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Novel visible-light-active Mn–C–TiO2 nanoparticles were synthesized by modified sol-gel method based on the self-assembly tech-
nique using polyoxyethylenes orbitan monooleate (Tween 80) as template and carbon precursor and manganese acetate as man-
ganese precursor. The samples were characterized by XRD, FTIR, UV-vis diffuse reflectance, XPS, and laser particle size analysis.
The XRD results showed that Mn–C–TiO2 sample exhibited anatase phase and no other crystal phase was identified. High specific
surface area, small crystallite size, and small particle size distribution could be obtained by manganese and carbon codoped and
Mn–C–TiO2 exhibited greater red shift in absorption edge of samples in visible region than that of C–TiO2 and pure TiO2. The
photocatalytic activity of synthesized catalyst was evaluated by photocatalytic oxidation of methyl orange (MO) solution under the
sunlight irradiation. The results showed that Mn–C–TiO2 nanoparticles have higher activity than other samples under sunlight,
which could be attributed to the high specific surface area, smaller particle size, and lower band gap energy.

1. Introduction

Photocatalytic degradation of toxic organic compounds has
received a great attention for the past several years. Due to
its strong oxidizing powder, being cost effective, and long-
term stability against photo- and chemical corrosion, TiO2

has been widely used in water purification technology [1–4].
However, the practical applications of TiO2 are limited by its
large band gap (3.2 eV), which can be only active under the
UV light irradiation [5–7]. Therefore, several strategies have
been developed to shift the optical sensitivity of TiO2 from
UV to the visible-light region for the efficient use of solar
energy, such as element doping, metal deposition, surface
sensitization, and couping of composite semiconductors [8].
Recently, C, N, F, S anion-doped TiO2 photocatalysts that
show a relatively high level of activity under visible-light ir-
radiation have been reported [9]. These nonmetal elements
have been proved to be beneficial dopants in the TiO2 via
mixing their p orbital of nonmetal with O 2p orbital to
reduce the band gap energy of TiO2. The doping of various

transitional metal ions into TiO2 could shift its optical
absorption edge from UV into visible-light range, but a
prominent change in TiO2 band gap has not been observed
[10]. This red shift in metal doped TiO2 was attributed to
the charge-transfer transition between the d electrons of the
dopant and the conduction band (CB) of TiO2 [11]. How-
ever, transition metal-doped TiO2 suffers from some serious
drawbacks, such as thermal instability and low quantum
efficiency. In order to further improve the photocatalytic
activity, codoped titania with double nonmetal [12, 13],
metal-nonmetal elements [14–16], and double metal ions
[17, 18] have attracted more attention. Some studies demon-
strated that the codoping with transition metal and nonmetal
elements could effectively modify the electronic structures of
TiO2 and shift its absorption edge to a low energy [16]. How-
ever, to the best of our knowledge, the preparation of man-
ganese and carbon codoped titania has never been reported.

In addition, the structural properties of TiO2, such as
crystalline phase, crystallite size, surface area, and pore dis-
tribution, are important for its photocatalytic properties.
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Recently, the use of self-assembly surfactant-based sol-gel
methods has been reported as an effective approach to tailor-
design the structural properties of TiO2 nanoparticles from
molecular precursors [19–22]. High surface area, high poro-
sity, small crystal size, and narrow pore size distribution of
TiO2 could be obtained by a sol-gel method with hydrocar-
bon surfactants added. Specifically, these hydrocarbon sur-
factants can serve as a nonmetal doping precursor to increase
the photocatalytic activity of TiO2 under visible-light irrad-
iation [23].

Therefore, in this work, nonionic surfactant Tween 80
was used as a pore template and carbon doping reagent in the
sol-gel method to synthesize visible-light-active Mn–C–TiO2

nanoparticles and the Mn–C–TiO2 nanoparticles were
described for their application in degrading organic dyes.
Methyl orange (MeO), a typical azo dye, was used as the
target pollutant in aqueous media to assess the photocatalytic
activities of the Mn–C–TiO2 nanoparticles. The capacities in
the photocatalytic activities of the Mn–C–TiO2 nanoparticles
under sunlight irradiation were studied; the influence of cal-
cinations temperature on the photocatalytic activities of
composites and degradation pathway of pollutant were also
discussed.

2. Materials and Methods

2.1. Synthesis of Visible-Light-Activated Mn–C–TiO2 Nan-
oparticles. Mn–C–TiO2 was prepared by the self-assembly
surfactant-based sol-gel method under mild conditions as
follow. A nonionic surfactant Tween 80 (T80, polyoxyethyl-
enes orbitan monooleate, Guoyao Chemical Co.) was
employed as the pore directing agent and carbon precursor
in the modified sol-gel solution. 5 mL T80 was dissolved in
20 mL isopropyl alcohol (i–PrOH, 99.8%, Guoyao Chemical
Co.) and then 3 mL titanium tetraisopropoxide (TTIP, 97%,
Sigma-Aldrich) was added under vigorous stirring. Finally,
3 mL acetic acid (AcOH, Guoyao Chemical Co.) was added
into the solution for the formation of water in the mixture.
The sol-gel was aged at 65◦C for 24 hrs. To synthesize par-
ticles, the sol was dried at room temperature for 3 hrs and
then calcined at 400◦C for 3 hrs. For comparison, pure
titania, C-doped TiO2, and Mn-doped TiO2 were prepared
though the same method, without adding the corresponding
dopants.

2.2. Characterization of Synthesized Mn–C–TiO2 Nanoparti-
cles. To study the crystal structure and crystallinity of the
Mn–C–TiO2 nanoparticles, X-ray diffraction (XRD) analysis
was performed on X’Pert PRO (D8 Advance) XRD diffrac-
tometer using Cu Kα (λ = 1.5406 Å) radiation. The particle
diameter distribution of the samples was measured by par-
ticle diameter analyzer (Ankersmid Ltd.). Fourier transform
infrared (FT-IR) spectroscopy was carried out using Thermo
Scientific Nicolet 6700 spectrometer to detect the presence of
carbon group on the samples. Measurement range was 4000–
400 cm−1, with a 4 cm−1 resolution, 0.475 cm−1/s scan speed,
and 32 scans. The technique applied was attenuated total

reflectance (ATR) with an Avatar multibounce HATR acces-
sory with ZnSe crystal at 45◦. To investigate the light absorp-
tion and optical band gap of the synthesized TiO2 nanopar-
ticles, the UV-vis absorption spectra were obtained with a
UV-vis spectrophotometer (Shimadzu 2450 PC) mounted
with an integrating sphere accessory (ISR1200) using
BaSO4 as reference standard. An X-ray photoelectron spec-
troscope (XPS, PerkinElmer Model 5300) was employed to
establish the nature of boron in the prepared manganese
oxides by determining the binding energy with respect to Mn
and C. The conditions of the equipment include a takeoff
angle of 45◦ and vacuum pressure of 10−8 to 10−9 Torr. The
binding energies were referenced to the C 1s peak at 284.6 eV.

2.3. Photocatalytic Evaluation with Methyl Orange under Vis-
ible Light. After synthesis and characterization, the Mn–C–
TiO2 nanoparticles were tested under sunlight irradiation for
the degradation of methyl orange in water. Firstly, a particles
suspension (0.5 g/L) solution was prepared and dispersed
using an ultrasonicator (2510R-DH, Bransonic) for 24 h.
Secondly, 10 μL methyl orange solution (500 mg/L) was
transferred to a 50 mL particles suspension placed in reactor
to achieve an initial concentration of 500 μg/L. Finally, 50 μL
HNO3 (0.05 mol L−1) was added into the solution. During
irradiation with two fluorescent lamps (20 W, Cole-Parmer)
imitating sunlight, the reactor was sealed with parafilm and
continuously mixed to minimize mass transfer limitations
and the schematic diagram of photochemical reactor is
depicted in Figure 1. A 0.2 mL sample was withdrawn at
time 0, 1, 2, 3, 4, and 5 h. The photocatalyst was immed-
iately removed from the samples after centrifugation.
The progress of photocatalytic degradation was monitored
through measuring the characteristic absorbance of the solu-
tion samples by a UV-760CRT UV-Vis spectrophotometer
(Shanghai Precision and Scientific Instrument Co., Ltd). The
characteristic absorbance peaks were shown in Figure 2. Due
to the acidic condition, the characteristic absorbance peaks
shift from 460 to 517 nm. So, λmax = 517 nm was chosen to
measure the content of methyl orange left in the sample.

3. Results and Discussion

3.1. X-Ray Diffraction. The photocatalytic activity of catalyst
was greatly affected by its crystal structure and crystal phase
[24]. Generally, the anatase phase is reported with high
photocatalytic activity. Therefore, the crystal structure and
crystal phase characterization of pure TiO2 is investigated by
XRD. The XRD patterns of samples are shown in Figure 3.
In TiO2 sample, rutile phase was detected; however, only
anatase TiO2 crystal phase could be identified in C–TiO2

and Mn–C–TiO2 samples and no other dopant related crystal
phases could be resolved. The intensity of anatase diffraction
peaks for the Mn–C–TiO2 and C–TiO2 samples decreased
slightly as the T80 adding. This is probably due to the fact
that the T80 suppresses the hydrolysis of titanium alkoxide
and the rapid crystallization of the TiO2 particles by adsorb-
ing on the TiO2 particle surface [25]. The average crystal-
line size calculated by applying the Scherrer formula on
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Figure 1: Schematic diagram of photocatalytic reactor. 1: fluores-
cent tube (20 W); 2: quartz petri dishes (diameter: 4.5 cm; height:
12 cm); 3: magnetic stirrers.
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Figure 2: UV-vis spectra of methyl orange under neutral condition
and acidic condition.

the anatase (101) diffraction peak was 37.23, 16.22, and
16.37 nm for the pure TiO2, C–TiO2, and Mn–C–TiO2 sam-
ples, respectively, which is decreased as the surfactant used,
since surfactant reduces the rate of titanium alkoxide hydrol-
ysis and condensation of TiO2 leading to smaller crystal size
[26].

3.2. Particle Size Distribution. The particle diameter distri-
bution of the pure TiO2, C–TiO2, and Mn–C–TiO2 samples
is shown in Figure 4. From the laser particle size analysis
results, the mean particle diameter of the pure TiO2, C–TiO2,
and Mn–C–TiO2 samples is 80.46, 50.82, and 31.22 μm, res-
pectively. The mean particle diameter also decreased with
carbon and manganese doped, which may be associated with
the role of the surfactant in the preparation process that
decreases the polarity of titanium oxide (titania) and reduces
the aggregation of the particles [26].

3.3. FT-IR Analysis. To give additional evidence and further
to confirm the doping of manganese and carbon, FT-IR char-
acterizations were performed. The infrared spectroscopy of
pure TiO2, C–TiO2, and Mn–C–TiO2 samples are presented
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Figure 3: XRD patterns of as-prepared samples (A: anatase).

in Figure 5. The bands at 1640 cm−1 and the wide bands
at 3100–3700 cm−1 is resultant from O–H stretching of
adsorbed water molecules and the surface hydroxyl groups
on TiO2 have been recognized to play an important role
in the photocatalytic process, as these groups can inhibit
the recombination of photogeneration charges and interact
with photogenerated holes to product reactive oxygen species
[27]. The bands at 2330 cm−1 are assigned to the stretching
vibrations of the C=O bonds. Compared with pure TiO2

sample, we can infer that the C=O bonds in the C–TiO2 and
Mn–C–TiO2 samples could be attributed to the T80 used in
the sol. In the region below 1000 cm−1, this peak was ascribed
to absorption bands of Mn–O, which could be inferred that
some manganese oxide may appear on the surface of TiO2

nanoparticles [28].

3.4. UV-Vis Diffuse Reflectance Spectra. It is well know that
the photocatalytic activity of a semiconductor is related to
its band gap structure. Figure 6 shows the UV-vis absorption
spectra of the pure TiO2, C–TiO2, and Mn–C–TiO2 samples.
The typical onset of absorption near 380 nm can be assigned
to the intrinsic band gap absorption of TiO2 [29]. It can be
seen that there is a significant shift in the onset absorption
toward the higher wavelength for the Mn–C–TiO2 and C–
TiO2 sample. Specially, the codoped sample exhibits a greater
red shift than C–TiO2 sample which demonstrated that
Mn–C–TiO2 sample can greatly improve the absorption of
visible light. The reason may be due to the new electronic
state in the middle of the TiO2 band gap, charge-transfer
transition between the d electrons of the dopant and the CB
of TiO2, and the narrowed band gap resulted by C-doping,
allowing visible light absorption [30]. It has been reported
that nonmetal elements could reduce the band gap energy
of TiO2 by mixing their p orbital of nonmetal with O 2p
orbital and the doping of various transitional metal ions
into TiO2 could shift its optical absorption edge from UV to
visible-light range without a prominent change in TiO2 band
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Figure 4: Particle size distribution of TiO2, C–TiO2, and Mn–C–TiO2.
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Figure 5: FT-IR spectra of TiO2, C–TiO2, and Mn–C–TiO2.

gap [31]. However, the Mn–C doping TiO2 samples showed
smallest band gap energy in three kinds of samples shown
in Figure 6(b). The direct band gap energy of Mn–C–TiO2

sample was 2.6 eV, smaller than C–TiO2 sample (3.0 eV) and
pure TiO2 sample (anatase, Ca. 3.2 eV). This result further
approved the substitution of crystal lattice O or Ti to dopant
species The enhanced ability to absorb visible light makes
this Mn–C–TiO2 an effective photocatalyst for solar-driven
application.

3.5. XPS Spectra. XPS spectra showed further information
on the structure of Mn–C–TiO2. Figure 7(a) shows the high-
resolution Mn 2p XPS spectra of Mn–C–TiO2. The two
Mn 2p peaks at the binding energy of 640.5 and 653.0 eV
indicate the existence of MnO2. The C 1s XPS spectra of Mn–
C–TiO2 were shown in Figure 7(b). Three broad but well-
separated peaks were observed in the C 1s binding region
at 281.3, 284.6, and 288.2 eV for the as-synthesized carbon-
doped titania, but only one peak at 284.6 eV for pure titania
(data not shown), which arises from adventitious elemental
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Figure 6: Optical properties of TiO2, C–TiO2, and Mn–C–TiO2.
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Figure 7: XPS spectra of codoped TiO2 nanotube arrays. (a) A spectrum of Mn 2p; (b) a spectrum of C 1s.

carbon. The peak at the lower binding energy has been
accordingly assigned to the formation of Ti–C bonds in
C–TiO2 in the previous reported [32]. The highest C 1s
energy peak at 288.2 has been accordingly interpreted as the
distinct feature of C–O bond formation in C–TiO2 that in
principle arises from interstitial and/or substitutional (for Ti)
C atoms, while the underlying carbonate species have been
considered as the source of the extended optical absorption
tail of C–TiO2 in the visible range [32]. In the present
case, the coexistence of the 281.3 and 288.2 eV C 1s peaks
corresponding to the binding energies of Ti–C and C–O
bonds indicates both the presence of interstitial C atoms as
well as carbon substitution for O and Ti atoms in the titania
lattice [33].

3.6. Photocatalytic Activity of Samples in Photodegradation
of Mn–C–TiO2. To evaluate and compare the visible-light
photocatalytic activity of the Mn–C–TiO2 sample, the
reactions of methyl orange degradation were preformed
as photoreaction probes under the sunlight irradiation. In
order to identify possible losses of methyl orange in the
reactor system, control experiments without catalyst added
were preformed. The course of methyl orange photocatalytic
degradation used as catalyst pure TiO2, C–TiO2, and Mn–C–
TiO2 as well as control experiment is given in Figure 8. It was
found that no obvious methyl orange loss was observed in
control experiment which confirmed that the methyl orange
was stable in our experiment. When adding the synthesized
catalyst, it was seen from the figure that Mn–C–TiO2 sample
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Figure 8: Photocatalytic degradation of MO with as-prepared
samples.

exhibited higher photoactivity than that of pure TiO2 and
C–TiO2 samples after 5 h irradiation under the sunlight. For
pure TiO2 sample, the degradation phenomenon could be
attributed to the adsorption and photocatalytic degradation
induced by trace UV light in the reaction system. In the Mn–
C–TiO2 system, the excellent photocatalytic activity could
partially be due to its high specific surface area, smaller crys-
tallite size, and lower band gap energy.

4. Conclusions

The manganese and carbon codoped TiO2 nanoparticles as a
novel catalyst were successfully prepared by surfactant-based
sol-gel methods under mild conditions. For comparison,
carbon doped TiO2 and pure TiO2 were also prepared by the
same method without adding the corresponding dopants.
Detailed characterization of the materials physicochemical
properties by XRD and laser particle size analysis showed that
the C–TiO2 nanomaterials crystallize in the anatase phase
with high specific surface area and small particle size distri-
bution. Significant shift of the optical absorption edge
toward the visible region was detected for the Mn–C–TiO2

nanoparticles and much higher photocatalytic activity than
that of C–TiO2 and pure TiO2 for methyl orange degradation
in water was demonstrated under sunlight irradiation.
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