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MoS
2
/CdS photocatalyst was fabricated by a hydrothermal method for H

2
production under visible light. This method used low

toxic thiourea as a sulfur source and was carried out at 200∘C.Thus, it was better than the traditional methods, which are based on
an annealing process at relatively high temperature (above 400∘C) using toxic H

2
S as reducing agent. Scanning electronmicroscopy

and transmission electron microscopy images showed that the morphologies of MoS
2
/CdS samples were feather shaped and MoS

2

layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric
MoS
2
and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS

2
can enhance the optical absorption

of MoS
2
/CdS. The photocatalytic activity of MoS

2
/CdS was evaluated by producing hydrogen. The hydrogen production rate on

MoS
2
/CdS reached 192 𝜇mol⋅h−1. This performance was stable during three repeated photocatalytic processes.

1. Introduction

Solar hydrogen production from water can provide a clean
and renewable energy. It has been considered to be the most
promising approach for solving energy and environmental
issues at a global level. In this context the fabrication of
effective photocatalysts is an important area of research.
Many semiconductors such as TiO

2
[1], ZnO [2], Nd

2
O
5
[3],

and CdS [4] have been reported as useful photocatalysts for
hydrogen production. Among these photocatalysts, CdS has
received the most attentions, due to its superior light absorp-
tion and appropriate conduction-band level [5–8]. However,
bare CdS photocatalyst usually suffers from photocorrosion
[8, 9], which can be improved by loading a cocatalyst such as
noble metal (Pt [4, 10], Au [11], and Rh [12, 13]), WC [14], and
WS
2
[15] on the surface of CdS. From the resources and envi-

ronmental point of view, noblemetal and tungsten are limited
by their rare availability and high price.Therefore, there is an
emerging urge for exploring alternative cocatalysts.

Recently, MoS
2
was reported to be a good cocatalyst,

and it has been experimentally confirmed that hydrogen
production on CdS with MoS

2
loading is even more efficient

than that of CdS with noble metal loading [16–19]. However,

for the fabrication of MoS
2
/CdS photocatalyst, the poisonous

H
2
S gas has to be employed as sulfur source, and the

calcinations temperature is relatively high (above 400∘C [17,
19]). These disadvantages limited the development of this
promising photocatalyst. Therefore, it is worthy to find a
green method at relatively low temperature with nontoxic
sulfur source for the preparation of MoS

2
/CdS photocatalyst.

Herein, we developed a hydrothermal method for syn-
thesizing MoS

2
/CdS photocatalyst. This method was carried

out at only 200∘C, and its sulfur source was less toxic
thiourea. Their photocatalytic performances were evaluated
by producing hydrogen under visible light irradiation.

2. Materials and Methods

2.1. Fabrication of MoS2/CdS Photocatalyst. According to the
pioneer work, thiourea has been chosen as sulfur source
to synthesize sulfide [16]. CdCl

2
⋅2H
2
O and Na

2
MoO
4
⋅2H
2
O

worked as precursors of Cd and Mo, respectively. Briefly,
CdCl
2
⋅2H
2
O and thiourea with the molar ratio of 1 : 3 were

dissolved in 80mL deionized water; then various amounts
of Na

2
MoO
4
⋅2H
2
O were added into the above solution.
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Figure 1: SEM and TEM images of MoS
2
/CdS samples.
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Figure 2: XPS spectra of MoS
2
/CdS: (a) Mo 3𝑑, (b) S 2𝑝 and (c) Cd 3𝑑.
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Figure 3: XRD of MoS
2
, CdS, and MoS

2
/CdS.
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Figure 4: DRS of MoS
2
, CdS, and MoS

2
/CdS.

The solution was mixed homogeneously in a Teflon-lined
stainless steel autoclave (100mL) followed by sonication for
1 h.Then the Teflon-lined stainless steel autoclave was heated
in an air blowing thermostatic oven at 200∘C for 24 h. The
obtained precipitate was washed with ethanol and water and
dried in a vacuum chamber overnight at room temperature.

2.2. Characterization. The morphology of samples was obs-
erved by scanning electron microscopy (SEM, Hitachi S-
4800) and transmission electron microscopy (TEM, FEI
Tecnai G2 F30).The X-ray photoelectron spectroscopy (XPS)
was performed with a VG ESCALAB250 surface analysis
systemusing amonochromatizedAlK𝛼X-ray source (300W,
20mA, and 15 kV).The crystal structures of the samples were
investigated by an X-ray diffractometer (XRD, Shimadzu
LabX XRD-6000) employing Cu K𝛼 radiation accelerating
voltage of 40 kV and current of 30mA over the 2𝜃 range of
20–80∘. The optical absorption property of the samples was
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Figure 5: The time courses of photocatalytic H
2
production on

MoS
2
/CdS with various MoS

2
ratios under visible light irradiation.
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Figure 6: Three consecutive cycling experiments using the same
MoS
2
(6.9 wt %)/CdS.

measured by a Shimadzu UV-2450 spectrophotometer with
the scanning range from 200 to 800 nm.

2.3. Hydrogen Production Experiments. Hydrogen produc-
tion experiments were carried out in a Pyrex top-irradiation
glass reactor connected to a closed gas-circulation system.
The photocatalyst powder (50mg) was introduced into a
100mL aqueous solution containing 0.5M Na

2
S and 0.5M

Na
2
SO
3
as the sacrificial agent. After stirring, the suspension

was irradiated from the top of the reactor by a 300W Xe
lamp with a cut-off filter (𝜆 > 400 nm). The temperature
of reactant solution was maintained constantly at 10∘C by a
flow of cooling water during the reaction. The H

2
gas was
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Figure 7: Schematic diagram of H
2
production mechanisms on MoS

2
/CdS.

quantified by an online gas chromatograph (Shimadzu, GC-
14C, TCD, molecular sieve 5 Å).

3. Results and Discussion

The morphology of the samples was observed by SEM and
TEM. The SEM image showed that the samples looked like
feather cluster, and the length and width of a feather were
about 5𝜇m and 1 𝜇m, respectively (Figure 1(a)). The TEM
image displayed that the feather was composed of fusiform
structures (Figure 1(b)). To further magnify, the lattice spac-
ings can be distinguished in Figure 1(c). The magnified
HRTEM image in Figure 1(c) exhibits the interlayer spacing
of 0.32 nm and 0.62 nm, which correspond to the (101) plane
of hexagonal CdS and the (002) plane of hexagonal MoS

2
,

respectively. It indicated that bothMoS
2
and CdS have a good

crystallization, and MoS
2
layer was less than 3 nm coated on

the surface of CdS.
The chemical composition of samples was investigated by

XPS. Figure 2(a) showed the XPS spectrum for Mo 3𝑑. The
3𝑑
5/2

and 3𝑑
3/2

peaks located at 231.7 and 225.9 eV indicated
the presence of Mo4+ cations. The S 2𝑝 spectrum can be
found in Figure 2(b). The split peaks of S 2𝑝 were at 162.94
and 161.25 eV corresponding to a doublet composed of 3𝑑

5/2

and 3𝑑
3/2

. As Figure 2(c) shows, the doublet peaks at 412
and 405.1 eV were ascribed to Cd 3𝑑

5/2
and 3𝑑

3/2
. These

binding energies are all consistent with the reported values
for the MoS

2
and CdS. Together with the results of TEM and

XRD, the above results of XPS confirmed that the sample was
composed of MoS

2
and CdS.

The crystal structures of MoS
2
, CdS, and MoS

2
/CdS are

investigated by an X-ray diffraction (XRD). As shown in
Figure 3, for CdS, the main characteristics peaks correspond,
respectively, to the reflection (100), (002), (101), (102), (110),
(103), (112), (202), (203), and (105) crystal faces of hexagonal
wurtzite structure CdS (JCPDS 41-1049). Compared with
MoS
2
, no XRD peaks belonging to MoS

2
were detected in

MoS
2
/CdS, indicating the low amount and fine distribution

of MoS
2
on the CdS.

UV-vis diffuse reflectance spectra of MoS
2
, CdS, and

MoS
2
/CdS were shown in Figure 4. It could be seen that

the loading of MoS
2
enhanced the light absorption of the

MoS
2
/CdS composite, which would result in higher light

energy utilization.
To observe the effect of MoS

2
ratio to the photocatalytic

capability of MoS
2
/CdS photocatalysts, MoS

2
/CdS samples

with various MoS
2
ratios (0wt%, 5.8 wt%, 6.9 wt%, 10.6 wt%,

16.4 wt%, and 100wt%)were synthesized, and their respective
hydrogen production rates were measured (Figure 5). The
hydrogen production rate corresponding to CdS was 11.5
𝜇mol⋅h−1. The value enhanced obviously, once MoS

2
was

coated on the surface of CdS, and reached its maximum on
MoS
2
(6.9 wt%)/CdS. Further increase in MoS

2
ratio, the H

2

production rate began to reduce, which could be explained by
overloading of MoS

2
.

To evaluate the stability of MoS
2
(6.9 wt%)/CdS, three

repeated photocatalytic processes were performed. After the
third cycle, the H

2
production was 168 𝜇mol⋅h−1, which

reduced only by 7% compared to that of the first one
(Figure 6).This insignificant reduction suggested the stability
of the MoS

2
(6.9 wt%)/CdS photocatalyst. In other words,

the photocorrosion, the inherent drawback of CdS, had been
inhibited effectively by loading of MoS

2
.

Due to the quantum confinement effect, CB potential of
nanoscaleMoS

2
has been reported to be about −0.2 eV versus

NHE [16], which is sufficiently negative to reduce H+ to H
2

but more positive than that of CdS (−0.52 eV versus NHE)
[20, 21].Therefore, the photogenerated electronsmay transfer
from the CB of CdS to the CB of MoS

2
and reduce water to

H
2
on the surface of MoS

2
. This mechanism agrees with the

literature [17, 19] and is shown in Figure 7.

4. Conclusions

AMoS
2
/CdS photocatalyst has been successfully synthesized

by a green hydrothermal method, which can avoid the
disadvantages (such as high energy consumption and toxic
sulfur source) of the conventional methods. By controlling
the ratio of MoS

2
, the H

2
evolution capability of MoS

2
/CdS is

17 times greater than that of CdS. It is believed that this green
synthesis method can be used to prepare competitive sulfide
photocatalysts for efficient solar hydrogen production.
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