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A reinforcement learning-based maximum power point tracking (RLMPPT) method is proposed for photovoltaic (PV) array. By
utilizing the developed system model of PV array and configuring the environment for the reinforcement learning, the proposed
RLMPPT method is able to observe the environment state of the PV array in the learning process and to autonomously adjust the
perturbation to the operating voltage of the PV array in obtaining the best MPP. Simulations of the proposed RLMPPT for a PV
array are conducted. Experimental results demonstrate that, in comparison to an existing MPPT method, the RLMPPT not only
achieves better efficiency factor for both simulated weather data and real weather data but also adapts to the environment much
fast with very short learning time.

1. Introduction

TheU.S. Energy Information Administration (EIA) estimates
that the primary sources of energy consisted of petroleum,
coal, and natural gas, amounting to over 85% share for fossil
fuels in primary energy consumption in the modern world.
Yet, recent years’ over exploitation and consumption, and
the expectation of depletion of fossil fuel, bring energy crisis
to the modern world. Besides, awareness of environmental
protection and sustainability in burning of fossil fuel and its
products as the primary energy source are also arising. Many
environment researchers and environmentalists advocated
energy conservation and carbon dioxide (CO

2
) reduction for

the well-being of earth creatures and humans as well. As
such, many alternatives for energy, such as energy generated
from geothermal, solar, tidal, wind, and waste, are suggested.
Among these, solar energy is the most used and promising
alternative energy with a fast growing energy market share in
the world’s energy industry due to the following advantages.

(i) The sunlight and heat for the generation of solar
energy is inexhaustible.

(ii) Sunlight is easy to access for its irradiance covering
the most of the land.

(iii) There is no noise or pollution in the generation of
solar energy.

(iv) Solar energy is considered as safe energy without
burning any material.

Owing to the above advantages, many countries in the world
started to establish energy policy and develop the related
industries for solar energy since 70s.

Solar energy is normally generated by utilizing a pho-
tovoltaic electrical device, called solar cell or photovoltaic
cell, in converting the energy of sunlight into electrical
energy. Solar cells may be integrated to form modules or
panels, and large photovoltaic arrays may also be formed
from the panels. The performance of a photovoltaic (PV)
array system depends on the solar cell and array design
quality and on the operating conditions as well. The output
voltage, current, and power of PV array vary as functions of
solar irradiation level, temperature, and load current. Hence,
in the design of PV arrays, the PV array output to the
load/utility should not be adversely affected by the change
in temperature and solar irradiation levels. On the other
hand, improvement of the conversion efficiency of the PV
array is an issue worth exploring. Generally speaking, there
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are three means to improve the efficiency of photoelectric
conversion: (1) increasing the photoelectric conversion effi-
ciency of photovoltaic diode components, (2) increasing the
frequency of direct light, and (3) improving the maximum
power point tracking (MPPT) for the PV array. The first and
second methods are to improve the hardware devices, yet the
third one is to improve the conversion efficiency by utilizing
the internal software embedded in the PV array system,
which attractsmany attentions. Hence,manyMPPTmethods
have been proposed [1], like perturbation and observation
method [2–4], the open-circuit voltage method [5], the
swarm intelligence method [6], and so on.

In this paper, a reinforcement learning-based MPPT
(RLMPPT) method is proposed to solve the MPPT problem
for the PV array. In the RLMPPT, after observing the
environmental conditions of the PV array, the learning agent
of the RLMPPT determines the perturbation to the operating
voltage of the PV array, that is, the action, and receives a
reward by the rewarding function. By receiving rewards, the
RLMPPT is encouraged to select (state, action) pairs with
positive rewards. Hence, a series of actions with received
positive rewards is generated iteratively such that a (state,
action) pair selection strategy is gradually achieved in the
so-called “learning” process. Once the agent of the RLMPPT
learned the strategy, it is able to autonomously adjust the
perturbation to the operating voltage of the PV array to
obtain the maximum power for tracking theMPPT of the PV
array. Research contributions of this study are summarized as
follows:

(i) The proposed RLMPPT solves the MPPT problem of
PV array with reinforcement leaning method, which
is novel, to the best of our knowledge, to the area of
MPPT of a PV system.

(ii) Reward function constructed from the early MPP
knowledge of a PV array, experienced from past
weather data, is employed in the learning process
without predetermined parameters required by cer-
tain MPPT techniques.

(iii) Comprehensive experimental results exhibit the
advantage of the RLMPPT in self-learning and self-
adapting to varied weather conditions for tracking
the maximum power point of the PV array.

The rest of the paper is organized as follows. In Section 2,
we present the concept of MPPT for PV systems. Section 3
introduces the proposed RLMPPT for the PV array. The
experimental configurations are described in Section 4. In
Section 5, the results are illustrated with figures and tables.
Finally, Section 6 concludes the paper.

2. Concepts of MPPT for PV Systems

2.1. Review of Operating Characteristics of Solar Cell. Solar
cells are typically fabricated from semiconductor devices
which produce DC electrical power when they are exposed to
sunlight of adequate energy. When the cells are illuminated
by solar photons, the incident photons can break the bonds
of ground-state (valence-band, at a lower energy level)

electrons, so that the valence electrons can then be pumped
by those photons from the ground-state to the excited-state
(conduction-band, at a higher energy level). Therefore, the
free mobile electrons are driven to the external load, to
generate the electrical power via a wire, and then are returned
to the ground-state at a lower energy level. Basically, an ideal
solar cell can be modeled by a current source in parallel
with a diode; however, in practice, a real solar cell is more
complicated and contains a shunt and series resistances 𝑅sh
and 𝑅s. Figure 1(a) shows an equivalent circuit model of a
solar cell, including the parasitic shunt and series elements,
in which a typical characteristic of practical solar cell with
neglecting the 𝑅sh can be described by [7–10]

𝐼pv = 𝐼ph − 𝐼pvo {exp [
𝑞

𝐴𝑘𝑇
(𝑉pv + 𝐼pv𝑅s)] − 1} , (1)

𝑉pv =
𝑞

𝐴𝑘𝑇
ln(

𝐼ph − 𝐼pv + 𝐼pvo

𝐼pvo
) − 𝐼pv𝑅s, (2)

where 𝐼ph is the light-generated current, 𝐼pvo is the dark
saturation current, 𝐼pv is the PV electric current,𝑉pv is the PV
voltage, 𝑅s is the series resistance, 𝐴 is the nonideality factor,
𝑘 is the Boltzmann constant,𝑇 is the temperature, and 𝑞 is the
electron charge. The output power from PV cell can then be
given by

𝑃pv = 𝑉pv𝐼pv = 𝐼pv {
𝑞

𝐴𝑘𝑇
ln(

𝐼ph − 𝐼pv + 𝐼pvo

𝐼pvo
) − 𝐼pv𝑅s} .

(3)

The above equations can be applied to simulate the char-
acteristics of a PV array provided that the parameters in
the equations are known to the user. Figure 1(b) illustrates
the current-voltage (𝐼-𝑉) characteristic of the open-circuit
voltage (𝑉oc), the short-circuit current (𝐼sc), and the power
operation of a typical silicon solar cell.

As can be seen in the figure, the parasitic element 𝑅sh
has no effect on the current 𝐼sc, but it decreases the voltage
𝑉oc; in turn, the parasitic element 𝑅s has no effect on the
voltage 𝑉oc, but it decreases the current 𝐼sc. According to
(1)–(3), a more accurate representation of a solar cell under
different irradiances, that is, the current-to-voltage (𝐼pv-𝑉pv)
and power-to-voltage (𝑃pv-𝑉pv) curves, can be described in
the same way with different levels as shown in Figure 2. The
maximum power point (MPP) in this manner occurs when
the derivative of the power 𝑃pv to voltage 𝑉pv is zero, where

𝑑𝑃pv

𝑑𝑉pv
= 0. (4)

The resulting 𝐼-𝑉 and 𝑃-𝑉 curves presented in such way are
shown in Figure 2.

2.2. Review of MPPT Methods. The well-known perturba-
tion and observation (P&O) method for PV MPP tracking
[2–4] has been extensively used in practical applications
because the idea and implementation are simple. However,
as reported by [11, 12], the P&O method is not able to track
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Figure 1: (a) Equivalent circuit model of a solar cell. (b) Solar cell 𝐼-𝑉 and power operation curve with the characteristic of 𝑉oc and 𝐼sc.
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Figure 2: The 𝐼pv-𝑉pv and 𝑃pv-𝑉pv characteristics of different irradi-
ance levels. The maximum power point (MPP) occurring when the
derivative dP/dV is zero.

peak power conditions during periods of varying insolation.
Basically, P&Omethod is amechanism tomove the operating
point toward themaximumpower point (MPP) by increasing
or decreasing the PV array voltage in a tracking period. How-
ever, the P&O control always deviates from the MPP during
the tracking, whose behavior results in oscillation around
MPP in case of constant or slowly varying atmospheric
conditions. Although this issue can be improved by further
decreasing the perturbation step, the tracking response will
become slower. Under rapidly changing atmospheric condi-
tions for PV array, the P&Omethodmay sometimesmake the
tracking point far from the MPP [13, 14].

2.3. Estimation of MPP by Using𝑉oc and 𝐼sc. The open-circuit
voltage 𝑉oc and short-circuit current 𝐼sc of the PV panel can
be measured, respectively, when the terminal of the PV panel
is open or short. In reality, both 𝑉oc and 𝐼sc are seriously
dependent on the solar insolation. However, the maximum
power point (MPP) is always located around the roll-off
portion of the 𝐼-𝑉 characteristic curve in any insolation.
Interestingly, there at MPP appears certain relation between
theMPP set (𝐼mpp, 𝑉mpp) and the set (𝐼sc, 𝑉oc), which is worthy
of studying. Further, the mentioned relation by empirical

estimation seems always to hold and not to be subject to
the insolation variation. It can be presumed, from commonly
knowledge of PV array, that, in open-circuit mode, the
relation of 𝑉mpp and 𝑉oc will be

𝑉mpp = 𝑘
1
𝑉oc, (5)

and, in the short-circuit mode, the relation of 𝐼mpp and 𝐼sc will
be

𝐼mpp = 𝑘
2
𝐼sc, (6)

where 𝑘
1
and 𝑘

2
are constant factors between 0 and 1. From

(5) and (6), we have the maximum power at MPP; that is,

𝑃mpp = 𝑉mpp𝐼mpp = 𝑘
1
𝑘
2
𝑉oc𝐼sc. (7)

Even the 𝑃mpp for learning is point estimation; it should be
given by satisfying the MPP criteria in (4). For learning, the
empirical result shows that the initial factor 𝑘

1
for 𝑉mpp is

around 0.8 and the 𝑘
2
for 𝐼mpp is around 0.9.

3. The Proposed RLMPPT for PV Array

3.1. Reinforcement Learning (RL). RL [15–17] is a heuristic
learning method that has been widely used in many fields of
application. In the reinforcement learning, a learning agent
learns to achieve the predefined goal mainly by constantly
interactingwith the environment and exploring the appropri-
ate actions in the state the agent situates.The generalmodel of
reinforcement learning is shown in Figure 3, which includes
the agent, environment, state, action, and reward.

The reinforcement learning is modeled by the Markov
decision process (MDP), where a RL learner, referred to as
an agent, consistently and autonomously interacts with the
MDP environment by exercising its predefined behaviors. A
MDP environment consists of a predefined set of states, a
set of controllable actions, and a state transition model. In
general, the first order MDP is considered in the RL, where
the next state is only affected by the current state and action.
For the cases where all the parameters of a state transition
model are known, the optimal decision can be obtained by
using dynamic programming. However, in some real world



4 International Journal of Photoenergy

Agent

Environment

States Reward Action

Figure 3: Model of the reinforcement learning.

cases the model parameters are absent and unknown to the
users; hence, the agent of the RL explores the environment
and obtains reward from the environment by try-and-error
interaction. The agent then maintains the reward’s running
average value for a certain state-action pair. According to
the reward value, the next action can be decided by some
exploration-exploitation strategies, such as the 𝜀-greedy or
softmax [15, 16].

Q-learning is a useful and compact reinforcement learn-
ing method for handling andmaintaining running average of
reward [17]. Assume an action 𝑎 is applied to the environment
by the agent and the state goes to 𝑠

 from 𝑠 and receives a
reward 𝑟; the Q-learning update rule is then given by

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝜂Δ𝑄 (𝑠

, 𝑎) , (8)

where 𝜂 is the learning rate for weighting the update value to
assure the convergence of the learning, the𝑄(⋅) is the reward
function, and the delta-term, Δ𝑄(⋅), is represented by

Δ𝑄 (𝑠, 𝑎) = [𝑟

+ 𝛾𝑄
∗
(𝑠

)] − 𝑄 (𝑠, 𝑎) , (9)

where 𝑟 is the immediate reward; 𝛾 is the discount rate to
adjust the weight of current optimal value,𝑄∗(⋅), whose value
is computed by

𝑄
∗
(𝑠

) = max
∀𝑏∈A

𝑄(𝑠

, 𝑏) . (10)

In (10), A is the set of all candidate actions. The learning
parameters of 𝜂 and 𝛾, in (7), and (8), respectively, are usually
set with value ranges between 0 and 1. Once the RL agent
successfully reaches the new state 𝑠, it will receive a reward
𝑟 and update the Q-value; then, the 𝑠 is substituted by the
next state, that is, 𝑠 ← 𝑠, and the upcoming action is
then determined according to the predefined exploration-
exploitation strategy, such as the 𝜀-greedy of this study. And
the latest Q-value of the state is applied to the environment
from one state to the other.

3.2. State, Action, and Reward Definition of the RLMPPT. In
the RLMPPT, the agent receives the observable environmen-
tal signal pair of (𝑉pv(𝑖), 𝑃pv(𝑖)), whichwill be subtracted from
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Figure 4: Four states of the RLMPPT.

the previous signal pair in obtaining the (Δ𝑉pv(𝑖), Δ𝑃pv(𝑖))
pair. Δ𝑉pv(𝑖) and Δ𝑃pv(𝑖) each takes positive or negative signs
to constitute a state vector, S, with four states. The agent
then adaptively decides and executes the desired pertur-
bation ΔV(𝑖), characterized as action to the 𝑉pv. After the
selected action is executed, a reward signal, 𝑟(𝑖), is calculated
and granted to the agent; and, accordingly, the agent then
evaluates the performance of the state-action interaction.
By receiving the rewards, the agent is encouraged to select
the action with the best reward. This leads to a series of
actions with the best rewards being iteratively generated such
that MPPT tracking with better performance is gradually
achieved after the learning phase. The state, action, and
reward of the RLMPPT for the PV array are sequentially
defined in the following.

(i) States. In RLMPPT, the state vector is denoted as

𝑆 = [𝑆
0
, 𝑆
1
, 𝑆
2
, 𝑆
3
] ⊆ S, (11)

where S is the space of all possible environmental state vectors
with elements transformed from the observable environment
variables, Δ𝑉pv(𝑖) and Δ𝑃pv(𝑖), where 𝑆

0
, 𝑆
1
, 𝑆
2
, and 𝑆

3
,

respectively, represent at any sensing time slot the state of
going toward theMPP from the left, the state of going toward
the MPP from the right, the state of leaving from the MPP to
the left, and the state of leaving from theMPP to the right.The
four states of the RLMPPT can be shown in Figure 4, where
𝑆
0
indicates that Δ𝑉pv(𝑖) and Δ𝑃pv(𝑖) have all the positive

sign, 𝑆
1
indicates that Δ𝑉pv(𝑖) is negative and the Δ𝑃pv(𝑖) is

positive sign, 𝑆
2
indicates that Δ𝑉pv(𝑖) is positive and Δ𝑃pv(𝑖)

is negative sign, and finally 𝑆
3
indicates that Δ𝑉pv(𝑖) and

Δ𝑃pv(𝑖) are all the negative sign.

(ii) Actions.The action of the RLMPPT agent is defined as the
controllable variable of the desired perturbation ΔV(𝑖) to the
𝑉pv(𝑖), and the state of the agent’s action, 𝐴per, is denoted by

𝐴per ∈ A = {𝑑
0
, 𝑑
1
, . . . , 𝑑

𝑁
} , (12)

where A is a set of all the agent’s controllable perturbations
ΔV(𝑖) for adding to the𝑉pv(𝑖) in obtaining the power from the
PV array.

(iii) Rewards. In RLMPPT, rewards are incorporated to
accomplish the goals of obtaining the MPP of the PV array.
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Figure 5: The flowchart of the proposed RLMPPT for the PV array.

Intuitively, the simplest but effective derivation of reward
could be a hit-or-miss type of function, that is, once the
observable signal pair (𝑉pv(𝑖), 𝑃pv(𝑖)) hits the sweetest spot,
that is, the true MPP of (𝑉mpp(𝑖), 𝑃mpp(𝑖)), a positive reward
is given to the RL agent; otherwise, zero reward is given to
the RL agent. The hit-or-miss type of reward function could
intuitively be defined as

𝑟
𝑖+1

= 𝛿 ((𝑉pv (𝑖) , 𝑃pv (𝑖)) , ℎ 𝑧 (𝑖)) , (13)

where 𝛿(⋅) represents the Kronecker delta function, and
ℎ 𝑧(𝑖) is the hitting spot defined for the 𝑖th sensing time
slot. In defining (13), a negative reward explicitly represents
punishment for the agent’s failure; that is, missing the hitting
spot could achieve better learning results in comparison with
a zero reward in the tracking of MPP of a PV array. In
reality, the possibility that the observable signal pair (𝑉pv(𝑖),
𝑃pv(𝑖)), leaded by the agent’s action of perturbation ΔV(𝑖) to
the 𝑉pv(𝑖), exactly hits the sweetest spot of MPP is very low
in any sensing time slot 𝑖. Besides, it is also very difficult for

the environment’s judge to define a hitting spot for every
sensing time slot. Hence, the hitting spot ℎ 𝑧(𝑖) in (13) can
be relaxed where a required hitting zone is defined on the
previous environmental knowledge on a diurnal basis and
where a positive/negative reward will be given if (𝑉pv(𝑖),
𝑃pv(𝑖)) falls into/outside the predefined hitting zone in any
time slot. Hence, the reward function can be formulated as

𝑟
𝑖+1

=
{

{

{

𝑐
1
, (𝑉pv (𝑖) , 𝑃pv (𝑖)) ∈ Hitting Zone

−𝑐
2
, otherwise,

(14)

where 𝑐
1
and 𝑐

2
are positive values, denoting weighting

factors in maximizing the difference between reward and
punishment for better learning effect. In this study, the 𝜀-
greedy algorithm is used in selecting the RLMPPT agent’s
actions to avoid repeatedly selection of the same action. The
flowchart of the proposed RLMPPT of this study is shown in
Figure 5.
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Figure 6: MPP distribution under simulated environment: (a) Gaussian distribution function generated environment data, (b) the set in (a)
added with sun occultation by clouds, and (c) MPP distribution obtained using real weather data.

4. Configurations of Experiments

Experiments of MPPT of PV array utilizing the RLMPPT
are conducted by simulation on computer and the results are
compared with existing MPPT methods for PV array.

4.1. Environment Simulation and Configuration for PV Array.
In this study, the PV array used for simulation is SY-
175M,manufactured by Tangshan Shaiyang Solar Technology
Co., Ltd., China. The power rating of the simulated PV
array was 175W with open-circuit voltage 44V and short-
circuit current 5.2 A. Validation of RLMPPT’s effectiveness
in MPPT was conducted via three experiments using two
simulated and one real weather data sets. A basic experiment
was first performed to determine whether the RLMPPT
could achieve the task of MPPT by using a set of Gaussian
distribution function generated temperature and irradiance.
And the effect of sun occultation by clouds is added on the
Gaussian distribution function generated set of temperature
and irradiance as the second experiment. Real weather data
for PV array, recorded in April, 2014, at Loyola Marymount
University, California, USA, obtained fromNational Renewal
Energy Laboratory (NREL) database provided an empirical
data set to test the RLMPPT under real weather condition.
Configurations of the experiments are described in the
following.

Assume the PV array is located at the Subtropics area
(Chiayi City, in the south of Taiwan) during 10:00 and
14:00 in summertime where the temperature and irradiance,

respectively, are simulated using Gaussian distribution func-
tion with mean value of 30∘C and 800W/m2 and standard
deviation of 4∘C and 50W/m2. According to (1), the simu-
lated set of temperature and irradiance produces the MPP
voltage (𝑉mpp) and the calculated MPP (𝑃mpp), as shown in
Figure 6(a), where the 𝑉mpp and the 𝑃mpp, respectively, lay at
𝑥-axis and 𝑦-axis. Figures 6(b) and 6(c), respectively, show
the (𝑉mpp, 𝑃mpp) plots of the Gaussian generated temperature
and irradiance with sun occultation effect and the real
weather data recorded on April 1, 2014, at LoyolaMarymount
University.

4.2. Reward Function and State, Action Arrangement. In
applying the RLMPPT to solve the problem of the MPPT
for PV array, the reward function plays an important role,
because not only a good reward function definition could
achieve the right feedback on every execution of learning
and tracking, but also it could enhance the efficiency of
the learning algorithm. In this study, a hitting zone with
elliptical shape for (𝑉mpp, 𝑃mpp) is defined such that a positive
reward value is given to the agent whenever it obtained
(𝑉mpp, 𝑃mpp) falls into the hitting zone in the sensing time
slot. Figure 7 shows the different size of elliptical hitting
zone superimposed on the plot of simulated (𝑉mpp, 𝑃mpp)
of Figure 6(a). The red elliptical circle in Figures 7(a), 7(b),
and 7(c), respectively, represents that the hitting zone covers
37.2%, 68.5%, and 85.5% of the total (𝑉mpp, 𝑃mpp) points,
obtained from the simulated data of the previous day.

In realizing the RLMPPT, the state vector is defined as
𝑆 = [𝑆

0
, 𝑆
1
, 𝑆
2
, 𝑆
3
] ⊆ S, while the meaning of each state is
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Figure 7: Different size of elliptical hitting zone superimposed on the plot of simulated (𝑉mpp, 𝑃mpp) for the first set of simulated environment
data: (a) 37.2% of the MPPs involved, (b) 68.5% of the MPPs involved, and (c) 85.5% of the MPPs involved.

explained in the previous section and shown in Figure 5. Six
perturbations of ΔV(𝑖) to the 𝑉pv(𝑖) are defined as the set of
action as follows:

A = {𝑎
𝑖
| 𝑎
0
= −5V, 𝑎

1
= −2V, 𝑎

2
= −0.5V,

𝑎
3
= +0.5V, 𝑎

4
= +2V, 𝑎

5
= +5V} .

(15)

The 𝜀-greedy is used in choosing agent’s actions in the
RLMPPT such that agent repeatedly selects the same action
is prevented.The rewarding policy of the hitting zone reward
function is to give a reward value of 10 and 0, respectively,
to the agent whenever it obtained (𝑉mpp, 𝑃mpp) in any sensing
time slot falls-in and falls-out the hitting zone.

5. Experimental Results

5.1. Results of the Gaussian Distribution Function Generated
Environment Data. In this study, experiments of RLMPPT
in testing the Gaussian generated and real environment data
are conducted and the results are compared with those of the
P&O method and the open-circuit voltage method.

For the Gaussian distribution function generated envi-
ronment simulation, the percentages of each RL agent choos-
ing actions in early phase (0∼25 minutes), middle phase
(100∼125 minutes), and final phase (215∼240 minutes) of the
RLMPPT are shown in the second, third, and fourth row,
respectively, of Table 1 within two-hour period. It can be seen
that, in the early phase of the simulation, the RL agent is
in fast learning stage such that the action chosen by agent
is concentrated on the ±5V and ±2V actions. However, in
the middle and final phase of the simulation, the learning

Table 1: The percentage of choosing action in different phase.

Interval (minutes) Action (V)
+5 +2 +0.5 −0.5 −2 −5

Early 0∼25 16% 20% 8% 12% 24% 20%
Middle 100∼125 4% 28% 24% 16% 20% 8%
Final 215∼240 4% 8% 36% 40% 8% 4%

is completed and the agent exploited what it has learned;
hence, the percentage of choosing fine tuning actions, that is,
±0.5 V, is increased from 20% of the early phase to 40% and
76%, respectively, for the middle and final phase. It can be
concluded that the learning agent fast learned the strategy in
selecting the appropriate action toward reaching the MPPT,
and hence the goal of tracking the MPP is achieved by the RL
agent.

Experimental results of the offsets between the calculated
and the tracking MPP by the RLMPPT and comparing
methods at the sensing time are shown in Figure 8. Figures
8(a), 8(b), and 8(c), respectively, show the offsets between the
calculated MPP and the tracking MPP by the P&O method,
the open-circuit voltagemethod, and the RLMPPTmethod at
the sensing time. One can see that, among the experimental
results of the three comparingmethods, the open-circuit volt-
age method obtained the largest offset, which is concentrated
around 15W. Even though the offsets obtained by the P&O
method fall largely below 10W, however, large portion of
offset obtained by the P&O method also randomly scattered
between 1 and 10W. On the other hand, the proposed
RLMPPT method achieves the least and condenses offsets
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Figure 8: The maximum power point minus the predicted current power point corresponds to the same sensing time: (a) P&O method,
(b) open-circuit voltage method, and (c) RLMPPT method.
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Figure 9:Thedefinition of hitting zone for the 2nd set of experiment
data.

below 5W and only small portions fall outside of 5W even
in the early learning phase.

5.2. Results of the Gaussian Distribution Function Generated
Environment Data with Sun Occultation by Clouds. In this
experiment, the simulated data are obtained by adding a 30%
chance of sun occultation by clouds to the test data in the
first experiment such that the temperature will fall down
0 to 3∘C and the irradiance will decrease 0 to 300W/m2.
The experiment is conducted to illustrate the capability of
RLMPPT in tracking the MPP of PV array under varied
weather condition. Figure 9 shows the hitting zone definition

Table 2: The percentage of choosing action in different phase.

Interval (minutes) Action (V)
+5 +2 +0.5 −0.5 −2 −5

Early 0∼25 28% 8% 12% 8% 12% 32%
Middle 100∼125 8% 16% 24% 20% 20% 12%
Final 215∼240 4% 12% 40% 32% 8% 4%

for the simulated data with added sun occultation by clouds
to the Gaussian distribution function generated environment
data. The red elliptical shape in Figure 9 covers the 90.2% of
the total (𝑉mpp, 𝑃mpp) points, obtained from simulated data of
the previous day. Table 2 shows the percentage of selecting
action, that is, the perturbation ΔV(𝑖) to the 𝑉pv(𝑖), by the
RLMPPT. The percentages of each RL agent choosing action
in early phase, middle phase, and final phase of the RLMPPT
method are shown in the second, third, and fourth row,
respectively, of Table 2.

It can be seen from Table 2 that the percentages of
selecting fine tuning actions, that is, the perturbation ΔV(𝑖)
is ±0.5 V, increase from 20% to 44%, and finally to 72%,
respectively, for the early phase, middle phase, and final
phase of MPP tracking via the RL agent. This table again
illustrated the fact that the learning agent fast learned the
strategy in selecting the appropriate action toward reaching
the MPPT, and hence the goal of tracking the MPP of the
PV array is achieved by the RL agent. However, due to
the varied weather condition on sun occultation by clouds,
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Figure 10: The maximum power point minus the predicted current power point corresponds to the same sensing time: (a) P&O method,
(b) open-circuit voltage method, and (c) RLMPPT method.

the percentage of selecting fine-tuning actions is somewhat
varied a little bit in comparison with the results obtained
in Table 1, whose simulated data are generated by Gaussian
distribution function without sun occultation effect.

Experimental results of the offsets between the calculated
and the tracking MPP by the comparing methods of P&O,
the open-circuit voltage, and the RLMPPT at the same
sensing time are shown in Figures 10(a), 10(b), and 10(c),
respectively. Experiment data from Figure 11 again exhibited
that, among the three comparing methods, the open-circuit
voltage method obtained the largest and sparsely distributed
offsets data, which are concentrated around 15W. Even
though the offsets obtained by the P&O method fall largely
between 0 and 5W, however, large portion of offset obtained
by the P&Omethod scattered around 1 to 40W before the 50
minutes of the experiment. On the other hand, the proposed
RLMPPT method achieves the least and condensed offsets
below 5W andmostly close to 3W in the final tracking phase
after 200 minutes.

5.3. Results of the Real Environment Data. Real weather data
for PV array, recorded in April, 2014, at Loyola Marymount
University, California, USA, is obtained online fromNational
Renewal Energy Laboratory (NREL) database for testing the
RLMPPTmethod under real environment data.The database
is selected because the geographical location of the sensing

Table 3:The percentage of choosing action in different phase for the
experiment with real weather data.

Interval (minutes) Action (V)
+5 +2 +0.5 −0.5 −2 −5

Early 0∼25 24% 16% 8% 12% 12% 28%
Middle 100∼125 16% 16% 12% 24% 24% 8%
Final 215∼240 4% 16% 32% 32% 12% 4%

station is also located in the subtropical area. A period of
recorded data from 10:00 to 14:00 for 5 consecutive days is
shown in Figure 6(c) and the hitting zone reward function
for the data from earlier days is shown in Figure 11(a). The
red elliptical shape in Figure 11(a) covers the 93.4%of the total
(𝑉mpp, 𝑃mpp) points, obtained from the previous 5 consecutive
days of the NREL real weather data for testing. Figures
11(b) and 11(c), respectively, show the real temperature and
irradiance data recorded at 04/01/2014 for generating the test
data.

Table 3 shows the percentage of selecting action by
the RLMPPT. The percentages of each RL agent choosing
action in early phase (0∼25 minutes), middle phase (100∼125
minutes), and final phase (215∼240 minutes) of the RLMPPT
method are shown in the second, third, and fourth rows,
respectively, of Table 3.
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Figure 11: (a) The definition of hitting zone for the experiment using real weather data, (b) the real temperature data recorded in 04/01/2014
and used for generating the test data, and (c) the real irradiance data recorded at 04/01/2014 and used for generating the test data.

In Table 3, one can see that the percentage of selecting
fine tuning actions, that is, the perturbation ΔV(𝑖) is ±0.5 V,
increase from 20% to 36% and finally to 64%, respectively,
for the early phase, middle phase, and final phase of MPP
tracking via the RL agent. Even though the percentage of
selecting fine tuning actions in this real data experiment has
the least value among the three experiments, it exhibits that
the RLMPPT learns to exercise the appropriate action of the
perturbationΔV(𝑖) in tracking theMPP of the PV array under
real weather data. This table again illustrated the fact that
the learning agent fast learned the strategy in selecting the
appropriate action toward reaching the MPP, and hence the
goal of tracking the MPP of the PV array is achieved by the
RL agent.

Experimental results of the offsets between the MPPT
and the predicted MPPT by the comparing methods at the
sensing time for the simulation data generated by the real
weather data are shown in Figure 12. Figures 12(a), 12(b), and
12(c), respectively, show the offsets between the calculated
MPPT and the tracking MPPT by the P&O method, the
open-circuit voltage method, and the RLMPPT method.
Experiment data from Figure 12 again shows that, among the
three comparing methods, the open-circuit voltage method
obtained the largest and sparsely distributed offsets data,
whose distributions are concentrated within a band cover by
twoGaussian distribution functionswith themaximumoffset

value of 19.7W. The offsets obtained by the P&O method
fall largely around 5 and 2.5W; however, large portion of
offset obtained by the P&O method sharply decreased from
1 to 40W in the early 70 minutes of the experiment. By the
observation of Figure 12(c), the proposed RLMPPT method
achieves the least and condenses offsets near 1 or 2W and
none of the offsets is higher than 5W after 5 simulation
minutes from the beginning.

5.4. Performance Comparison with Efficiency Factor. In order
to validate whether the RLMPPTmethod is effective or not in
tracking MPP of a PV array, the efficiency factor 𝜂 is used to
compare the performance of other existing methods for the
three experiments. The 𝜂 is defined as follows:

𝜂mppt =
∫
𝑡

0
𝑃actual (𝑡) 𝑑𝑡

∫
𝑡

0
𝑃max (𝑡) 𝑑𝑡

, (16)

where 𝑃actual(𝑡) and 𝑃max(𝑡), respectively, represent the track-
ing MPP of the MPPT method and the calculated MPP.
Table 4 shows that, for the three test data sets, the open-
circuit voltage method has the least efficiency factor among
the three comparing methods, and the RLMPPT method has
the best efficiency factor which is slightly better than that of
P&O method. The advantage of the RLMPPT method over
the P&Omethod is shown in Figures 10 and 12where not only
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Figure 12: The maximum power point minus the predicted current power point corresponds to the same sensing time: (a) P&O method,
(b) open-circuit voltage method, and (c) RLMPPT method.

Table 4: Comparison of efficiency factor for the three comparing
methods.

Learning phase (min) Methods
Open-circuit voltage P&O RLMPPT

Early 10:00∼10:25 86.9% 83.5% 89.2%
Middle 11:40∼12:05 87.5% 97.8% 99.4%
Final 13:35∼14:00 87.8% 97.7% 99.3%
Overall 10:00∼14:00 87.6% 95.4% 98.5%

the RLMPPT method significantly improves the efficiency
factor in comparing that of the P&O, but also the learning
agent of the RLMPPT fast learned the strategy in selecting the
appropriate action toward reaching theMPPTwhich is much
faster than the P&O method in exhibiting a slow adaptive
phase. Hence, the RLMPPT not only improves the efficiency
factor in tracking the MPP of the PV array, but also has the
fast learning capability in achieving the task of MPPT of the
PV array.

6. Conclusions

In this study, a reinforcement learning-based maximum
power point tracking (RLMPPT) method is proposed for
PV array.The RLMPPTmethod monitors the environmental

state of the PV array and adjusts the perturbation to the
operating voltage of the PV array in achieving the best MPP.
Simulations of the proposed RLMPPT for a PV array are
conducted on three kinds of data set, which are simulated
Gaussian weather data, simulated Gaussian weather data
added with sun occultation effect, and real weather data from
NREL database. Experimental results demonstrate that, in
comparison to the existing P&O method, the RLMPPT not
only achieves better efficiency factor for both simulated and
real weather data sets but also adapts to the environment
much fast with very short learning time. Further, the rein-
forcement learning-basedMPPTmethodwould be employed
in the real PV array to validate the effectiveness of the
proposed novel MPPT method.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] T. Esram andP. L. Chapman, “Comparison of photovoltaic array
maximum power point tracking techniques,” IEEE Transactions
on Energy Conversion, vol. 22, no. 2, pp. 439–449, 2007.



12 International Journal of Photoenergy

[2] D. P. Hohm and M. E. Ropp, “Comparative study of maximum
power point tracking algorithms,” Progress in Photovoltaics:
Research and Applications, vol. 11, no. 1, pp. 47–62, 2003.

[3] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimiza-
tion of perturb and observe maximum power point tracking
method,” IEEE Transactions on Power Electronics, vol. 20, no.
4, pp. 963–973, 2005.

[4] J. S. Kumari, D. C. S. Babu, andA. K. Babu, “Design and analysis
of PO and IPO MPPT technique for photovoltaic system,”
International Journal ofModern Engineering Research, vol. 2, no.
4, pp. 2174–2180, 2012.

[5] D. P. Hohm and M. E. Ropp, “Comparative study of maximum
power point tracking algorithms using an experimental, pro-
grammable, maximum power point tracking test bed,” in Pro-
ceedings of the Conference Record of the IEEE 28th Photovoltaic
Specialists Conference, pp. 1699–1702, 2000.

[6] L.-R. Chen, C.-H. Tsai, Y.-L. Lin, and Y.-S. Lai, “A biological
swarm chasing algorithm for tracking the PVmaximum power
point,” IEEE Transactions on Energy Conversion, vol. 25, no. 2,
pp. 484–493, 2010.

[7] T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New maximum
power point tracker for PV arrays using fuzzy controller in close
cooperation with fuzzy cognitive networks,” IEEE Transactions
on Energy Conversion, vol. 21, no. 3, pp. 793–803, 2006.

[8] N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT con-
trol while searching for parameters corresponding to weather
conditions for PV generation systems,” IEEE Transactions on
Industrial Electronics, vol. 53, no. 4, pp. 1055–1065, 2006.

[9] G. C. Hsieh, H. I. Hsieh, C. Y. Tsai, and C. H. Wang, “Photovol-
taic power-increment-aided incremental-conductance MPPT
with two-phased tracking,” IEEE Transactions on Power Elec-
tronics, vol. 28, no. 6, pp. 2895–2911, 2013.

[10] R. L. Mueller, M. T. Wallace, and P. Iles, “Scaling nominal solar
cell impedances for array design,” in Proceedings of the IEEE 1st
World Conference on Photovoltaic Energy Conversion, vol. 2, pp.
2034–2037, December 1994.

[11] N. Femia, G. Petrone, G. Spagnuolo, andM.Vitelli, “Optimizing
sampling rate of P&O MPPT technique,” in Proceedings of
the IEEE 35th Annual Power Electronics Specialists Conference
(PESC ’04), vol. 3, pp. 1945–1949, June 2004.

[12] N. Femia, G. Petrone,G. Spagnuolo, andM.Vitelli, “A technique
for improving P&OMPPT performances of double-stage grid-
connected photovoltaic systems,” IEEE Transactions on Indus-
trial Electronics, vol. 56, no. 11, pp. 4473–4482, 2009.

[13] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Max-
imum photovoltaic power tracking: an algorithm for rapidly
changing atmospheric conditions,” IEE Proceedings—Genera-
tion, Transmission and Distribution,, vol. 142, no. 1, pp. 59–64,
1995.

[14] C. Hua, J. Lin, and C. Shen, “Implementation of a DSP-
controlled photovoltaic systemwith peak power tracking,” IEEE
Transactions on Industrial Electronics, vol. 45, no. 1, pp. 99–107,
1998.

[15] L. P. Kaelbling,M. L. Littman, andA.W.Moore, “Reinforcement
learning: a survey,” Journal of Artificial Intelligence Research, vol.
4, pp. 237–285, 1996.

[16] A. G. Barto, Reinforcement Learning: An Introduction, MIT
Press, 1998.

[17] C. J.Watkins and P.Dayan, “Q-learning,”Machine Learning, vol.
8, no. 3-4, pp. 279–292, 1992.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


