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This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to
transform lignocellulosic biomass into the activated carbon (AC). In the photocatalysis applications, this AC can further be used
as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to
develop sustainable carbon of the synthesis process, where catalytic conversion is accounted.The catalytic treatment corresponding
to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are
necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and
long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such
conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been
given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon
microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been
reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers
the recombination rate of holes and electrons.

1. Introduction

Increasing environmental problems and the need for com-
petitive and cost-effective products are becoming two major
principles in modern material research [1–4]. Former devel-
oped routes to get a periodic porous carbon network were
successful, but they did not take into account any crite-
ria of sustainability [5–7]. For the last 20 years, countless
laboratories of research institution have done some indepth
researches on the conversion of biomass to carbon based
materials without using the catalysts [5, 8, 9]. Studies of
such researches have covered many model carbon material
compounds, for example,methanol, lignin, glucose, cellulose,
and some real biomass compounds [10–12]. As prosperous
demonstrations were accumulated, kinetics, thermodynam-
ics, and detailed reaction mechanism have created a solid
base for subsequent researches [13–15]. However, in order
to enhance the selectivity of carbon material manufactures,
immense activation energy is necessary for the reaction
without the use of catalyst. The excessive cost of tools and

operations has undoubtedly become the biggest hindrance to
the formulation of this technology [15].

Hence, the main problem of carbon synthesis under
sustainable conditions was currently revisited and executed
by several terms, where catalytic treatment of biomass
through either heterogeneous or homogeneous catalytic
approach corresponding in mild condition provided a bulk,
mesoporous, and nanostructure carbon materials [16–18].
Catalytic effects of homogeneous catalyst, especially ionic
liquid on the biomass conversion, have been established by
many of the open literature. The main characteristics of this
catalytic technique are to have a conversion system with
minimal energy to confirm the high yield of carbonmaterials
[18–20]. If we compare homogeneous catalysts with heteroge-
neous catalysts, heterogeneous catalysts have the advantages
of being highly selective, recyclable, and environmentally
friendly [19, 21]. Heterogeneous catalysts have the advantages
of being highly selective; therefore, heterogeneous catalyst
with the ample range of solid acid, ion exchange resin, metal
oxide, and zeolite has become a research hotspot in this
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field [21]. Both techniques have been explored substantially,
with the need for creating cheap and sustainable ways to
obtain chemicals and carbon from raw materials other than
natural gas or crude oil that could lead to a reexploration
of this area. In addition, the implementation of low-priced
pathway to recycle the products of farmed biomass would
furthermore represent a way to sequester particular amount
of CO

2
creating a material advantaged at the same time

[22, 23].
This paper will not debate on the preparation of the

catalyst, but instead it would focus primarily on the use of
the catalyst to bring out carbon based materials through the
conversion process of biomass, which can be additionally
used as a photocatalyst.

Various published papers and examined articles have
indicated the theory and environmental supplication of
heterogeneous photocatalysis by the employment of semi-
conductors [24, 25]. One of the biggest drawbacks of using
these semiconductors is the power necessity because of
the utilization of ultraviolet light [26]. However, upgrad-
ing the photocatalytic reactors may upgrade reaction rate
and hence downgrade the time of residence and minimize
consumption of energy per unit of volume being treated.
It is accepted that this might be accomplished by deposit-
ing the photocatalyst on a high surface product that will
particularly absorb the polluted molecules and will fixate
them around the photocatalyst [26–28]. Lamentably, active
absorption of pollutant lowers the diffusion rate into semi-
conductor powder, which may thus hinder the activeness
of the photocatalyst. Such drawback has assisted various
researchers to find any worthy initiative of semiconductor
for the operation of some particular pollutants or try to
formulate the latest techniques of deposition [29, 30].The pH
of the solution, the support, and the kind of pollutant play
a significant role in the accomplishment of photocatalytic
process.

Various efforts have announced utilization of activated
carbon (AC) as a platform for the semiconductor but it has
been cautioned that effective absorption of pollutants into
the absorbent area may hinder diffusion into the catalyst
and thus may affect the entire process [31, 32]. AC acts
as a brace for the titanium oxide (TiO

2
) which could give

tremendous results over the other mediums [32]. These
consist its potential to swiftly absorb pollutants and also
its high absorption ability because of its surface area and
porosity [31]. As indicated, medium pores AC will make
easier the diffusion of pollutants and product discharging
from the surface [32, 33]. Furthermore, high ability to absorb
fluid of AC may reduce the penetration of ultraviolet lights
into small areas, and it may cause confining of pollutants
within the pores without getting able to diffuse into the
outer surface for further reaction with the OH radical of
pollutants [34–36]. Additionally, some types of pollutants,
for example, phenol, may go through polymerization on the
AC’s carbon surface, which causes unchangeable absorp-
tion [37, 38]. The general processes involved in semicon-
ductor particles upon bandgap excitation are illustrated in
Figure 1.

2. Activated Carbon

2.1. Properties of Carbon Materials. Carbon materials tech-
nology has made extraordinary progress in current years
because of its diversity of physicochemical properties, such as
tunable porosity, lightweight, exciting electronic properties,
electrical conductivity, chemical and thermal balancing, and
the potential to acquire an immense range of morpholo-
gies [40–43]. Hence, carbon materials have found a large
number of applications in different domains, varying from
environmental science [44], absorbent [45], drug delivery
[46], catalyst [44], electrode materials [47], stationary phase
in the chromatography system [48], energy storage [49], and
many others according to its structure, morphology, and
chemical properties (Figure 2).

However, for some particular applications, functionaliza-
tion is essential at controllable size and shape [48, 49]. Nev-
ertheless, the production of such materials usually requires
very harsh conditions and has several limits such as extreme
temperature of the carbonization process in the first steps up
to >800∘C and followed by chemical or physical activation
to transform carbon materials into activated carbon [43–
49]. Furthermore, it is significantly important here to explore
economical and sustainableways to get carbonmaterials from
raw materials other than crude oil or natural gas which leads
to a reexploration of this field (Table 1; Figure 3).

2.2. Conventional Conversion of Biomass to Carbon. The
use of biomass extracted products or biomass is becoming
vitally significant for the enhancement of effective and envi-
ronmentally friendly technology and together it solves the
issues of agricultural and forestry waste use [5–9]. Different
synthetic methods, such as carbonization [56], high-voltage-
arc electricity [57], laser ablation [58], or hydrothermal
carbonization [56], have been disclosed for the preparation
of carbonaceous, amorphous, crystalline carbon materials or
porous with different sizes, chemical composition, and shape
of the biomass feedstocks [56–59].

Moreover, the application of a low-priced pathway to
recycle by-products of biomass formed would furthermore
represent a way to separate significant amount of CO

2
and

at the same time a material advantage would also be created.
Biomass conversion is very significant, yet, working

with this complex biomass feedstock is challenging, and
approaches based on the creation of simpler and more
six balanced intermediate derivatives, known as platform
molecules, have been shown to be active for efficient biomass
conversion into chemicals and fuels [55], catalytic routes
consisting deoxygenation, and reaction combined with –C–
C– coupling processes [57]. Biomass conversion to carbon
materials through catalytic approach normally begins with
hydrolysis of dehydration and cellulose chains [57, 59] and is
divided into monomer’s soluble products that come from the
hydrolysis of cellulose [58], condensation or polymerization
of the soluble products, aromatization of the polymers hence
formed, and growth of the nuclei so created by linkage and
diffusion of species from the solution to the nucleus surface
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Figure 1: Processes involved in semiconductor particles upon bandgap excitation [39].
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Figure 2: General prospective on application of AC.

and finally appearance of short burst of nucleation [56–59]
(Figure 4).

2.3. Catalytic Conversion of Biomass to Carbon. Green chem-
istry, now days, is becoming more and more connected
with the catalytic process on biomass conversion to carbon
materials. Table 2 shows the list of catalysts corresponding to
their category and advantages towards the conversion process
of cellulose to carbon based materials.

2.3.1. Homogeneous Catalyst. Convention of sulfuric acid
solution and catalyst cellulose hydrolysis into glucose is a
time-consuming and well-formulated process [56–58, 60–
65]. Many large scale segments have been developed, but

there are rigid conditions including the treatment and the
recycling of the waste sulfuric solutions of acids, which
also suffer from the complex separation of products from
the solution, the lack of glucose selectivity, toxicity, and
high prices which take this process away from the original
approach of sustainability [56–58, 60–63].

Thus, the solvents of catalyst as ionic liquids have received
enough attention because of their low vapor pressure, sta-
bility, and recyclability [62, 62–73]. The kinds of novel green
solvent are ionic liquids with relatively less melting point and
appear as a crystal in general conditions [64]. Cellulose is
balanced via inter- and intramolecular bonds of hydrogen, so
that rigid bundles could be created, which makes it difficult
to solubilise with common organic solvents and water [16–
18, 74–79]. It is important to make solvents for cellulose so as
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Table 1: Classification of AC materials.

Criteria Particle size Properties Applications References

Powdered AC
<1.0mm
Diameter:
0.15–0.25mm

Higher surface area,
extraordinary volume per gram,
and greater purity

As an additive in vessel, waste
water treatment, classifiers, and
gravity filter

[50]

Granule AC 0.42 to 0.84mm
Suitable for many organic
chemicals, able to improve
taste/odor, and removes chlorine

Vapor and liquid adsorption,
water treatment, deodorization,
separation of components

[51]

Extruded AC 0.8 to 130mm
Low pressure drop, high
mechanical strength, and low
dust content

Gas phase applications [52]

Beads AC 0.35 to 0.8mm
Low pressure drop, high
mechanical strength, and low
dust content

Adsorbent for waste water [53]

Impregnated AC 0.8 to 200mm

Porous carbon impregnated with
inorganic materials (iodine,
silver, cations) and
antimicrobial
antiseptic

Pollution control and
purification of domestic water [54, 55]

Table 2: Catalytic approach on conversion of cellulose to carbon based materials.

Categories Types Advantages

Homogeneous
Ionic liquid
(e.g.: [BMIM]Cl; [EMIM]Cl and
[EMIM]BF4)

(i) Low melting point
(ii) Appears as crystal in normal condition
(iii) Acts as template on production of porous carbon structure
(iv) Solvent reaction media
(v) High yield of carbon production

Heterogeneous

Solid acid catalyst
(i) Bronsted/Lewis solid acid
(e.g.: ZrP; SiO2-Al2O3, WOX/ZrO2,
c-Al2O3,)
(ii) HPA
(e.g.: H3PW12O46; H4SiW12O40;
Cs2.5H0.5PW; Cs2.5H0.5PW2O40)

(i) High catalyst selectivity
(ii) Good separation process
(iii) High promotion on depolymerization of cellulose
(iv) Low formation of soluble oligomer
(v) Low cellulose self-hydrolysis
(vi) Favors direct formation of lactic acid
(vii) High stability

Heterogeneous
Ion exchange resin
(e.g.,: Amberlyst; McM-41; HnbM0O6;
mixed oxides; niobic acid;
silica-niobic; niobium phosphate)

(i) High accessibility of saccharides
(ii) Satisfactory reaction rate

Heterogeneous
Zeolite
(e.g.: ZSM-5; Beta; Mordenite;
Ferrient; FCC; Al-MCM-42; SBA-15;
Al-MSU-F; MOR)

(i) High selectivity to adsorb molecules
(ii) Good separation process
(iii) Good thermal and hydrothermal stabilities
(iv) Production of porous carbon

Heterogeneous Metal ions
(e.g.: Cr3+; Mn2+; Fe3+; Fe2+; Co2+)

(i) Good catalyst for ring opening and hydrogenation cellulose
(ii) Require short reaction time
(iii) High yield of glucose
(iv) High turnover amount of catalyst
(v) High activity and selectivity
(vi) Good recyclability
(vii) Easily separable

Heterogeneous Metal oxide
(e.g.: HnbM0O6; Al2O3)

(i) Green process
(ii) Nonvolatility
(iii) Highly stable
(iv) Nontoxic
(v) Reusability
(vi) Low cost
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Figure 3: Classification of AC materials.

to initiate a system of minimal efficiency to confirm greater
yield of carbon materials in the conversion of biomass [17–
20]. Ionic liquids have significant roles; it acts both as a soft
template to formulate the characterized pore structuring for
the development of a hierarchical porous carbon structure
and as a catalyst which results in enhanced ionothermal
carbon yields [64–66, 71–79].Thus, it has been demonstrated
that in the presence of an acid catalyst, the utilization of ionic
liquids, can embrace the efficiency of the hydrolysis of glucose
cellulose [66, 67, 80–84].

2.3.2. Heterogeneous Catalyst. The utilization of heteroge-
neous catalysis along with an immense range of designs is
less expensive and extraordinarily stable at high temperature
[85–88]. They are believed to upgrade catalyst characteristics
and process conditions to get high yields of hydrocarbons
while minimizing coke development in the wide range of
reaction conditions [86–88]. This method has the benefit
of being very economical and mild if we follow some rules
of green chemistry since it does not add organic solvent
[85, 86] with resulting carbon, which is spherically shaped
and the surface is decorated with oxygenated functional
groups [86]. This method also involves simple reaction
mechanisms for the creation of carbon, which involves the
dehydration of carbohydrate into a furan like molecules,
mainly 5-(hydroxymethyl)-2-furaldehyde as an initial step
and further polymerization and carbonization as the next
step [89–92]. This reaction possesses high potential for the
catalytic improvement biomass since –C–C– coupling takes
place with consistent oxygen removal (the reaction involves
the dispatchment of CO

2
and H

2
O) from carboxylic acids

[89, 90], and the latter of which are mutual intermediates in
the process of biomass conversion [91, 92]. If we compare
homogeneous catalysis, carbon materials obtained through
a heterogeneous catalytic process consist of an aromatic
core containing polyfuran-type units which is surrounded by
oxygen rich polar functional groups such as COOH, –OH, –
C–, and –O–, which makes the materials more hydroscopic,
hydrophilic, and have a lesser degree of graphitisations [93,
94]. These functional surface groups could act as a premier
binder and depositor to promote and stabilize the carbon
to form nanocables [95–98], a novel carbon-encapsulated
core-shell composite, and hybrids. Moreover, heterogeneous
catalysts are easy to recover and reuse [96, 97] (Figure 5).

Nevertheless, the effective exploitation of cellulose is a
main challenge in heterogeneous catalysis application, since
cellulose itself has a tough, mainly crystalline, chemically
stable, and water insoluble characteristics, which are induced
from the intra/intermolecular hydrogen bonds [99–101].
The most commonly used heterogeneous catalysts for the
conversion of biomass are alkali salts [76, 102, 103],metals (Ni,
Rh, PT, Ru, Pd, Ir, and Ag) [104–106], metal oxides (CeO

2
,

ZrO
3
TiO
2
, and Al

2
O
3
) [107, 108] usually on supports, and

metal oxide catalysts at medium temperatures (300 to 425∘C)
which involves deoxygenation reaction combined with –C–
C– coupling processes [109].

(1) Solid Acid Catalyst. Transformation of cellulose to water
soluble sugars via solid acid catalysts has received much
attention in these years as a solution to remove mineral acids
in the formulation of furfural which is easily recovered from
the reaction mixture, reused without losing the activity, and
minimized the posttreatment cost [75, 110–113]. Solid acid
catalysts are basically a Bronsted or Lewis acid [113, 114] and it
is of various types such as Vanadyl phosphate, ZrO

2
, zeolites,

inorganic oxides, and ion exchange resins.

(1.1) Bronsted or Lewis Solid Acid Catalyst. These series of
catalysts include WO

𝑥
/ZrO
2
, C–Al

2
O
3
, Zr–P, SiO

2
–Al
2
O
3
,

and HY Zeolite which are used for mainly aqueous phase
dehydration of xylose [115–119]. Lewis acid sites lower fur-
fural selectivity through catalyzing a side reaction. In the
hot water (190∘C), solid Lewis acids promoted the cellu-
lose depolymerization and lowered the creation of soluble
oligomers and polymers as in connection to the cellulose self-
hydrolysis which occurred in the familiar conditions [117–
124]. By contrast, in normal conditions, strong Bronsted solid
acid has not improved the extent of the cellulose depolymer-
ization but has affected the product distribution [98, 122, 123].
By comparison, Lewis solid acids were not only potential
to upgrade the extent of cellulose depolymerization but also
favorable for direct formation of lactic acid, which gives
high yield, approximately 30% [96, 125]. This comparison
represents highly potential ways to optimize the conversion
of cellulose and stabilize Bronsted acid catalyst which helps
to understand the reaction pathways [111].

This also brought an idea for various researchers to study
the effect of Bronsted acidities of water soluble heteropoly
acid catalyst, known as HPA [112]. This heterogeneous HPA
catalyst which is micellar, clean, economical, facile, and
environmentally friendly could be recycled via centrifuge
[112, 126].The exhibited activity for the hydrolysis of polysac-
charides comprising disaccharides, starch, and cellulose,
is known to be HPA [121, 126]. Tungstophosphoric acids
(H
3
PW
12
O
40
) [119] and tungstosilicious acids (H

4
SiW
12
O
40
)

[109] are the vigorous acids used in the series of HPA catalysts
in reaction of hydrocarbons and have been employed, for
example, in alkylation, acylation, esterification, dehydra-
tion, and isomerization of the ethanol process [127–129].
Salt of acidic cesium H

3
PW
12
O
40

and Cs
2.5
H
0.5
PW
12
O
40

(Cs
2.5
H
0.5
PW) with intense acidity is insoluble in organic

solvents and water and has meso- and micropores with rel-
atively high surface area (130m2gk) [119]. This Cs

2.5
H
0.5
PW
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has been described as a solid acid catalyst with prudent and
environment friendly specifications and is recommendable
in industrial process like hydration of olefins or ester and
liquid phase dehydrated alcohol [130, 131]. Till now, cellulose
hydrolysis into saccharides employing a range ofHPA catalyst
has been researched for capable applications, in contrast to
conventional acid-catalyzed reaction, whereas the yield of
glucose is less [130–132]. It is because of the insolubility of
cellulose in any of the solvents and problems of solid to
solid mass transport [77, 133]. In a few cases, the acidity of
mineral acid is lower than that of HPA. For example, (H

0
) of

H
5
BW
12
O
40
(0.7M at 100∘C), the Hammet acidity function,

is –2.1 lower than that of HCl (0.7M) and H
2
SO
4
. Hence,

HPAs have been anticipated to be reusable and active catalyst
for the hydrolysis. Along with that theory, amorphous carbon
bearing SO

3
H, COOH, and OH groups had been described

to show hydrolysis activity (10% of glucose yield) for 3 hours
at 100∘C. Meantime, Yabushita et al. demonstrated that the
cellobiose hydrolysis and cellulose in water assisted by HPAs

such as Sn
0.75

PW
12
O
40
, H
3
PW
12
O
40
, andH

4
SiW
12
O
40
record

total yields of decreasing sugar and it was around 40% at
200∘C for 16 hours of reaction [134]. It has been found by
Hara that H

5
BW
12
O
40
exhibited a good performance for the

transformation of crystalline cellulose to give glucose 77%
yield and various types of HPAs like H

3
PW
12
O
40

(glucose
yields 8%) and H

4
SiW
12
O
40
(37%) which are less active than

H
5
BW
12
O
40

[135]. Other research groups also administered
the screening of counter cations of PW

12
O
40
for the cellobiose

hydrolysis and they found that there was a volcano-type
correlation between Lewis acidities [136–138] and TOFs for
glucose formation. They also observed that the acidity and
the role of decreasing CrI were the significant factors for the
catalytic activity of HPAs [139]. In reality, the H

0
role was

H
3
PW
12
O
40
<H
4
SiW
12
O
40
<H
5
BW
12
O
40
in a similar order

of catalytic activity. The H
0
roles were corresponding to the

concentration of acids and the number of anions. Hence,
HPAs involving highly negatively charged ions are desirable.
The anions were dissociated fromhydrogen bonding between
cellulosemolecules to lower the CrI.Moreover, HPAs protons
have also exhausted the bonds of hydrogen from cellulose
and greater concentration of protons was effective in this
role [135, 140]. Therefore, a strong catalyst for the cellulose
hydrolysis is H

5
BW
12
O
40
, which was recovered through the

extraction and it was recycled for around 10 times [141].

(2) Ion Exchange Resins. Sulfonic acid functionalities of ion
exchange resin with solid acid catalyst and sulfonic acid
functioned materials resulted in high yield at 63% and 76%
in pure dimethyl sulfoxide (DMSO) solvent, correspondingly
[142, 143]. Solid acids such as amorphous carbon materials
consisting of SO

3
H groups layered transition (HNbMoO

6
)

metal oxide and resin sulfated have been tested for the cellu-
lose hydrolysis, but the yield of glucose is still comparatively
less [144, 145]. It has been hypothesized that side reactions
were abolished employing aprotic or organic solvents [146].
Vigorous acidic resins (Amberlite IR-200 and IR-120), niobic



International Journal of Photoenergy 7

acid, mixed oxides (silica-zirconia and silica-alumina), silica-
niobia, and niobiumphosphate created a strong acidity which
was protonic and accessibility of simple saccharides to the
most effective sites on the surface catalyst allows satisfactory
reaction rates to be obtained [147–150].

Sulfonic resins which are acidic are represented in dif-
ferent literatures of active catalyst system for the hydrolysis
of starch, cellulose, and disaccharides [151–153]. Generally,
the rigid conditions in terms of temperature (>120∘C tem-
perature in the water and in critical condition) and high
concentration of saccharide (>100 g) were employed to push
the catalytic actions of solid acid towards the achievement of
high transformations [154–156]. Sulfonated activated-carbon
could transform cellulose of amorphous into glucose with
41% of yield for 24 hours at a temperature of 200∘C [157]. Such
things have been founded by Sun and Zhang demonstrated
that p-toluenesulfonic acid can catalyze cellulose hydrolysis
in ionic [EMIM][Cl] system, giving THF yields of 28% and
13% and a yield of mono- and disaccharides 10% and 3%,
respectively [158]. Natural bamboo can be converted by a
sulfonated biomass char with cotton and starch around 20%
yield of glucose under microwave assistance [159–161]. The
process of hydrolysis consisting of starch and cellulose was
obtained via layered transition metal oxide, despite the fact
that the yield from glucose was less than cellulose. Sulfonated
carbon with a mesoporous like structure was used by the
groups of Vyver for cellulose hydrolysis getting the yield of
glucose around 75%, which is considered to be the highest
recorded yield via solid-acid catalyst [162, 163]. Similarly,
some interest has been shown in cellulose depolymerization
inwater because solid supported acid catalysis was used [164–
166].

Current reports describe the cellulose hydrolysis by solid
catalysts such as layered transition metal oxides, Amberlyst
resin acid modified amorphous carbon, and sulfonated silica
or carbon nanocomposites [167–169]. Also, the depolymer-
ization of cellulose was also considered under catalysis of
both FeCl

3
and Nafion supported on amorphous silica to be

tested on a continuous flow reactor, given the residual that
unreacted cellulose can be easily eliminated from the system
[75, 170]. For the conversion of glucose, these surface species
which are acidic were quite active [169]. Certainly, we are
aware that the hydrolysis rate of cellulose depends on the
acid strength. As an expansion on the previous reports on the
usage of Nafion as a solid assisted acid catalyst for the trans-
formation of cellulose into glucose and levulinic acid, many
researchers have incorporated the reaction with alkali metal
salts to embrace the reaction’s yield [171, 172]. Namchot et al.
and Klamrassamee et al. have recently formulated carbon-
based solid acid with immense density of Bronsted acid sites
(SO
3
H and COOH) to pyrolytically carbonize sugar, such as

cellulose, sucrose, or glucose, and subsequently sulfonate the
prepared carbons [173, 174]. Interestingly, these sulfonated
carbon materials are very strong for the microcrystalline
cellulose hydrolysis to producewater soluble saccharideswith
low reaction temperature (100∘C) with the conventional and
strong Bronsted acid catalyst such as H-mordenite, niobic
acid, and others.The particular surface area of the sulfonated
carbon was around 2m2 g−1 but the soluble saccharides

yield reached nearly 70%. Catalytic performance of soluble
saccharides was applied to its intrinsic ability to adsorb 𝛽-
1,4-glucan, which is not absorbed on the other solid acids.
Thus, it can be concluded that heterogeneous catalysis are
more active and environmentally benign, mainly because of a
hasty product separation and also catalysts recovery. Jule and
Schoonover described that acid resins with considerably big
pores could actively depolymerize cellulose in ionic liquid,
but the main products were cellooligomers which failed to be
dissolved in water [175].

(3) Zeolite Catalyst. The workhorse of the petroleum industry
is zeolite catalyst that efficiently converts petroleum based
feedstocks into the targeted chemicals and fuels and chem-
icals [176–178]. Crystalline microporous solids are an impor-
tant part of zeolites because of their widespread application
in absorption, separation, and catalysis [178]. Its importance
stems from its unique structures of pores, which makes it
highly particular to absorb molecules for separation reasons
or towards product molecules in catalysis [175, 179, 180].
Furthermore, during heterogenous catalytic reaction, zeolite
shows good hydrothermal and thermal stabilities. However,
from the last twenty years, there have been many studies
that focused on the catalytic transformation of biomass and
its derived feedstocks with a variety of zeolite catalysts,
including Ferrient, FCC, Al-MCM-41, ZSM-5, beta zeolite, Y
zeolite, SSZ-20, IM-5, TNU-9, MOR mordenite, SBA-15, Al-
MSU-F FER, ZSM-23, MCM-22, and MFI [181–186]. ZSM-
11 and ZSM-5 among these series had the lowest amount of
coke and the highest yield of aromatic because of its pore
space and steric effects [181]. Manufacturization of ordered
porous carbonmaterial has been obtained previously through
replication of ordered zeolite inorganic and nanocasting [187,
188]. Inside zeolite many reactions have occurred which
include decarbonylation, dehydration, isomerisation, and
decarboxylation and with that removing oxygen as carbon
dioxide, water, and carbon monoxide and conversion of
carbon and hydrogen into aromatics and olefins [181–188].
In these catalysts of zeolite, ZSM-5 has exhibited the highest
olefin and aromatic yields from biomass of lignocellulosic.
With a pore size of around 5.5 to 5.6 A, ZSM-5 has a three-
dimensional pore system. This small size of pore, internal
volume, and internal structure has made it problematic
for greater aromatic coke antecedents to form inside the
pores [189]. It has been demonstrated by Zapata et al. that
tin consisting zeolite is a highly efficient catalyst for the
isomerisation of glucose in water [190]. Nevertheless, other
studies have mentioned that, at low conversions in aqueous
environments, faujasite and mordenite both resulted in great
furfural selectivities up to 80% and 90% in 200∘C as the
selectivity lowers with high conversion and the final yield was
relative [191, 192].

(4) Metal Ion Catalyst. Furfural and HMF are the two
main and significant intermediates which are derived from
biomass. They were directly manufactured from the micro-
crystalline cellulose hydrolysiswithmetal ions in ionic liquids
such as Fe3+, Fe2+, Cr3+, Co2+, and Mn2+ as a catalyst under
mild conditions [193–195].Metal ions as an acidic support are
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a nice catalyst for hydrogenation and ring opening of cellulose
polymers.

Many reports are there on carbon production through
cellulose hydrolysis at a moderate temperature up to 250
and 300∘C metal catalyst in a very less reaction time to
control the deep exploitation of the formed glucose [196].
Some researchers even used Ru that is a ruthenium cata-
lyst to enhance the transformation of oligosaccharides and
increased glucose yield (almost 30%) with the TON that
is the turnover number of the catalyst was immense (145
based on bulk Ru) in contrast to those of the sulfonated
catalysts of carbon [197, 198]. Wang et al. found that the
glucose yield was increased around 31% by upgrading the Ru
loading to 10wt%alongwith the recyclable number of catalyst
up to five times without losing the activity or Ru leaching
[199]. Various reports on the efficiency of the hydrolyzate of
cellulose formulated by Ru catalysis as a source of carbon for
the bacterial PHA production found that under the aqueous
solution the reaction which occurs is desirable for delivering
microbes which thereupon make it easily disconnected from
yielded sugar via facilitating the race of the catalyst and
filtration [200–203]. Such reports have accepted that Ru
species were in fact in an oxidized state and acted as the real
and effective site for the oligosaccharides hydrolysis. Prior,
Ru/Co

3
O
4
catalyst has showed considerate selectivity and

activity and good recyclability in the biomass conversion to
carbon [204].

Researchers have even exclaimed that iron oxide
nanoparticles and iron ions could adequately catalyze the
hydrothermal carbonization of rice grains and starch beneath
mild conditions (<200∘C) and had a powerful influence on
the creation of nanomaterials of carbon with different shapes
[205, 206]. Catalysts of magnetite with sulfonic groups like
a mesoporous silica composite, Fe

3
O
4
, SBA-15 treated by

sulfonated CoFe
2
O
4
embedded silica, and sulfuric acid were

also employed for the cellulose hydrolysis [207, 208]. After
the catalytic reactions they were easily separable via magnet.
Fe
3
O
4
-SBA-SO

3
H catalyst managed glucose in 26% yield

from microcrystalline cellulose at a temperature of 200∘C
for 3 hours, though levulinic acid becomes an important
product giving 42% yield by delaying the reaction time up to
12 hours [209].

(5) Metal Oxide Catalyst. In many catalytic processes metal
oxides play an important role [210, 211]. For example, metal
oxide nanostructures are important components commer-
cially available for synthesis of methanol [212–215]. There
are many more benefits of these catalysts which make them
efficient candidates for green processes. The characteristics
of such catalysts are stable, nontoxic, low cost, availabil-
ity, nonvolatility, and reusability [214]. Several studies have
observed the processes of decomposition connected with
formic acid on nanometal oxide surface, methanol, and
formaldehyde [210–215]. It is strongly expected that metal
oxide nanostructures would have a better catalytic activity
in developing the conversion of cellulose to the value added
products in hydrothermal media with an efficient separation
from the reaction matrix in regard to the increased surface
area of the nanomaterials [214]. Layered transition metal

oxides containing niobium were found to be specifically
active in the hydrolysis of disaccharide, suggesting the impor-
tance to investigate niobium containing catalyst as an energy
inefficient factor for the conversion of biomass [213–215].

The employment of transition metal oxide like
HNbMoO

6
was also reported as an efficient solid catalyst to

generate glucose from cellulose. Similarly, in the presence of
noble metal consisting catalyst, for example, Pt/Al

2
O
3
, Felica

et al. have found the creation of sugar alcohols in yield up to
31% from cellulose in hydrothermal conditions. On the other
hand, the researchers proclaimed that Pt free catalysts have
generated only poor glucose hexitols amount [216].

3. Activated Carbon in Photocatalyst System

Activated carbon (AC), a carbonaceous material structured
on plant-basedmaterial, is a porous, amorphous solid carbon
[31, 32]. Well-developed porous surface, high pore volume,
and extended surface area make AC the most commonly
used technique for controlling pollution [35].Well-developed
pores over the surface are one of the main uses of AC as
the photocatalyst. Nontoxic, chemical stability and being
economical are the main reasons that in the past decades
the heterogeneous technology has attracted the attention of
many researchers [217, 218]. As the organic pollutants can be
mineralized into neutral by-products such as H

2
O, CO

2
, and

mineral acids as one of the main properties of heterogeneous
AC, photocatalysis methods include the destruction of the
wider category of organic compounds. Promoting solar
radiation and working on the low temperature, eventually
saving a lot of energy, make it very economical [35–39].
One of the advantages of the AC includes the regeneration
of spending absorbent and demolishing of absorbed organic
material on the site converting the loss of absorbents to
burn them concluding that thermal regeneration is efficient
[218, 219]. AC being the strong light absorbing compound
has been successfully used as photoactive species [38]. Deter-
mining the band gap of the AC (band gap less than 4 eV)
resulted in a semiconductor and therefore, a photoelectric
material in the presence of ultraviolet radiations [218]. Recent
reports suggest the abnormal reaction towards the aqueous
environment by directing ultraviolet irradiation of the sample
in the presence of the AC provided that no other photoactive
materials are present [220] showing that the AC improved
the photooxidation of phenol, beyond the degradation of
photolysis in comparison to bare or unmoved TiO

2
[220,

221]. To find the difference whether this reaction is only
shown by the AC or also by other carbon compounds, some
researchers have worked on different porous AC materials
obtained from different sites, procedures, and reactions and
examined their behavior to the exposed ultraviolet radiations
[222, 223]. The final solution we want to reach is that to
remove any vagueness in the aqueous medium, ultraviolet
radiations and absence of semiconductor AC are able to
demolish the organic materials in the respective conditions
[220]. Regardless of the type, AC acts as a catalyst during the
removal of diatrizoate. Gamma radiations based AC is more
efficient in a way that it has a higher proportion of C atoms
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and contains sp2 hybridized [224]. With more than 53% of
synergistic effect in diatrizoate in the first minute of reaction,
commercial carbon is produced from the ultraviolet/AC
system [222, 223]. Providing more oxygen, the synergistic act
of AC is boosted up. The reutilized AC is quite similar to the
original C; presence of O in the sample increases the rate of
removing diatrizoate by the ultraviolet/AC system, but the
ultraviolet inclusion of system results in some modifications
in AC chemically. There is a very vague relationship between
the textual properties and the synergistic contribution of
the AC. Gamma radiation involvement with AC reduces the
band gap which results in a more efficient removal of organic
compounds [225, 226]. One of the actions proposed include
that AC is the photocatalyst which will promote the electrons
in the valence band to the conducting band, resulting in
enhanced generation of OH free compounds present in the
polluting medium.

3.1. Activated Carbon Surface Properties in Photocatalyst
System. For commercial use, textures and surface properties
can alter, depending on the crude material used, activation
conditions and carbonization procedure which may poten-
tially result in well-defined photocatalytic performance [39].
Many researchers and authors reported many surface and
textual features of AC [227, 228]. It is clear that basic AC
in the presence of low oxygen in this medium has much
more potential than the phenol adsorption [225]. An increase
in the physical absorption and surface polymerization of
phenols can be done by ensuring the deprivation of the acidic
categories on the surface of the AC. Irreversible absorption
and catalyzing the oxidative coupling of phenolic compounds
can be enhanced by the O

2
containing basic categories over

the face of AC [221]. Boosting up the interactions between 𝜋-
𝜋 electrons in AC and phenols is due to the graphene layers of
an activated carbon which increases 𝜋 electron density [222].
In carbon of basic nature, phenol is considered to be higher
regardless of textual propertie and absorption capacity [228].
Retention of phenol is supposed to become less in the acidic
carbon as compared to the basic carbon; in fact there is no
clear relationship between the two.

On of AC limitations is that the waste organic materials
are not really destroyed but are transformed from one phase
to another and in result the used AC is transformed into
a dangerous product [226]. So, regenerating AC becomes
necessary for its reusability, which makes an economical
process. The AC is carrying some limitations like its adsorp-
tion capacity, which is a function of inert concentration
that results in low quality products [229]. Already used
AC is to be disposed of as it is hazardous material or is
regenerated to be used again. Thermal regeneration contains
many disadvantages because of its off-site regeneration that
hardly converts the pollutant from one phase to another.This
may result due to depletion of carbon and may cause damage
to the structure of activated carbon.

The process, which could produce high yield efficiencies,
could be a chemical regeneration of spent AC but it has some
drawbacks regarding chemical consumption nondestructive
pollutant elimination and creation of unimportant steams

of waste [230, 231]. However, techniques like ultrasonic
regeneration, microwave regeneration, and electrochemical
regeneration are also being proposed as alternative tech-
niques for the process of chemical regeneration of spent AC
[230]. Chemical consumption, having increased footprints of
carbon or having expensive facility requirement, is through
the bench scale studies in which it has been proved to be
effective but in industrial applications it has a limited appeal.
Due to the limitations of the present technique, there is a need
to develop another technique, which is more economical
and environmentally friendly. Thus, to make one hybrid
system, there is a need to merge semiconductor with AC
[230, 231].Organic pollutants, issues of destruction, and other
hazardous problems are expected to arise from the oxidation
semiconductor element. The reason lies in the generation of
radical species like O∙ and OH∙ from the catalyst particles of
the semiconductor, which causes oxidation of such species
[230]. Another technique that has been studied for AC is the
combination of heterogeneous photocatalysis and the Fenton
reaction with the catalytic process, which is an oxidation
based process.

Studies on this spent AC carried out previously were
mostly about granular AC. As an example, it was demon-
strated that there was an improved efficiency in herbicide
removal from the water when granular AC adsorption
photocatalyst hybrid system was used in comparison with
a photocatalysis system [227, 228]. Similarly, it was also
reported that the combination of photocatalytic and rotating
adsorbent showed better efficiency in removing formalde-
hyde in comparison with adsorption [232].

3.2. Transition Metal Oxide Hybrids : AC in Photocatalysis
System. In future, it anticipated that the coming photocat-
alyst generation would have improved internal efficiency
regarding separation and alsowould be placed in contact with
molecules of external pollutants [222–224]. So to improve
the photocatalytic efficiency and separating catalyst from
aqueous solution, the hybrid photocatalyst was designed by
not moving the metal oxides having a large surface area, to
condense pollutants which are diluted [233, 234]. In environ-
mental purification field, heterogeneous photocatalysis with
metal oxides of semiconductor has been applied as an efficient
method [235].

By impregnation and adsorption along with various
methods, metal oxides are expected to be impregnated into
the surface of carbon; the same is applied for complex
experimental procedures and process, which operate at high
temperature. Considering ideal conditions, a photocatalyst
should be inexpensive, highly proactive, nontoxic, and stable
[233]. One more criterion that plays a role in the degradation
of organic compounds is the potential of the redox residing
in the band gap of the semiconductor. There are many
semiconductors with the band gap energies ample to cat-
alyze several chemical reactions, which include WO

3
, Fe
2
O
3
,

SrTiO
3
, ZnS, TiO

2
, and ZnO [233–236]. The metal sulfate

group with insufficient stability in the process of catalysis is
kids, PbS, or CdS. This compound undergoes photoanodic
corrosion readily and is toxic. For example, Fe

3
O
4
undergoes
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photocatalyst.

photoanodic corrosion readily so they are not suitable [233].
ZnO (3.2 eV) is unstable with Zn (OH)

2
in water; also it has

band gap similar to anatase, so it results in the deactivation of
the catalyst [228].

3.2.1. TiO
2
: AC Photocatalyst System

(1) TiO2 Photocatalyst System. The most promising semicon-
ductor for photocatalytic destruction organic pollutants is
titanium dioxide (TiO

2
) [229]. It provides the most excellent

agreement in aqueous media between stability and catalytic
performance. Since it is nontoxic, cheap, biocompatible, and
stable in sunlight, so it is of immense importance and that
is why it is also considered usable in cleaning environmental
operations [230, 231]. Consequently, the electron pairs and
positive holes are created at the surface of TiO

2
. Once it

has been irradiated with the UV light of the wavelength of
380 nm, TiO

2
would form reactive oxidants, such as OH

radicals, hydrogen peroxide, superoxide anions, and other
reactive species of oxygen and reactions that are reductive,
to contribute in the organic compound decomposes which
are adsorbed on the surface of TiO

2
[235–237] (Figure 6).

The highest photocatalytic detoxification of TiO
2
is anatase

phase. Deep studies have shown that photodegeneration
of components like herbicides, phenols, dyes, pesticides,
surfactants, and organic components (e.g: salicylic acid and
sulfosalicylic acid) has been possessed by TiO

2
that is present

in water wastes [238, 239].
TiO
2
powders contributed to some drawbacks in sep-

arating phase in photocatalysis, with the purpose of its
emission in the atmosphere because of their small particle
size and recovery, the loss of photocatalyst if the separation
is not promising, the need of fluidization of the powder
in gaseous phase with cost and energy, and the scaling
difficulties involved [237, 240]. Also, since radiation from
the light compromises 47% of visible light, 48% infrared
radiation, and 5% UV light, so TiO

2
acts as a benchmark of

UV photocatalysis that it goes deactivated under visible light
because of its wide band gap [241]. Moving on, the holes and
photogenerated electrons present in an excited state play a

vital role in the degeneration of pollutant and are unstable and
without any effort they can recombine, they lead to low order
efficiency which results in photocatalysis activities [231]. It is
clear that the use of high potential solar photocatalysis cannot
be made by TiO

2
.

(2) Activated Carbon Supported TiO2 in Photocatalyst System.
For easy manipulation in a process of total photocatalytic
operation and quick decomposition of organic pollutants, it
might speed up the process to load photocatalysis to suitable
adsorbents to increase the strength of pollutants around the
photocatalysis system [237, 238]. Therefore, researchers had
made attempts to support TiO

2
on different matrixes as silica

gel, clay, carbon materials, alumina, and zeolites which can
be nanotubes, carbon microspheres, carbon black, carbon
nanofibres, and AC [242, 243]. TiO

2
particles are hydrophilic

when exposed to direct UV light whereas organic pollutants
are hydrophobic [229]. The use of AC as a reference will
provide help to molecules of pollutant closer to the active site
of TiO

2
for a quick and effective photodegeneration process

(Figure 7). The AC in comparison to organic pollutants that
are approaching, in which secondary degradation takes place
intermediately in situ, can generate new adsorption centers.

In gas and water remediation for support purposes, AC
is used widely because of its high porosity, good adsorption,
supported TiO

2
, and low cost that has marked the effects

on disappearance of pollutants kinetics, with each pollutant
beingmore quickly degenerated [244]. For example, the TiO

2

surface becomes static over glass surface; it has the benefits
of high photodegradation productivity. The major limitation
is the adhesion force in TiO

2
membrane and glass is poor,

so TiO
2
is easy to decrease, which causes the decrease of the

photodegradation productivity [231].
Hybrid of TiO

2
with AC support, as a sensitizer which

is able to absorb light, was proven to be the best approach
to developed photo-responding photocatalyst with great
activity. The formation of heterojunction between TiO

2
with

a small band gap and negatively charged AC may result in
the inoculation of conducting band electrons from AC to
TiO
2
and it is very useful for electrons and hole division

[245, 246]. At the same time, the immobilization of TiO
2
onto

the AC support can compromise for the loss of photocatalytic
ability of TiO

2
because of the difficulty to effectively disperse

in water for complete interaction with pollutants. So, many
researchers reported that there is an optimum used amount
of TiO

2
and AC pore formation for attaining the higher

photocatalytic productivity than TiO
2
[245–247]. The 3D

relation between the particles ofAC,TiO
2
photocatalyst small

particles, and the molecules of organic toxic is reported rep-
resentationally in the absence of light and in the presence of
ultraviolet enlightenment [245, 248]. The organic pollutants
are supposed to be small to be adsorbed in microspores. In
most of the AC amounts, a large group of micropores exists
over the broad surface of the substantial pores, mesopores,
and macropores; a large amount of toxic particles is well
balanced due to physical adsorption [247–250]. Instead, only
a little number of pollutant particles are adsorbed on the
surface of TiO

2
. By depositing TiO

2
molecules onto AC

particles, some mesopores and micropores become closer to
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Figure 7: General mechanism of adsorption and photodegradation of TiO
2
supported CNTs photocatalyst [243].

their openings and this causes a marked lessening in the
uncovered surface area [245]. The ultraviolet enlightenment
over such TiO

2
used AC molecules; oxidative OH free radi-

cals take birth on the TiO
2
and can destroy toxic molecules

by oxidation (Figure 8).
Though these radicals will take birth over the surface

of TiO
2
molecules and they are in the access of ultraviolet

radiations and do not locate on the surface in the same
radicals, they cannot diffuse through long distances and
are limited to an area close to the active centers in TiO

2

[231–235, 251] (Figure 9). Adsorbed pollutant particles are
photocatalytically demoted; they have to move along the
surface of AC and TiO

2
molecules with the surface are not

necessarily interacted to ultraviolet radiations [249].
The moving force of migration is actually the saturated

gradient between organic toxic particles over the enlighten-
ment of TiO

2
interface and on the other side some are over

the surface of changing pore sizes of the AC molecules. The
molecules diffused inside micropores of AC migrate with
greater retaliation towards TiO

2
molecules resided on the

interface of the AC particles. Thus, highly microporous AC
particles are not usually advantageous for the TiO

2
: AC to

have preferred the photocatalytic response [247, 248]. The
effect of the substrate pore skeleton has been observed using
AC surface area (770–1150m2 g−1) and a dip-hydrothermal
process of photocatalyst preparation. Improved photocat-
alytic demoting of methyl orange (MO) has been attained
with TiO

2
: AC than with a simple mixture of TiO

2
and AC

[255] (Figure 10) and (Figure 11).
This got into the design of highly effective TiO

2
: AC

hybrid heterojunction photocatalyst; also the demand of
commonsensible crosscheck capacity of band potentials
among hybrid modules, the spatially and flat accessible
transmission of holes and electron at the exposed surface,
and the hole and electron movement of the hybrid system
are important to enhance the photocatalytic action. It has
been reported that the surface chemistry and map of AC
revealed major effect on the collection of TiO

2
particles

and photocatalytic deprivation of 4-chlorophenol [256, 257].
Adding to this, some researchers have constructed TiO

2
with

AC microspheres to both maintain spreading and speeding
up separation due to theACmicrosphere that can be balanced
with airy bubbles and it can be speedily settled in the reactor
base with the help of some gravity due to the air bubbles
[241]. In addition, some authors have fabricated TiO

2
with

AC microspheres to both sustain spreading and acceleration
division, because AC microsphere can be balanced with air
bubbles andbe able to speedily settle on top of the reactor base
by gravity due to air bubbly. To overcome this shortcoming,
the use of cobinder upholds the expansion of anothermethod
to obtain a fresh form of the TiO

2
: AC photocatalyst for such

a high action and better division performance.
Jamil et al. found that TiO

2
supported with AC sample

heated at almost 500∘C, which mainly consisted of rutile
phase, showed the greatest photoactivity for deprivation and
elimination of methyl orange from aqueous medium [255].
Therefore, most samples which were cooked at higher tem-
perature were very detrimental to photoactivity. Also, using
different types of AC revealed the connected effects between
TiO
2
and AC during the 4-chlorophenol photodegradation

and found a clear enhancement of photoactivity due to an
increase in electron density of the AC support [258, 259]. It
is researched that attendance of AC in interaction by TiO

2
is

beneficial due to its burly adsorption capability. In the same
way it advances the relocation rate of the interfacial change
and lessens the rejoining rate of the holes and electrons
[260, 261].This synergistic effect of the interaction of AC and
TiO
2
has been previously been stated for deprivation of some

organic compounds in the photocatalytic process. It has been
credited to a common contact between the different solid
phases, in which AC acts as an efficient adsorption agent for
the organic pollutants [257] (Figure 12).

The organic more efficiently moved to the TiO
2
surface,

where it is immediately photocatalytically degraded by a
mass movement of the photoactivated TiO

2
[258]. Thus, the

organic burning rate observed on TiO
2
: AC is like heading
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Figure 9: SEM images of TiO
2
/AC powder. (a) 10𝜇m and (b) 3 𝜇m [250].

both with surface diffusion toxin particles with the photo-
catalytic process rate; because adsorption occurs gradually,
the variation in relative pollutant proportion with irradiation
time depends on both adsorption and photodecomposition,
mainly at the start of ultraviolet treatment. It is stated that
the variance of the proportion of phenol (as model of organic
pollutants) remaining in the solution by ultraviolet treatment
time is compared for TiO

2
: AC, which were prepared by

hydrolysis of tetraisopropyl orthotitanate and heat treatment
at 650 to 900∘C. For example, we noted that, in the duration of
first 1 hour, adsorption of pH occurs in native AC and after 3
hours, in the presence of UV irradiations saturation achieved
[261]. Adsorption as well as the photodecomposition of pH
takes place simultaneously, but on the other side the former is
supposed to become the dominate method in the beginning,
being similarly latter in the next stage [221, 222]. The noted
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2
/AC under

visible light [245].

trend was based on two linear processes; the change of one
process to the other takes place approximately in 1 hour of
irradiation.

(3) Synthesis of TiO2 : AC Photocatalyst. A number ofmethods
are available for the composition of TiO

2
: AC catalyst, such as

precipitation, chemical vapor deposition (CVD), hydrother-
mal, aerosol pyrolysis, hydrolysis, dip coating, and sol-gel
[235, 262, 263]. However, selection process which is used for
the selection of a suitable impregnationmethod depends only
on the support used in it and the pollutant which is degraded
[262]. It is clear that those physicochemical properties of
TiO
2
: AC catalyst have a heavy impact on the structure of the

supported catalyst and they depend basically on the prepa-
ration method used, for example, thermal treatments. The
main advantages of using physical methods are simple, low-
cost and the use of commercially is present for photocatalyst
with the wanted functionalities. By using the common wet
methods, TiO

2
: AC hybrid was also being prepared, the mis-

matches in the level of lattice among two hybrid components
lessen the required efficiency of separation and transmission

Small dissolved
organic compounds

Large dissolved
organic compound

Macrospore Activated carbon
adsorbent

Microspore

Figure 12: Adsorption mechanism of AC towards organic com-
pounds.

of photogenerated carriers (electron and hole) [264, 265].
Adherence of AC surface to TiO

2
particles appears significant

for increment of photocatalytic action and as well for useful
applications of hybrid system. To increase the anchorage of
TiO
2
on AC, the wet process of synthesis is warranted [264].

This is only because the physical stable TiO
2
: AC hybrid

is in disagreement with hydrodynamic shearing method,
surface chemistry plus ACpore structure can have a sufficient
impact on spreading of TiO

2
over the synthesis; it results

in the different photocatalytic presentations of TiO
2
: AC.

Nevertheless, TiO
2
photocatalyst usually has low precise

surface region. Due to the crystalline particle development
to happens in heat operation like that. To prevent TiO

2

sintering, or else to make it precise surface region better,
AC can be examined like a better help for photocatalysis
material [266]. They found that the TiO

2
particles calculated

at 450∘C can collect and go through the great pores of the
activated carbon substrate, including a very burly contact
among carbon matrix and TiO

2
. The contact between them

leads to visible synergy to increase photocatalytic capacity for
the degradation of the chromotrope 2R [267]. The prepared
nanocrystal anatase TiO

2
particles are installed on activated

carbon at a fewer temperature with the hydrolysis of the
titanium but oxide in the acidic aqueous solution [268].
It is noticed that phenol toxin was absorbed by AC and
after that drifted constantly over TiO

2
, which consequently

accelerate photocatalytic oxidation. On the other side, for
the chemical vapor, deposition method is used for nanosized
TiO
2
particles which were exposed to stick to activated

carbon and tetra-butyl titanate and to offer large activities
on the behalf of the photodecomposition of methylene
orange in the water. Adding of water in titanium tetra-
isopropoxide vapors was described to make possible CVD
method at a higher deposition rate and lower temperature
[269]. Introduction of H

2
O vapors for the duration of CVD

method and adsorption on the AC in prior were announced
to be critical to get hold of anatase type TiO

2
nanoparticles at

AC surface [270]. Investigations have also made it clear that
the HNO

3
treatment results in more orderly TiO

2
loading

by CVD, in comparison with other oxidation treatment.
TiO
2
: AC ratio has been formed as a result of using dropping

the support in solution produce with the alkoxide hydrolysis
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as well [269, 270] and subjected to heat operation at 300
to 500∘C. In an alternative process, it can be produced by
adding TiCl

4
drop by drop in aqueous suspensions of AC,

come after by heat operation at 500∘C inN
2
atmosphere [271].

Load the TiO
2
powder exactly over AC has been achieved

as a result of combining TiO
2
in AC aqueous suspension

with stirring. On the other side, loading over AC filter was
produced as a result of gluing granular AC over the glass
cloth and it was formed by the water suspension of five
mass % TiO

2
and the conclusion TiO

2
: AC particles inside

CCl
4
solution of pitch, come after by heat operation at 750∘C

[263]. In resultant hybrid system, TiO
2
particles over AC

were expected to be layered with carbon, composed of the
pitch at the stage of the heat operation; it may function
as a mean repair TiO

2
particle over the AC surfaces. TiO

2

particles also were able to load over AC by spray-desiccation
procedure, with a little modification in the pore structure
of the AC [272, 273]. In the other study, loading of TiO

2

over the AC surface was taking place via dipping the AC
particles in a peroxotitanate solution; after that heating at
180∘C in a Teflon lined stainless-steel vessel came after in
calcinations at 300 to 800∘C [274, 275]. With the help of
the AC particles of 0.16 to 0.26 millimeter, the disjunction
of the particles from the solution was not too much harder,
and photocatalytic action on behalf of the decomposition of
MO almost remains identical for 5 cycles. TiO

2
has also been

achieved by plugging the pore of AC by paraffin [275]. After
loading TiO

2
, by removing the paraffin at 250∘C in the air,

the high surface region of pristine AC, it could be recuperated
and the high photocatalytic action was procured basically for
the decay of methylene blue (MB) [276]. TiO

2
: AC has also

been composed by mixing TiO
2
particles with some liquid or

solid state carbon precursor. By hydrolysis of tetraisopropyl
orthotitanate, TiO

2
was caused in the exterior region of

the poly vinyl butyral (PVB) and TiO
2
overloaded PVB

was carbonized at a high temperature in the flow of CO
2
.

TiO
2
loaded carbon microspheres with 25𝜇m diameter have

been prepared from the TiO
2
loaded cellulose microspheres,

composed with one step stage division by using the sodium
polyacrylate aqueous solutions and cellulose xanthate with
the isolated TiO

2
powder [277–279].

(4) Performance of TiO2 : AC Photocatalyst. Although it
is a hard to understand how light could it penetrate the
carbon particles to reach the inoperative photocatalyst,
TiO
2
: AC composites have quite clear high efficiencies for

the photodegradation of a variety of pollutants [238]. In
such a case, the presence of the AC seems to change the
photocatalytic activity of TiO

2
towards the abasement of

organic pollutants beyond the so-called “synergistic” effect
[227]. The harmonious aftereffect of the adsorption with AC
and photocatalytic disintegration by TiO

2
has been noticed

during the deprivation of many kinds of organic toxin.
The basic principle of photocatalysis over illuminated

TiO
2
: AC system. But model of a TiO

2
: AC photocatalytic

process can be more of a complex issue, it starts the photoin-
tensity to the classical aspects of the heterogeneous catalytic
system; for example, temporal variations in concentration of
iminoctadine triacetate (IT) that is frequently used in excess

plus orchard fields like an insecticide and in the water path
of the fields are exposed for pristine AC and three TiO

2
: AC

[280, 281]. The hybrid systems were kept without any light
on them for 200 h to saturate IT adsorption and after that
were exposed to ultraviolet irradiation. 800 h behind this
[280], the sample was separated from given test solution and
spread once more in the virgin 1.87 × 10−4mol/L solution
and again kept without any light in it for approximately 200 h
and then exposed to ultraviolet radiations. As far as pristine
AC is concerned, concentration of pollutants was initiated
to survive approximately steady without any light and to
spread to some extent beneath ultraviolet irradiation. The
bottom line is that the photocatalyst system of TiO

2
: AC

could have similar photocatalytic results without any light
and under ultraviolet radiations [282]. Beforementioned data
was supported by the onewho stated that the enhancement of
photocatalytic activity for the organic burning of pollutants
via TiO

2
: AC enzyme. Stated that is, the concentration of

4-chlorophenol solution demotes rapidly for the TiO
2
: AC

than TiO
2
, saying that it enhances photoorganic burning

approximate by a pseudo-first-order equation with a linear
relationship between time and concentration change. The
sameharmonious result was noticed in the organic burning of
pH and 2,4-dichlorophenoxyacetic acid applying similar AC
andTiO

2
sample [283]. Furthermore, the pHdisintegration is

found to be dependent on the mass ratio of TiO
2
to AC (5/10

to 75/10) [231, 284, 285]. The harmonious result is thought
to be attributable to the fast movement of pH molecules at
the start adsorbed on the AC on the outer surface of TiO

2
;

the motivating force of that movement is most probably the
differentiation in the surface concentration of pH between
AC and TiO

2
. Defined proportion of pHwas found to remain

at AC, even after the proportion in sample becomes negligibly
small.

3.2.2. ZnO : AC Photocatalyst System. After TiO
2
, ZnO sup-

ported AC finds broader attraction of use, due to some of
the excellent behaviors of ZnO, such as wider availability,
stability, and suitable band gap of energy [228]. Problems
associated with the usage of ZnO alone as photocatalyst are as
well partitioned, especially the complexity in unraveling the
powderwith the sample after the reaction is over; gathering of
particles in delay, particularly at high loading and complexity
in purpose to the consistent flow of the domain system has
been approved by its surface properties [37, 235] (Figure 13).

The problem is AC has been declared good as for the
support of the ZnO photocatalysis system. Replying on using
of dioxygen, photo-, and entirely mineralized organic as
well as inorganic substances and particularly biorecalcitrant,
make the technique is environmentally friendly for toxic
waste reduction schemes [225]. Spherical AC particles hav-
ing ZnS and ZnO were formed from a caption-exchange
resin (polystyrene with sulfonate groups and cross-linked
by divinylbenzene) and ZnCl

2
aqueous solution, followed

by carbonization at almost 500 to 900∘C [286]. It has been
reported that ZnO is an appropriate substitute to TiO

2
for

the photodegradation of Acid Red 14, an azo dye, because it is
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photodegradation process that has been proved to be similar
to TiO

2
[37, 287] (Figure 14).

Recently it was reported that the instantaneous destruc-
tion of inorganic toxin like Cr(VI) and organic toxin, like 4-
CP, can be recognized in ZnO :AC photocatalytic reaction
system [286–289]. Hence, this technique can be functional
over the broader level for aqueous waste reduction.

4. Advance Activated Carbon
Photocatalytic System

4.1. Granular and Spherical Activated Carbon Photocatalytic
Systems. In all kinds of AC, the spherical AC has benefits,
such as its frictionless surface, high quality fluidity, and
good strength on the powdered and rough AC. Carrying this
forward, many proposals have lately examined the sustain of
TiO
2
to spherical AC [290, 291]. But there are some state-

ments on the granular AC that supported TiO
2
photocatalyst

which could enhance the demolishing efficiency of many
organic compounds, regardingmany environmentally related
conditions [252, 292] (Figure 15).

Granule AC supports TiO
2
powdered by adding more

pollutants and alternatives around the TiO
2
. The pollutants

and alternatives can diffuse to the surface of TiO
2
. Granular

AC also reduces TiO
2
jelling, which lessens its surface,

thereby reducing its enzymatic activities [292]. This was
brought by the theory that the absorptivity of AC depending
strongly on the molecular morphology and size of the pollu-
tant particles to the TiO

2
surface happens straightforwardly

from the solution, and not through the AC surface [293,
294]. The TiO

2
can destroy the pollutants, leading again

to generation of granular AC in this situation [294]. Most
of the porous AC still in granules, and the problem of
separation and recovering of the photocatalyst from the
reaction environment is already present.

4.2. ACF Photocatalytic Systems. AC is a freshly developed
type of photocatalyst supporting materials consisting of
nanographites known as AC fiber ACF. In comparison to the
granular AC, ACF has a larger surface area, having greater
pore volume, more uniform micropores size distribution,
a greater rate of adsorption and desorption, and a rapid
attainment of adsorption equilibrium with ACF in the form
of fleet are preferable to the handling than granular supports
[245, 253] (Figure 16).

The surface-area characteristics of the ACF are identified
to depend powerfully on the creative processes, affecting
the load of TiO

2
and eventually the adsorption of pollutant

particles [255]. Nevertheless, the ACF supported TiO
2
photo-

catalyst has sometimes been used for the removal of gas phase
pollutants in the environment (Figure 17).

4.3. TiO
2
: Graphene Photocatalyst System. Meanwhile, the

beginning of graphene supply is an idea to resolve the
limitation brought by the TiO

2
: AC photocatalyst. Recently,

functionalized grapheme based semiconductor photocatalyst
has attracted attention because of its larger definite surface

area, higher electron conductivity, and adsorption [248]
(Figure 18).

A lot of the hard work is used for the combination
of TiO

2
-graphene photocatalysis hybrid system [295, 296].

Considering advantages due to a higher specified surface
region, graphene appeared like a better help to prepare the
overloaded nanoparticle metal oxides to attain an identical
division not including aggregation. Betterment of the photo-
catalytic actions of TiO

2
-graphene hybrid is associated with

huge two-dimensional planar graphene structure supporting
the dye adsorption plus squeezing electron hole rejoining
because of higher electrical conduction property as has been
indicated by the morphological analysis of TiO

2
/grapheme

photocatalyst [226, 254] (Figure 19).
Additionally, absorption of additional catalyst particles

into a particularly graphene leaf at individual places can
supply better dynamically in achieving the choosy catalytic
otherwise logical procedures and adjusts the composition
also the morphology of photocatalysts to enhance their
photocatalytic results [297].

4.4. TiO
2
: CNT Photocatalyst System. Barring graphene, car-

bon nanotube (CNT) has been regarded as a more attractive
catalytic support than activated carbon because of combina-
tion of electronic, adsorption, and specific semiconducting
characteristics [298]. Studies of TiO

2
: CNTs reveal a con-

siderable synergy effect with the metal oxides and carbon
phases [298, 299]. Going further, researchers have shown
that CNTs can enhance the adsorption and photocatalytic
activity of TiO

2
in the presence of ultraviolet [300]. Single

walled CNTs execute enhanced and selective photocatalytic
oxidation of pH [299]. Heterostructure CNT consists of
TiO
2
-xNx and C prepared by carbonization of electron-spun

polyacrylonitrile nanofibers containing stabilized titanium
oxoacetate [301]. So, CNTs can be used as a reliable material
for environmental pollution clearing and can be used to
improve the photocatalytic efficiency of TiO

2
.

4.5. TiO
2
: AC Semiconductor Doped Photocatalyst System.

The term “doping” means an additional semiconductor hav-
ing unusual parallel valence bands and conduction of energy
levels with the TiO

2
over the outer surface of TiO

2
has been

authorized the outcome to progress the photocatalytic results.
Themethod of using coupled semiconductors is the enhance-
ment of the photocatalytic with good organization by raising
the charge division and increasing the photoresponding
domain. Some researches upon doping an additional semi-
conductor over outer surface of TiO

2
: AC includes SnO

2
,

V
2
O
5
, ZnO, ZrO

2
, and CsS [239, 260, 302, 303]. The entire

of it confirms the superior photodegradation efficiency as
compared to the TiO

2
: AC. Recent researches have reported

the modification of TiO
2
: AC by semi-conductor doping

that has led to the improvement of removal of specific
containments in the gas resulting in the changes of the
physical and chemical properties of the carbonmaterials. Iron
(Fe
3
O
4
) dopant TiO

2
: AC has been found to be a promoter

to photocatalysis with a good performance on degradation
of Congo red and methyl orange [32]. Some researchers have
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Figure 14: Effect of initial concentration of dye in the presence and absence of AC in ZnO/AC photocatalyst system (contact time: 90min;
dose of the catalyst: 200mg; dose of the CAC: 40mg) [37].

combined the Fe
3
O
4
compound with TiO

2
: AC aiming at

preparing photocatalyst with magnetic core and photoactive
encapsulation [234]. They proved that hybrid systems had
magnetic properties and could be separated by magnetic
materials. Furthermore, the magnetic hybrid photocatalyst
can also be magnetically distributed by a discontinuous
magnetic field in an interrupted system [304]. But they found

that the photocatalytic activity of the hybrid system declined
because the magnetic particles experienced light dissolution
[305].

4.6. TiO
2
: ACNonmetal Doped Photocatalyst System. Doping

of nonmetal, such as N, P, B, C, S, F, chlorine, and bromine,
has been also widely used to improve the photocatalytic or
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to extend the photoabsorption into visible light of TiO
2
: AC

system [258]. Among them, the P doped TiO
2
: AC has

recently attracted increasing interest due to its enhanced
shows a little band gap. It has an adsorption property in
the visible light region [306]. Also, it has been found that
phosphorous-doped TiO

2
: AC prepared by the buffer solu-

tion method with NaH
2
PO
4
as precursor showed a greater

photocatalytic activity of acetaldehyde organic burning under
visible light absence than the pure sample [307]. It synthesizes
the phosphorous-doped TiO

2
: AC with high crystallinity

and large surface area of hydrothermal process. Methylene
blue demoted performance on phosphorous-doped sample
was pointedly increased and superior to the commercial
Phosphorous 25 [308].
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Figure 17: SEM micrographs of the TiO
2
/ACFs photocatalyst and unmodified ACFs, (a) general view of the photocatalyst, 100x; (b) TiO

2

coating on single carbon fiber, 2000x; (c) cross-sectional view of TiO
2
coating, 20,000x; (d) surface of TiO

2
coating, 20,000x; (e) surface of

TiO
2
coating, 50,000x; and (f) single unmodified activated carbon fiber 4000x [253].

5. Conclusion

AC has been employed as an adsorbent for the control of
many environmental pollutants due to its high pore density
and large uncovered surface area-to-volume ratio. Many AC
researches have targeted primarily with concentration in
lower to higher concentrations than that associated with
indoor aqueous quality. Loading of semiconductors on AC
has drawn vast interest while the higher adsorption abilities of

AC can assist in the direction of improvement of organic pol-
lutant about the enzyme, enhancing the toxin transmission
method thus enhancing the photocatalytic results. In future,
photocatalysis reaction in visible light can be addressed as
the main challenge, as reflected by recent intensive scientific
endeavors. The state-of-the-art accomplishments in visible
light will be induced in selection of organic transformations
by AC heterogeneous photocatalysis. In addition, the recent
strides are to bridge between AC photocatalysis system
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and other area of the catalyst with the aim of overcoming
the existing limitation of photocatalyst by developing more
creative approaches.
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Figure 19: FE-SEM images of TiO
2
/graphene nanocomposites at different TiO

2
contents 1 wt% (a), 3 wt% (b), 5 wt% (c), and 10wt%

TiO
2
/graphene heat treated at 450∘C under reducing (N

2
/H
2
) (e) and nitrogen (f) [254].
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