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Recently, the coordination of EVs’ charging and renewable energy has become a hot research all around the globe. Considering
the requirements of EV owner and the influence of the PV output fluctuation on the power grid, a three-objective optimization
model was established by controlling the EVs charging power during charging process. By integrating the meshing method into
differential evolution cellular (DECell) genetic algorithm, an improved differential evolution cellular (IDECell) genetic algorithm
was presented to solve the multiobjective optimization model. Compared to the NSGA-II and DECell, the IDECell algorithm
showed better performance in the convergence and uniform distribution. Furthermore, the IDECell algorithm was applied to
obtain the Pareto front of nondominated solutions. Followed by the normalized sorting of the nondominated solutions, the optimal
solutionwas chosen to arrive at the optimized coordinated control strategy of PV generation and EVs charging. Compared to typical
charging pattern, the optimized charging pattern could reduce the fluctuations of PV generation output power, satisfy the demand
of EVs charging quantity, and save the total charging cost.

1. Introduction

With the increasing pressures of energy shortage, environ-
mental pollution, and global warming, the developments of
renewable energies such as wind power and photovoltaic
(PV) generation [1, 2] have been paid more and more atten-
tion. In addition, for the purposes of low-carbon emissions
and reducing environmental pollution, the electric vehicle
(EV) technology also obtained fast development and now
has become a focus of national governments, automakers,
and energy companies [3–6]. However, research shows that
EVs’ advantage of low emissions is more significant only
in predominant low-carbon electricity area, while it is not
obvious in the region based on coal-fired power generation.
This means that only as much as possible wind power, PV
power, and other renewable energies are adopted to charge
the EVs, can EVs’ emission reduction benefits be full play.
Therefore, the coordination and complementation of EVs’
charging and wind power or PV power have become a hot
research all around the globe [7–12].

Recently, most research has focused on the coordination
of EVs and renewable energy based on the coordination
scheduling and EVs charging station’s capacity allocation.
Paper [13] derived the mathematical expectation analytical
expressions of wind turbines outputs and EVs in the state of
the V2G; based on this, a power system stochastic economic
dispatch model was developed for the target of minimization
of total generation cost. Paper [14] did research on output
probability distribution of V2G, wind power, and PV gen-
eration system, set up a stochastic optimization scheduling
model to stabilize the fluctuations of renewable energy
outputs, and solved themodel by the cross entropy algorithm.
Paper [15] established a multiobjective optimization model
for EV charging to decrease the equivalent load peak val-
ley difference and regional grid electricity purchasing cost,
then transformed multiobjective optimization model into a
single objective optimization problem by fuzzy set theory,
and adopted an improved particle swarm algorithm to solve
the model. Paper [16] established a capacity optimization
model of the PV charging station to minimize the system
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comprehensive cost and maximize the utilization of renew-
able energy.While the cost of EVs charging and the influences
on the power grid are rarely simultaneously considered, this
issue is practically valuable to EVs development.

Considering the requirements of EV owner and the influ-
ence of the PV output fluctuation on the power grid, the issue
of coordination of EVs and renewable energywould become a
multiobjective optimization problem. A three-objective opti-
mization model of PV generation and EV charging system,
including minimum cost, full state of charge, and minimal
fluctuation of PV output power, has been proposed.

In order to solve the established three-objective optimiza-
tion model, an effective multiobjective optimization algo-
rithm is needed. In recent years,many classicalmultiobjective
evolutionary algorithms had emerged, such as NSGA-II [17]
and Strength Pareto Evolutionary Algorithm II (SPEA2) [18].
In 2007, Enrique Alba developed a novel multiobjective cellu-
lar genetic algorithm (cMOGA). Later, Nebro et al. improved
the cMOGA by introducing a feedback mechanism, thus
forming an improved cMOGA, that is, MOCell [19]. Pareto
solution obtained by MOCell has outstanding uniformity
when solving the double target problem, while it is disap-
pointing in the three target problems. In order to improve the
performance of MOCell, Durillo et al. combined differential
evolution (DE) algorithm with the MOCell and proposed
a hybrid metaheuristic algorithm DECell [20]. At present,
the DECell algorithm has been applied in the practical
engineering problems and achieved good effects [21].

For further improvement of DECell algorithm’s per-
formance in solving multiobjective optimization problem,
meshingmethod [22] is integrated into the basicDECell algo-
rithm and acquired an improved DECell (IDECell) algo-
rithm. Through solving the multiobjective benchmark func-
tions, it is verified that IDECell algorithm is effective and fea-
sible which can obtain more uniform distribution of Pareto
front compared to NSGA-II and basic DECell algorithm.
Finally, an optimized control strategy for coordinated control
of PV generation and EVs charging could be chosen by
normalized sorting of the nondominated solutions. Com-
pared to typical charging pattern, the optimized charging
pattern could reduce the fluctuations of PV generation output
power, meet the demand of EVs’ charging, and save the total
charging cost.

2. The Coordination Optimization Model of
PV Generation and EVs Charging

The main types of EVs are bus, taxi and private car, and so
forth.Their charging patterns are divided into slow charging,
conventional charging, and fast charging. Among them, pri-
vate cars aremainly used forwork, leisure, and entertainment;
the corresponding charging locations include office parking
lot, residential parking lot, and supermarket shopping center
parking lot. Therefore, the charging patterns could be chosen
as slow charging or conventional charging when parking
in the office and residential parking lots. In this paper, the
private cars charging in the office parking lot condition is
taken as an example to study the coordinated optimization
control strategy of PV generation and EVs charging, and
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Figure 1: Structure of the PV charging station system.

the charging time is from when they arrive at work locations
to when they leave.

2.1. Power Balance Model of PV Charging Station System. The
PV charging station researched in this paper is comprised of
PV arrays, DC/AC modules, intelligent charging piles, local
load, AC power source, and central control unit; the system
structure is as shown in Figure 1.

Under stable operation condition of the PV charging
station system, the tie line power is considered to be grid
connected power which can be calculated by the following:

𝑃gs = 𝑃PV − 𝑃EV − 𝑃loss, (1)

where 𝑃gs is the power transmitted to the grid, 𝑃PV is the
output power of PV generation system, 𝑃EV is the total
consumed power of EVs charging, and 𝑃loss is the loss
power of lines. Besides, all values of the variables above are
instantaneous values.

2.2. Objective Functions

(1) Fluctuations of the Power Transmitted to the Grid. In order
to investigate the optimal control strategy for coordinated
charging, the whole optimization period 𝑇 is divided equally
into 𝑁 sections, and the duration 𝑇

𝑁
of each section can be

derived as 𝑇/𝑁.
To reduce the influence of grid connected PV generation

on the power grid side, it is needed to minimize the fluctua-
tions of the power transmitted to the grid through the optimal
control of EVs’ charging power of each section in the charging
process. Use standard deviation to estimate the fluctuation
characteristic of the power transmitted to the grid. Then the
corresponding objective function can be expressed as

min𝐹
1
= min√

∑
𝑁

𝑛=1
|𝑃gs (𝑛) − 𝑃gs|

2

𝑁
,

(2)
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where 𝑃gs(𝑛) = 𝑃PV(𝑛)−∑
num EV
𝑖

𝑃EV(𝑛, 𝑖) is the average value
of power transmitted to the grid during the 𝑛th section; 𝑃gs =

∑
𝑁

𝑛=1
[𝑃PV(𝑛) − ∑

num EV
𝑖

𝑃EV(𝑛, 𝑖)]/𝑁 is the average value of
power transmitted to the grid during the whole optimization
period; 𝑃PV(𝑛) is the average value of PV generation output
power during the 𝑛th section; 𝑃EV(𝑛, 𝑖) represents the average
charging power of 𝑖th EV during 𝑛th section; num EV is the
total number of EV battery chargers.

(2) EVs Charging Cost. According to TOU price of industrial
electricity in China, the cost of EV charging can be calculated
by the following:

cost = ∫

𝑡0+𝑇

𝑡0

𝑀(𝑡) 𝑃 (𝑡) 𝑑𝑡, (3)

where 𝑡
0
is the starting time of charging, 𝑇 is duration of

charging, and 𝑡
0
+𝑇 is the ending time of charging.𝑀(𝑡) and

𝑃(𝑡) represent the unit price and charging power in time 𝑡,
respectively. Take the total cost that all EVs need to pay to
charge as objection function:

min𝐹
2
= min

𝑁

∑

𝑛=1

𝑀(𝑛)

num EV
∑

𝑖

𝑃EV (𝑛, 𝑖) 𝑇𝑁. (4)

(3) SOC of EV Battery. The SOC of EV battery can be stated
as

SOC (𝑡) = SOC
0
+

∫
𝑡0+𝑇

𝑡0

𝑃 (𝑡) 𝑑𝑡

𝑄
,

(5)

where SOC
0
represents the initial SOC of EV battery and 𝑄

is the rated capacity of EV battery. After being discretized, (5)
can be rewritten as

SOC (𝑛) = SOC
0
+

∑
𝑛

𝑗=1
𝑃 (𝑗) 𝑇

𝑁

𝑄
. (6)

In order to satisfy the user’s charging requirements, the
EV battery should be fully charged at the end of the optimiza-
tion. The discretized optimized model can be expressed as

min𝐹
3
= min

num EV
∑

𝑖

|SOC (𝑁, 𝑖) − 1|
2
. (7)

2.3. Constraints

(1) Restriction of the Power Transmitted to the Grid. Consider

𝑃gsmin ≤ 𝑃gs (𝑛) ≤ 𝑃gsmax, (8)

where 𝑃gsmin and 𝑃gsmax represent the minimum value and
maximum value of grid connected power, respectively, which
can be confirmed according to the agreement between PV
charging station system and power grid.

(2) Restriction of Charging Power. In order to reduce the life
loss of EV battery, the charging power of EV battery should
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Figure 2: The SOC curve.

not exceed a certain limited value. The charging power is
constrained by the following:

0 < 𝑃 (𝑡) ≤ 𝑃chargemax (𝑡) , (9)

where 𝑃chargemax(𝑡) represents the maximum acceptable
charging power of EV battery in time 𝑡, which is the function
of SOC and temperature of battery. Temperature effect on
𝑃charge max(𝑡) can be ignoredwhen somemeasures are taken to
keep the temperature of battery constant.Then themaximum
acceptable charging power can be expressed as follows:

𝑃chargemax (𝑡) = 𝑓 (SOC) . (10)

The quantitative relationship between 𝑃chargemax(𝑡) and
SOC can be described by SOC curve which is shown in
Figure 2.

Except for the restriction 𝑃chargemax(𝑡) which is the max-
imum acceptable charging power of EV battery, the total
charging power of all EVs in each section of the charging
period is also restricted by the following:

num EV
∑

𝑖

𝑃EV (𝑛, 𝑖) ≤ 𝑃PV (𝑛) . (11)

(3) Restriction of EV Battery’s SOC. The SOC of EV battery
in each section of the charging period should be restricted by
the following:

SOC (𝑛 + 1) = SOC (𝑛) +
𝑃 (𝑛) 𝑇𝑁

𝑄
,

SOC
0
≤ SOC (𝑛) ≤ 1, 𝑛 = 1, 2, . . . , 𝑁.

(12)

2.4.Three-Objective OptimizationModel. Based on the above
formulas, the global optimization of the coordinated control
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of PV generation and EVs charging can be expressed as a
three-objective optimization problem with constraints:

min𝐹
1
= min√

∑
𝑁

𝑛=1
|𝑃gs (𝑛) − 𝑃gs|

2

𝑁
,

min𝐹
2
= min

𝑁

∑

𝑛=1

𝑀(𝑛)

num EV
∑

𝑖

𝑃EV (𝑛, 𝑖) 𝑇𝑁,

min𝐹
3
= min

num EV
∑

𝑖

|SOC (𝑁, 𝑖) − 1|
2
,

(13)

S.T. 𝑃gs min ≤ 𝑃gs (𝑛) ≤ 𝑃gs max

0 < 𝑃 (𝑡) ≤ 𝑃charge max (𝑡)

num EV
∑

𝑖

𝑃EV (𝑛, 𝑖) ≤ 𝑃PV (𝑛)

SOC (𝑛 + 1) = SOC (𝑛) +
𝑃 (𝑛) 𝑇𝑁

Q

SOC
0
≤ SOC (𝑛) ≤ 1, 𝑛 = 1, 2, . . . , 𝑁.

(14)

3. IDECell Algorithm

3.1. Basic DECell Algorithm. DECell is an improved multiob-
jective optimization algorithm based on MOCell algorithm;
the basic idea is to use MOCell as a search engine and then
use the propagationmechanismof differential evolution (DE)
instead of the crossover operating and mutation operating
of traditional genetic algorithm to generate new individuals,
so that the Pareto front of solution set can be obtained in
maintaining good uniformity and distribution breadth, while
moving closer and closer to the optimal front.

(1) Basic Principle of DECell Algorithm. The basic principle
chart of DECell algorithm is as shown in Figure 3. Firstly,
an initial population is generated randomly and an external
empty document for Pareto solution set is also generated, and
then individuals of the initial population will be placed in
a two-dimensional ring network and the neighbor structure
type could be defined too. Secondly, two different individuals
will be selected from the neighbors of each current individual
randomly to constitute the three male parent individuals;
then crossover operating and mutation operating of the DE
strategywill be carried out to produce an offspring individual.
If the offspring individual dominates the current parent
individual or the offspring individual has greater crowding
distance while both of them are nondominated, replace the
current parent individual with the offspring individual and
store it to the external document. Calculate the crowding
distance of each nondominated individual in the external
document and delete the individual which has the mini-
mum crowding distance when the quantity of the external
document exceeds its specified capacity. Finally, after the
completion of each iteration, select a number of individuals

Feedback

External document

Selecting

DE operation

If the offspring
individual is better 
than that current, 

then replace it

If it is a
dominant

then add it to 
the document

individual,

Figure 3: Basic principle chart of DECell algorithm.
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from the external document to replace the same number
of individuals randomly selected from current population
so that the population could be updated constantly by this
feedbackmechanism. As a result, the Pareto front of obtained
solution set can keep the diversity, while moving closer and
closer to the optimal front.

(2) The Deficiency of Crowding Distance Strategy in DECell
Algorithm. In DECell algorithm, the crowding distance strat-
egy is used to keep the solution set’s diversity; the crowding
distance of each individual of each evolution population is
calculated and the individual with great crowding distance
value has the priority to be selected into the next generation
population. However, the limitation of this strategy is that
some individuals with good distribution may be eliminated
while those with bad distribution may be reserved.

As shown in Figure 4, individual 3 and individual 4
are adjacent and both of them are relatively far from other
individuals; in this case, their crowding distance values
are relatively great and similar. Therefore, individual 3 and
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individual 4 will be eliminated or reserved simultaneously.
However, in order to make the solution population maintain
good uniformity and distribution, it is better to reserve one
and eliminate the other from individual 3 and 4. In view of
this problem, meshingmethod will be introduced to improve
the performance of DECell algorithm instead of the crowding
distance strategy.

3.2. Meshing Method. For a 𝑟-objective optimization prob-
lem, set a grid with 2𝑟 boundaries. 𝑙𝑏

𝑘
and 𝑢𝑏

𝑘
are the

according lower and upper boundary, respectively, where 𝑘 =
1, 2, . . . , 𝑟. That shown in Figure 5 is a 2-objective grid with 4
boundaries in total.

A grid can be segmented into several small areas called
hypercube (HC); the amount of segmentation depends on
the size of evolution population and the objective number of
the optimization problem. Each HC could be expressed as 𝑟𝑖,
where 𝑖 = (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑟
); besides, 𝑖

𝑘
∈ 1 ⋅ ⋅ ⋅ 𝑑, where 𝑑 is a

natural constant generally greater than 2which represents the
amount of segmentation in each dimension. In Figure 5, 𝑑 is
set as 6; therefore, boundaries of each 𝑟𝑖 can be expressed as

∀𝑘 ∈ 1 ⋅ ⋅ ⋅ 𝑟,

𝑟𝑢𝑏
𝑘,𝑖
= [𝑙𝑏
𝑘
+ (

𝑖
𝑘

𝑑
) (𝑢𝑏
𝑘
− 𝑙𝑏
𝑘
)] ⋅ 𝜔
𝑘
,

𝑟𝑙𝑏
𝑘,𝑖
= [𝑙𝑏
𝑘
+ (

(𝑖
𝑘
− 1)

𝑑
) (𝑢𝑏
𝑘
− 𝑙𝑏
𝑘
)] ⋅ 𝜔

𝑘
,

(15)

where 𝜔
𝑘
represents the width of each HC in 𝑘th dimension,

𝜔
𝑘

= range
𝑘
/𝑑, and range

𝑘
is the domain width in 𝑘th

dimension.

On the basis of the above, with the grid and the identi-
fication for each HC, it can be judged whether an individual
falls in a certain area. Take individual 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑟
), for

instance; it can be confirmed that individual 𝑧 is located in
area 𝑟𝑖 when 𝑧

𝑘
≥ 𝑟𝑙𝑏
𝑘,𝑖
and 𝑧
𝑘
< 𝑟𝑢𝑏
𝑘,𝑖
, ∀𝑘 ∈ 1 ⋅ ⋅ ⋅ 𝑟.

In Figure 5, there are three individuals located in area 𝐴,
one individual located in area 𝐵, and two individuals located
in area𝐶. Tomaintain the evolution population’s distribution,
it is needed to select the individuals with great gathering
density in the grid to delete.Therefore, one or two individuals
in the area 𝐴 should be deleted.

3.3. Improvement of DECell Algorithm. In order to improve
the performance of DECell algorithm solving the three-
objective optimization problem, meshing method is inte-
grated into the basic DECell algorithm instead of the crowd-
ing distance strategy.As a result, an improveddifferential evo-
lution cellular (IDECell) genetic algorithm was developed.
The flowchart of IDECell algorithm is as shown in Figure 6.

3.4. Verification of IDECell Algorithm. In order to verify the
feasibility of IDECell algorithm, apply IDECell algorithm to
solve two three-objective benchmark test functions DTLZ1
and DTLZ2. What is more, NSGA-II algorithm and basic
DECell algorithm are also conducted for comparison. DTLZ1
and DTLZ2 are described as (16) and (17), respectively:

DTLZ1:

min𝑓
1 (𝑥) = 0.5𝑥

1
𝑥
2
(1 + 𝑔 (𝑥))

min𝑓
2 (𝑥) = 0.5𝑥

1
(1 − 𝑥

2
) (1 + 𝑔 (𝑥))

min𝑓
3 (𝑥) = 0.5 (1 − 𝑥

1
) (1 + 𝑔 (𝑥))

𝑔 (𝑥) =

12

∑

𝑖=3

(𝑥
𝑖
− 0.5)

2
− cos (20𝜋 (𝑥

𝑖
− 0.5))

S.T. 0 ≤ 𝑥
𝑖
≤ 1 (𝑖 = 1, 2, . . . , 12) ,

(16)

DTLZ2:

min𝑓
1 (𝑥) = (1 + 𝑔 (𝑥)) cos(𝑥1

𝜋

2
) cos(𝑥

2

𝜋

2
)

min𝑓
2 (𝑥) = (1 + 𝑔 (𝑥)) cos(𝑥1

𝜋

2
) sin(𝑥

2

𝜋

2
)

min𝑓
3 (𝑥) = (1 + 𝑔 (𝑥)) sin(𝑥1

𝜋

2
)

𝑔 (𝑥) =

12

∑

𝑖=3

(𝑥
𝑖
− 0.5)

2

S.T. 0 ≤ 𝑥
𝑖
≤ 1 (𝑖 = 1, 2, . . . , 12) .

(17)

3.4.1. Performance Measures. Unlike in single objective opti-
mization, there are two goals in a multiobjective optimiza-
tion: (1) convergence to the Pareto-optimal set and (2)

maintenance of diversity in solutions of the Pareto-optimal
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set [23]. These two tasks cannot be measured adequately
with one performance metric. Many performance metrics
have been suggested [17, 24, 25]. Here, we use three practical
performance metrics to evaluate the above two goals in
a solution set obtained by a multiobjective optimization
algorithm.

(1) Generational Distance.This metric is a value representing
the distance between the obtained Pareto front and the
optimal Pareto front and is defined as [24]

GD =
(∑
𝑛

𝑖=1
𝑑
𝑝

𝑖
)
1/𝑝

𝑛
, (18)

where 𝑛 is the number of solutions in the obtained Pareto
front, 𝑝 is the dimension of objective space, and 𝑑

𝑖
is the

Euclidean distance between each solution and the nearest
member of the optimal Pareto front. A result of 0 indicates
that the obtained Pareto front is optimal Pareto front. The
metric GD takes a smaller value with better performance in
convergence.

(2) Spread, Δ.Themetric Δ suggested by Deb et al. measures
the extent of spread achieved among the obtained solutions
[17]. We use this metric to calculate the nonuniformity in the
distribution:

Δ =

𝑑
𝑓
+ 𝑑
𝑙
+ ∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
− 𝑑

󵄨󵄨󵄨󵄨󵄨

𝑑
𝑓
+ 𝑑
𝑙
+ (𝑛 − 1) × 𝑑

. (19)

Here, 𝑑
𝑖
is Euclidean distance between consecutive solutions

in the obtained nondominated set of solutions. The param-
eters 𝑑

𝑓
and 𝑑

𝑙
are the Euclidean distances between the

extreme solutions and the boundary solutions of the obtained
nondominated set. The parameter 𝑑 is the average of all
distances 𝑑

𝑖
, assuming that there are 𝑛 solutions on the best

nondominated front. The metric Δ takes a higher value with
worse distributions of solutions within the extreme solutions.

(3) Hypervolume. Hypervolume (HV) metric [25] is used to
represent the volume of the objective space dominated by an
approximation Pareto set. It is a comprehensive evaluation
indicator of convergence and diversity and is defined as

HV = volume(
|𝑄|

⋃

𝑖=1

V
𝑖
) , (20)

where 𝑄 is the number of solutions in the obtained Pareto
front. For each individual, 𝑉

𝑖
represents the volume dom-

inated by the 𝑖th individual and the reference point 𝑤 =

(0, . . . , 0).The greater value of theHV shows that the obtained
Pareto front has wider coverage in the optimal Pareto front.

3.4.2. Analysis of the Results. Set the parameters of three
algorithms as follows: adopt real number system for encoding
and polynomial for mutation. NSGA-II adopts simulation
binary crossover (SBX) operator; DECell and IDECell adopt
DE operator. Population size is set as 200, the maximum
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Figure 7: Pareto front of DTLZ1 gained by 3 multiobjective opti-
mization algorithms.

number of iterations is set as 1000, crossover probability
is set as 0.9, mutation probability is 1/len, len is variable
dimension, the size of external document is set as 100, and
the number of feedback individuals is set to be 20. Altogether
30 independent runs were performed per algorithm and
test problem in order to restrict the influence of random
effects. The simulation results gained by three optimization
algorithms are shown as Figures 7 and 8.

Obviously, it can be seen from Figures 7 and 8; all three
algorithms can seek out a group of nondominated solutions
for DTLZ1 and DTLZ2. Compared to other two optimization
algorithms, the Pareto front gained by IDECell algorithm has
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Table 1: Comparison of performance metrics.

Algorithm (problem) GD Δ HV
Mean Variance Mean Variance Mean Variance

NSGA-II (DTLZ1) 0.2036 0.1601 0.8651 0.0262 0.7221 0.0471
DECell (DTLZ1) 0.0424 0.0427 0.6978 0.0145 0.7862 0.0524
IDECell (DTLZ1) 0.0233 0.0607 0.5034 0.0092 0.8025 0.0413
NSGA-II (DTLZ2) 0.2263 0.4644 0.9552 0.1227 0.6343 0.0793
DECell (DTLZ2) 0.0196 0.0241 0.8987 0.2475 0.7064 0.0617
IDECell (DTLZ2) 0.0177 0.0221 0.4954 0.0178 0.7285 0.0814
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Figure 8: Pareto front of DTLZ2 gained by 3 multiobjective opti-
mization algorithms.

more uniform distribution. The case that multiple optimal
solutions converge in a small area does not exist, avoiding
the premature and local convergence during the process
of genetic operation. Furthermore, quality measures have
been introduced to compare the outcomes of multiobjective
optimization algorithms in a quantitative manner. Table 1
presents three algorithms performance as regards genera-
tional distance, spread, and hypervolume over DTLZ1 and
DTLZ2. When considering generational distance and hyper-
volume, the DECell algorithm and IDECell algorithm give
better results than the NSGA-II algorithm because they com-
bine the advantages of MOCell algorithm and DE algorithm.
Besides, due to the introduction of the meshing method, the
IDECell algorithm shows better performance in the uniform
distribution than the other two algorithms over the test
problems. As such, it is verified that the IDECell algorithm
is more suitable and reliable to solve the three-objective
optimization problem and is advantageous for policy makers
to accurately make the best choice.

4. Application of IDECell Algorithm in
the Coordinated Control of PV Generation
and EVs Charging

Apply the IDECell algorithm to solve the established opti-
mizationmodel for the coordinated control of PV generation
and EVs charging; the overall process can be described in the
following main steps.

Step 1 (initialize the parameters). Set the parameters of𝑃,𝑁
𝐷
,

𝐹, CR, 𝑑, 𝐶, and 𝐺. 𝑃 is the population size. 𝑁
𝐷
represents

the size of external document. 𝐹 is the zoom factor. CR is
the crossover factor. 𝑑 is the amount of segmentation. 𝐶 is
the number of feedback individuals and 𝐺 is the maximum
number of iterations for whole population.

Step 2 (initialize the population randomly). Generate the ini-
tial population randomly meeting the constraints described
in (14): 𝑋

1
,𝑋
2
, . . . ,𝑋

𝑃
,𝑋
𝑖
= (𝑃EV(1, 𝑖), 𝑃EV(2, 𝑖), . . . ,𝑃EV(𝑁, 𝑖)),

and generate an empty external document as well.Then place
the individuals of the initial population in a two-dimensional
ring network and its neighbor structure type could be defined
as Moore. Compute the fitness value [𝐹

1
(𝑋
𝑖
), 𝐹
2
(𝑋
𝑖
), 𝐹
3
(𝑋
𝑖
)]

according to (13) for each individual𝑋
𝑖
.

Step 3 (generate the offspring individuals by DE). For each
individual of current population, select two individuals𝑋

𝑟2,𝐺
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and 𝑋
𝑟3,𝐺

from all neighbors of the current individual 𝑋
𝑟1,𝐺

.
𝑟1, 𝑟2, and 𝑟3 are their index position, respectively. A new
individual can be obtained by crossover operation according
to (21): 𝑉

𝑖,𝐺
= (V
𝑖,1,𝐺

, V
𝑖,2,𝐺

, . . . , V
𝑖,𝑗,𝐺

, . . . , V
𝑖,𝑁,𝐺

); then, to its
paternal individual 𝑋

𝑖,𝐺
= (𝑥
𝑖,1,𝐺

, 𝑥
𝑖,2,𝐺

, . . . , 𝑥
𝑖,𝑗,𝐺

, . . . , 𝑥
𝑖,𝑁,𝐺

),
carry out the mutation operation according to (22) to get
the new offspring individual, 𝑈

𝑖,𝐺+1
= [𝑢
𝑖,1,𝐺+1

, 𝑢
𝑖,2,𝐺+1

, . . . ,

𝑢
𝑖,𝑗,𝐺+1

, . . . , 𝑢
𝑖,𝑁,𝐺+1

]:

𝑉
𝑖,𝐺

= 𝑋
𝑟1,𝐺

+ 𝐹 ⋅ (𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) , (21)

𝑢
𝑖,𝑗,𝐺+1

= {
V
𝑖,𝑗,𝐺

, rand
𝑗
< CR or 𝑗 = 𝐾;

𝑥
𝑖,𝑗,𝐺

, others,
(22)

where𝐾 is a integer and 0 ⩽ 𝐾 ⩽ 𝑁 − 1.

Step 4 (evaluate the offspring individuals). Compute the fit-
ness value [𝐹

1
(𝑈
𝑖,𝐺+1

), 𝐹
2
(𝑈
𝑖,𝐺+1

), 𝐹
3
(𝑈
𝑖,𝐺+1

)] according to (13)
for offspring individual𝑈

𝑖,𝐺+1
. If𝑈
𝑖,𝐺+1

dominates its paternal
individual𝑋

𝑖,𝐺
, then replace the paternal individual and send

𝑈
𝑖,𝐺+1

to the external document.

Step 5 (feedback). Sort the nondominated individuals stored
in the external document using meshing method and delete
the redundant individuals when the quantity of the document
exceeds its specified capacity. Select a number of individuals
from the external document to replace the same number of
individuals randomly selected from current population.

Step 6 (check convergence). If the convergence criteria are
met, stop and output the nondominant solutions, Otherwise,
return to Step 3. In this IDECell, the convergence criteria
are defined as the maximum number of iterations for whole
population (𝐺).

5. Numerical Simulation

In this study, the whole optimization period 𝑇 is set to 8:00–
19:00 and divided into 12 sections with the duration𝑇

𝑁
of one

hour. Besides, it is assumed that there are 100 EVs needed to
be charged in the office parking lot.

5.1. Settings of Simulation

(1) Rated Capacity of EV Battery. In the EV market, there are
different battery types such as NiMH, Lead Acid, and Li-Ion.
According to the Li-Ion battery equipped in “E6 pioneer,”
EV developed by BYD Co., Ltd., in completely discharging
situations, the demand for energy is 60 kW⋅h.

(2) The Initial SOC of EV Battery. Using probability distribu-
tion model to describe the initial SOC of EV battery

𝑓 (SOC
0
, 𝜇, 𝜎) =

1

√2𝜋𝜎2
𝑒
−(SOC0−𝜇)

2
/(2𝜎
2
)
, (23)

where SOC
0
represents the initial SOC of EV battery and it is

commonly between 0.05 and 0.5. It takes 𝜇 for 0.25 and takes
𝜎 for 0.1 and 𝜇 is the average value of SOC and 𝜎 is standard
deviation.
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Figure 9: TOU price.

(3) TOU Price. According to actual TOU price implemented
in Jiangsu province in China, the period of valley load is
defined as 0:00–08:00, totally 8 h; the period of peak load
is defined as 09:00–12:00 and 18:00–21:00, totally 8 h. The
remaining time is the period of flat load. Adopting the actual
price of electricity in the province, the prices of peak, flat, and
valley load period are 0.869 Yuan/kW⋅h, 0.687 Yuan/kW⋅h,
and 0.365 Yuan/kW⋅h. The histogram of TOU price is shown
in Figure 9.

(4) The Daily Output Power of PV Generation. The daily
output power of PV generation before regulation can be
predicted and the average value per hour of output power is
shown in Table 2.

(5) Parameters of IDECell Algorithm. The parameters of
IDECell algorithm are set as shown in Table 3.

(6) Typical Charging Pattern of EV Battery. In order to verify
the effectiveness of optimized charging strategy which can be
obtained by optimization algorithm, adopt a typical charging
pattern for comparison, the charging profile of which is
consistent with the charging characteristics of battery. At
present, the typical strategy for EV battery charging is a two-
stage method. The first stage is constant-current charging
process which has a constant current and limited voltage and
the second stage is constant-voltage charging process which
has a constant voltage and limited current. During the whole
charging process, most of the charging time would be the
first stage in which the charging power has little change. As
a result, EV battery could be considered as a constant power
load so that the constant-voltage charging process could be
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Figure 10: Pareto front gained by 3 multiobjective optimization algorithms.

Table 2: Average value per hour of output power of PV generation.

Time (h) Power (kW)
1 0
2 0
3 0
4 0
5 0
6 9.32
7 82.32
8 479
9 763.68
10 627.32
11 850.04
12 998.68
13 1533.32
14 1446.72
15 1008.32
16 1459
17 1530.32
18 1040.68
19 456.48
20 139.68
21 0
22 0
23 0
24 0

Table 3: Parameters of IDECell algorithm.

Parameter F CR d P G 𝑁
𝐷

C
Value 0.8 0.2 10 200 1000 100 20

ignored. In this study, we employ constant power charging
way for typical charging pattern.

5.2. The Results and Analysis of Simulation

(1) Performance Comparison of Three Algorithms. Solve the
three-objective optimization model established previously
using NSGA-II algorithm, DECell algorithm, and IDECell
algorithm, respectively, and nondominated solutions could
be obtained. The corresponding Pareto fronts are as shown
in Figure 10.

It can be seen from Figure 10 NSGA-II algorithm is not
applicable to be used to solve the presented three-objective
optimization problem in this paper due to its worst conver-
gence and distributivity of three algorithms. Nevertheless, the
optimization results gained by DECell algorithm and IDE
algorithm are more ideal relatively. Furthermore, compared
to the basic DECell algorithm, distribution of the Pareto front
gained by the IDECell algorithm has a significant improve-
ment to be more uniform. As a consequence, it is verified
that IDECell algorithm is feasible and effective for solving
the three-objective optimization model of the coordinated
control of PV generation and EVs charging.

(2) Selection of the Optimal Solution. So as to get the best
coordinated control strategy of PV generation and EVs
charging, it is required to select an optimal solution from the
nondominated solution set by a certain method. Thus calcu-
late the normalized value for each nondominated solution of
the Pareto solution set according to (24), and then sort them:

𝑓
𝑖
=

3

∑

𝑛=1

(
𝑓
𝑖 (𝑛) − 𝑓min (𝑛)

𝑓max (𝑛) − 𝑓min (𝑛)
) , (24)

where 𝑓
𝑖
represents the normalized value of the 𝑖th solution;

𝑓
𝑖
(𝑛) is the fitness value for 𝑛th optimization objective
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Table 4: Standard deviation under different charging patterns.

Condition Without EVs Typical charging pattern Optimized charging pattern
Standard deviation (kW) 462.14 379.29 277.14
Reduction — 17.91% 40.02%
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Figure 11: EV charging power for each period.

of 𝑖th solution; 𝑓min(𝑛) is the minimum fitness value for
𝑛th optimization objective of all solutions; 𝑓max(𝑛) is the
maximum fitness value for 𝑛th optimization objective of all
solutions.

On this basis, the solution which has the minimum
normalized value can be selected as the optimal solution.

(3) Comparison between the Optimal Charging Pattern and
Typical Charging Pattern. As the optimal solution is selected
and its corresponding control strategy is considered to be the
optimal charging pattern for EVs, the charging power curve
of EV battery is as shown in Figure 11. Different from the
typical charging pattern, the charging power of the optimal
charging pattern changes each period.

According to (6), the SOC of the EV battery can be
computed and its changing curve is shown in Figure 12. From
Figure 12, the SOC of EV battery is closed to be 100% at the
end of the whole optimization period charged by the optimal
charging pattern. It is confirmed that the optimal pattern can
meet the need of EV charging commendably.

Figure 13 shows the fluctuation curves of the power
transmitted to the grid under different conditions; the spe-
cific standard deviation values are calculated and shown in
Table 4. Both Figure 13 and Table 3 clearly indicate that
the optimal charging pattern for EV battery can obviously
reduce the fluctuations of the power transmitted to the grid
compared to the typical charging pattern.

Figure 14 shows the energy demand of different charging
patterns; as it can be seen, the optimized charging pattern can
shift amass of peak load to valley load and flat load which can
reduce the charging costs directly.

In addition, Table 5 lists the charging cost of different
charging patterns. It is clearly seen that the optimized
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Figure 12: The SOC changing curve of EV battery.
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Figure 13: The fluctuation curves of the power transmitted to the
grid.

Table 5: Cost under different charging patterns.

Condition Typical charging
pattern

Optimized
charging pattern

Cost (Yuan) 4465.6 3977.3
Reduction in cost — 10.1%

charging pattern can bring an evident reduction in the cost
of EVs charging.

6. Conclusions

The coordinated control of PV generation and EVs charging
has been studied. In order to stabilize the fluctuation of
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Figure 14: Energy demand of different charging patterns.

the PV generation output power and minimize the total cost
for EVs charging while meeting the SOC requirement of EV
batteries, a three-objective optimization model is established
by controlling the EVs charging power during charging
process.

To solve the proposed multiobjective optimization prob-
lem effectively, an IDECell algorithm is developed by inte-
grating the meshing method into the DECell algorithm.
The modified algorithm is initially successfully applied to
solve two benchmark test problems, thus validating the new
approach. Compared to NSGA-II and DECell algorithm,
IDECell has the best performance in the convergence and
uniform distribution according to the simulation results.

With the presented IDECell algorithm, an optimized
strategy for coordination control of PV generation and EVs
charging has been achieved by a normalization process.
Finally, the results of simulations show that the obtained
strategy is effective and reliable. Under this strategy, the total
cost for EVs charging has been reduced by 10.1%, and the
standard deviation of PV generation output also has been
decreased to 277.14 kW from 379.29 kW of typical charging
pattern.
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