increasing masses of catalysts is attributed to the
increase of the availability of photocatalytic sites. Neverthe-
less, the decrease of catalytic activity often the plateau region
is related to a shielding effect of excess partials and resulted
in a reduced performance.

The photocatalytic decolorization of cobalamin using
different types of catalysts like photocatalyst strongly
depends on the amount of catalyst, cobalamin concentration,
pH of solution, light intensity, type of current gas, and addi-
tion of H,O5.

The phenomenon of increasing the photodecolorization
efficiency of cobalamin with decreasing the concentration of
solution is due to the decrease of the concentration of OH™
adsorbed on catalyst surface. The increasing of cobalamin
concentration increases the competitions between OH™ and
cobalamin to adsorb on active site of catalyst.

The photocatalytic decolorization efficiency of cobal-
amin increases with the increase of the pH of solution up to a
maximum value and then decreases. This behavior could be
explained on the basis of zero point charge (ZPC).

The decolorization of cobalamin increases with the
increase of light intensity. Nevertheless, the increase of light
intensity leads to the increase of the number of electron—hole
pair and, hence, increases the decolorization efficiency of
cobalamin.

The temperature is the factor that has the smallest effect
on the photocatalytic decolorization of cobalamin. Photocat-
alytic decolorazation of cobalamin is faster than the decrease
of total organic carbon (TOC).
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