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Novel graphitic carbon nitride (g-C
3
N
4
) coated TiO

2
nanocomposites were prepared by a facile and cost-effective solid-state

method by thermal treatment of the mixture of urea and commercial TiO
2
. Because the C

3
N
4
was dispersed and coated on the

TiO
2
nanoparticles, the as-prepared g-C

3
N
4
/TiO
2
nanocomposites showed enhanced absorption and photocatalytic properties in

visible light region.The as-prepared g-C
3
N
4
coatedTiO

2
nanocomposites under 450∘Cexhibited efficient visible light photocatalytic

activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C
3
N
4

coated TiO
2
nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

1. Introduction

Visible light photocatalysis has attracted the worldwide atten-
tion due to its potential application in environmental reme-
diation and solar energy conversion [1–7]. The photocatalyst
TiO
2
, however, can only utilize the ultraviolet light (about 5%

of natural solar light) because of its wide band gap (ca. 3.2 eV
for anatase TiO

2
). During the past 40 years, many efforts

have been devoted to enhance the visible light photocatalytic
activity of TiO

2
, including metal doping [8–10], nonmetal

doping [11–14], surface modification [15], and heterojunction
construction [16–19].

In recent years, polymeric g-C
3
N
4
materials have at-

tracted much attention because of their similarity to
graphene. Zhang et al. reported that the polymeric g-C

3
N
4

semiconductors exhibit high photocatalytic performance for
water splitting under visible light irradiation [20]. Dong and
coworkes reported that polymeric g-C

3
N
4
layered materials

as novel efficient visible light photocatalyst, which can be
synthesized facilely by directly heating urea or thiourea
[21, 22].

Very recently, Zhou et al. reported a g-C
3
N
4
/TiO
2

nanotube array heterojunction with excellent visible light

photocatalytic activity [17]. Zhao et al. reported g-C
3
N
4
/TiO
2

hybrids with wide absorption wavelength and effective pho-
togenerated charge separation [18]. However, the precursors
for g-C

3
N
4
(dicyandiamide and melamine) are poisonous

and detrimental to the environment. The preparation pro-
cesses were relatively tedious, which may prevent large-scale
application [17, 18].

In the present work, g-C
3
N
4
/TiO
2
nanocomposites were

prepared by a facile and cost-effective solid-state method
using urea and commercial TiO

2
as precursors. It was inter-

esting to find that g-C
3
N
4
was in situ coated on the surface

of TiO
2
. The precursors (urea and commercial TiO

2
) are low

cost and easily available.The as-prepared g-C
3
N
4
coatedTiO

2

nanocomposites exhibited enhanced photocatalytic activity
under visible light irradiation.

2. Experimental

2.1. Synthesis. Theg-C
3
N
4
coated TiO

2
nanocomposites were

prepared by a facile and cost-effective solid-state method. In
a typical synthesis, 2 g TiO

2
and 6 g urea were immersed in

10mLH
2
Oand dried at 60∘C to completely remove the water.
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The mixtures were put into an alumina crucible with a cover,
and then heated to a certain temperature in the range of 400
and 600∘C in a muffle furnace for 1 h at a heating rate of
15∘C min−1. The final samples were collected for use without
further treatment.

2.2. Characterization. The crystal phases of the sample were
analyzed by X-ray diffraction with Cu K𝛼 radiation (XRD:
model D/max RA, Rigaku Co., Japan). The morphology and
structure of the samples were examined by transmission
electron microscopy (TEM: JEM-2010, Japan). The UV-vis
diffuse reflection spectra were obtained for the dry-pressed
disk samples using a Scan UV-Vis spectrophotometer (UV-
Vis DRS: UV-2450, Shimadzu, Japan) equipped with an inte-
grating sphere assembly, using BaSO

4
as reflectance sample.

The spectra were recorded at room temperature in air range
from 250 to 800 nm. X-ray photoelectron spectroscopy with
Al K𝛼 X-rays (h] = 1486.6 eV) radiation operated at 150W
(XPS: Thermo ESCALAB 250, USA) was used to investigate
the surface properties. The shift of the binding energy due to
relative surface charging was corrected using the C1s level at
284.8 eV as an internal standard. FT-IR spectra were recorded
on a Nicolet Nexus spectrometer on samples embedded in
KBr pellets. The nitrogen adsorption-desorption isotherms
were determined by the BETmethod (BET-BJH: ASAP 2020,
USA), fromwhich the surface area, pore volume, and average
pore diameter were calculated by using the BJH method. All
the samples were degassed at 200∘C prior to measurements.

2.3. Evaluation of Photocatalytic Activity. Photocatalytic
activity of g-C

3
N
4
/TiO
2
forMB photodegradation was evalu-

ated in a quartz glass reactor. 0.05 g of N-TiO
2
was dispersed

inMBaqueous solution (50mL, 5mg/L).The light irradiation
system contains a 500W Xe lamp with a jacket filled with
flowing and thermostated aqueous NaNO

2
solution (1M)

between the lamp and the reaction chamber as a filter to
block UV light (𝜆 < 400 nm) and eliminate the temperature
effect. The suspension was first allowed to reach adsorption-
desorption equilibrium with continuous stirring for 60min
in the dark prior to irradiation. The degradation rate of
MB was evaluated using the UV-Vis absorption spectra
to measure the peak value of a maximum absorption of
MB solution. During the irradiation, 5mL of suspension
was continually taken from the reaction cell at given time
intervals for subsequent dye concentration analysis after
centrifugation. The MB solution shows a similar pH value
at 6.8, which does not affect the light absorption of MB. The
maximum absorption of MB is at wavelength of 665 nm.The
degradation rate 𝜂 (%) can be calculated as

𝜂 (%) =
(𝐶
0
− 𝐶)

𝐶
0

× 100%, (1)

where 𝐶
0
is the initial concentration of MB considering MB

adsorption on the catalyst and 𝐶 is the revised concentration
after irradiation.
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Figure 1: XRDpatterns of the C
3
N
4
/TiO
2
nanocomposites obtained

under different temperatures.

3. Results and Discussion

Figure 1 shows the XRD patterns of the as-prepared g-C
3
N
4

coated TiO
2
nanocomposites at different temperatures. The

peaks of all the samples can be indexed to the anatase
phase of TiO

2
(JCPDS file No. 21-1272). It can be seen

that the peak intensity increases gradually under higher
treatment temperature, which indicates that the crystal sizes
of TiO

2
nanocomposites increase under higher treatment

temperature. No typical peaks of g-C
3
N
4
can be found for

all the samples due to the fact that g-C
3
N
4
with layered

structures on the surface of TiO
2
is ultrathin (Figure 2) and

the crystallinity is low [22].
The morphology of pure TiO

2
and g-C

3
N
4
/TiO
2
nano-

composites were observed by TEM. As shown in Figure 2,
both samples contain a number ofmonodispersed nanoparti-
cles of TiO

2
with a size of about 11 nm.The intra-aggregation

of particles could form the mesoporous structure [23]. It
can be seen from Figure 2(b) that the ultrathin g-C

3
N
4
with

layered structures are dispersed and coated on the surface of
TiO
2
particles, which is consistent with absence of the peaks

of g-C
3
N
4
in XRD (Figure 1).

The FT-IR spectra of pure TiO
2
and g-C

3
N
4
coated TiO

2

nanocomposites are shown in Figure 3(a). The absorption
band around 400–800 cm−1 is attributed to Ti–O bonds [23].
Several bands in the range of 1100–1650 cm−1 correspond
to the typical stretching vibration of CN heterocycles in g-
C
3
N
4
. The characteristic vibration mode of triazine units can

also be found at 801 cm−1 [22]. The peak at 1630 cm−1 is
associated with the stretching vibration of water molecules
for both samples, including molecular water and hydroxyl
groups [23]. The FT-IR spectra further confirm the existence
of g-C

3
N
4
on the surface of TiO

2
.

The TG and DSC thermograms (Figure 3(b)) show that
there are several phase transformations during heating. An
endothermal peak at 135∘C is the melting point of urea. The
peak at 242∘C indicates the reaction of urea into melamine.
The weight loss during the two stages decreases rapidly by
36.1%. The sharp peak at 367∘C implies that the thermal
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Figure 2: TEM images of pure TiO
2
(a) and g-C

3
N
4
/TiO
2
nanocomposites sample obtained under 450∘C (b).
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Figure 3: FTIR spectra of pure TiO
2
and g-C

3
N
4
/TiO
2
nanocomposites (a) and TG-DSC for heating the mixture of TiO

2
and urea (b).

condensation of melamine into g-C
3
N
4
occurred in this

temperature range. The weight loss in this stage is about
26.6%. The further weight loss of 4.8% with endothermal
peak at 520∘C can be attributed to the decomposition of g-
C
3
N
4
. The TG-DSC result implies that g-C

3
N
4
can be in

situ formed on the surface of TiO
2
, which is consistent with

Figure 2(b).
TheC1s spectra in Figure 4(a) show that twomain carbon

species with binding energies of 284.9 and 288.1 eV, corre-
sponding to C–C and C–N–C, respectively. Three binding
energies in N1s region (Figure 4(b)) can be observed, which
can be indexed to C–N–C (398.8 eV), N–(C)

3
(400.1 eV), and

N–H groups (401.2 eV), respectively. The binding energy at
529.7 and 533.0 eV can be ascribed to Ti–O, surface hydroxyl
groups, and adsorbedmolecularwater (Figures 4(c) and 4(d))
[22]. The XPS results are consistent with the FT-IR spectra.
XPS results also indicate that no peak for Ti–C or Ti–N bond
can be observed, which implies that there is no chemical bond
connection between g-C

3
N
4
and TiO

2
.

The nitrogen adsorption-desorption isotherms of pure
TiO
2
and g-C

3
N
4
/TiO
2
nanocomposites obtained under

450∘C are shown in Figure 5(a). The two samples show a
type IV adsorption isotherm with a H

2
hysteresis loop in

the range (𝑃/𝑃
0
) of 0.6–1.0, which indicates the presence

of mesopores. The surface areas and pore volume of pure
TiO
2
are 78m2/g and 0.281 cm3/g, higher than those of g-

C
3
N
4
/TiO
2
nanocomposites (48m2/g and 0.216 cm3/g). The

pore size distribution curve (Figure 5(b)) indicates that the
large mesopores of pure TiO

2
and g-C

3
N
4
/TiO
2
nanocom-

posites are about 37 and 48 nm, respectively. The presence
of large mesopores can be ascribed to the aggregation of
TiO
2
particles. It can be observed that the g-C

3
N
4
/TiO
2

nanocomposites have small mesopores of around 13.6 nm
(inset in Figure 5(b)), which originates from the presence of
layered g-C

3
N
4
on the TiO

2
surface. The small mesopore is

advantageous for enhancing the adsorption for reactant.
Figure 6 shows the UV-Vis DRS spectra of pure TiO

2
and

the as-prepared g-C
3
N
4
/TiO
2
nanocomposites. It is clear that

the visible light absorption of g-C
3
N
4
/TiO
2
nanocomposites

is enhanced with increased treatment temperatures until
450∘C. Then the visible light absorption decreases when
the temperature is higher than 450∘C. This fact implies
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Figure 4: XPS spectra of the as-prepared C
3
N
4
coated TiO

2
nanocomposite under 450∘C.

that the as-prepared g-C
3
N
4
coated TiO

2
nanocomposites

under 450∘Cmay exhibit excellent visible light photocatalytic
activity. However, the decrease of visible light absorption
intensity of coated TiO

2
nanocomposites under higher treat-

ment temperature can be attributed to the decomposition of
g-C
3
N
4
.

Figure 7 shows the adsorption and photocatalytic activity
of pure TiO

2
and g-C

3
N
4
/TiO
2
nanocomposites for removal

of MB. It can be seen that the g-C
3
N
4
/TiO
2
nanocomposites

obtained under 450∘Cexhibit the highest adsorption capacity,
which may be ascribed to presence of layered g-C

3
N
4
and

small mesopores of the nanocomposites sample. The pho-
tocatalytic activities of g-C

3
N
4
/TiO
2
nanocomposites first

increase and then decrease with the increased treatment
temperature. Pure TiO

2
shows low visible light activity due

to its large band gap. The observed slight visible light activity
for the pure TiO

2
sample can be ascribed to the photosen-

sitization effect of the MB as MB can absorb visible light

[18]. During the visible light irradiation, the part of MB was
self-decomposed due to the photosensitization. When TiO

2

was coated by g-C
3
N
4
, all the nanocomposite samples show

decent visible light activity. Under visible light irradiation,
g-C
3
N
4
with a band gap of 2.7 eV could be excited and the

photogenerated electrons could transfer from the conduction
band (CB) of g-C

3
N
4
to the CB of TiO

2
[17, 18, 24]. The

holes in the valence band (VB) of g-C
3
N
4
and electrons

on the CB of TiO
2
could initiate the following degradation

reactions. The as-prepared g-C
3
N
4
/TiO
2
nanocomposites

under 450∘C exhibit the highest photocatalytic activity under
visible light irradiation. Considering the fact that the surface
area of g-C

3
N
4
/TiO
2
nanocomposites (48m2/g) is lower

than that of pure TiO
2
(78m2/g), the surface area of g-

C
3
N
4
/TiO
2
is not a positive factor.The enhanced visible light

activity of g-C
3
N
4
/TiO
2
should be ascribed to the enhanced

visible light adsorption because of the presence of g-C
3
N
4

(Figures 2(b) and 6) and the improved MB adsorption
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Figure 5: BET-BJH of the pure TiO
2
and C

3
N
4
coated TiO

2
nanocomposite obtained under 450∘C.
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and g-C
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samples

obtained under different temperatures.

because of the small mesopores of the nanocomposites sam-
ple (Figure 5(b)). As the precursors (urea and commercial
TiO
2
) are cheap and preparation method is very simple,

the as-prepared g-C
3
N
4
coated TiO

2
nanocomposites are

ready for large-scale applications in environmental pollution
control and solar energy conversion [25].

4. Conclusion

The g-C
3
N
4
/TiO
2
nanocomposites were synthesized by a

cost-effective solid-state approach by thermal treatment of
the mixture of urea and commercial TiO

2
. It was found

that the surface of TiO
2
particles was coated by the in
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Figure 7: Adsorption and photocatalytic activity of the pure TiO
2

and g-C
3
N
4
/TiO
2
samples obtained under different temperatures for

removal of MB.

situ formed thin layered g-C
3
N
4
from urea. The adsorption

capacity and visible light photocatalytic activity were signif-
icantly enhanced. Under the optimized treatment tempera-
ture of 450∘C, the g-C

3
N
4
/TiO
2
nanocomposites exhibited

highest adsorption capacity and visible light photocatalytic
activity toward removal of MB. The enhanced adsorption
capacity can be ascribed to the presence of g-C

3
N
4
and

smallmesopores.The enhanced visible photocatalytic activity
originated from the increased visible light adsorption and
small mesopores of the nanocomposites sample. The novel
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g-C
3
N
4
coated TiO

2
nanocomposites prepared by the cost-

effective solid-state approach would find wide application in
environmental remediation.
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