
Research Article
Cyanidin-Based Novel Organic Sensitizer for Efficient
Dye-Sensitized Solar Cells: DFT/TDDFT Study

Kalpana Galappaththi,1 Andery Lim,2 Piyasiri Ekanayake,1,2 and
Mohammad Iskandar Petra3

1Applied Physics Program, Faculty of Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410,
Brunei Darussalam
2Physical and Geological Sciences Programme, Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam,
Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
3Faculty of Integrated Technology, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

Correspondence should be addressed to Piyasiri Ekanayake; piyasiri.ekanayake@ubd.edu.bn

Received 28 April 2017; Accepted 20 July 2017; Published 30 August 2017

Academic Editor: Polycarpos Falaras

Copyright © 2017 Kalpana Galappaththi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Cyanidin is widely considered as a potential natural sensitizer in dye-sensitized solar cells due to its promising electron-donating
and electron-accepting abilities and cheap availability. We consider modifications of cyanidin structure in order to obtain
broader UV-Vis absorption and hence to achieve better performance in DSSC. The modified molecule consists of cyanidin and
the benzothiadiazolylbenzoic acid group, where the benzothiadiazolylbenzoic acid group is attached to the cyanidin molecule by
replacing one hydroxyl group. The resulting structure was then computationally simulated by using the Spartan’10 software
package. The molecular geometries, electronic structures, absorption spectra, and electron injections of the newly designed
organic sensitizer were investigated in this work through density functional theory (DFT) and time-dependent density functional
theory (TDDFT) calculations using the Gaussian’09W software package. Furthermore, TDDFT computational calculations were
performed on cyanadin and benzothiadiazolylbenzoic acid separately, as reference. The computational studies on the new
sensitizer have shown a reduced HOMO-LUMO gap; bathochromic and hyperchromic shifts of absorption spectra range up to
near-infrared region revealing its enhanced ability to sensitize DSSCs.

1. Introduction

Dye-sensitized solar cells (DSSC), first introduced in 1991,
are emerging as the most promising alternative to tradi-
tional silicon solar cells due to the low cost of fabrication
and easy manufacturing process [1–4]. The sensitizer,
which plays a major role in DSSC function, absorbs light
and injects electrons to the conduction band of TiO2 from
its excited state. Sensitizers based on ruthenium [5, 6],
zinc porphyrin [7, 8], and organic dyes [9] have been dis-
covered and applied as efficient sensitizers for DSSC.
Despite of the high efficiency of ruthenium and porphyrin
sensitizers, environmental complication and sophisticated
synthesizing procedures make it necessary to find for
alternative efficient sensitizers.

Presently, many efforts are created to develop novel,
reliable, efficient, and environmental-friendly sensitizers for
real-world applications [5, 10, 11].

Natural dye molecules such as flavonoids, betalains,
carotenoids, and chlorophylls are currently being tested as
alternatives to the expensive sensitizers in the fabrication of
DSSC, considering their electron-donating and electron-
accepting abilities [12–16]. However, the efficiencies of
DSSCs sensitized with natural dyes are still very poor, mainly
due to the poor light-harvesting properties associated with
them [17–20]. Therefore, the need to invent natural dye-
based new dye with improved optical properties favorable
to enhance efficiency of DSSC is a worthy solution.

In this study, a cyanidin, which belongs to flavonoids,
based new organic dye is modeled and its suitability as a
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novel sensitizer in DSSC is computationally tested using
density functional theory (DFT) and time-dependent density
functional theory (TDDFT) calculations. The new sensitizer,
P01-1, is designed by attaching one of the hydroxyl groups on
the benzene ring of cyanidin to the benzothiadiazolylbenzoic
acid (BTBA) unit as shown in Figure 1. Following IUPAC
rules, we have named the molecule (P01-1) as p-{5-[2-
hydroxy-4-(3,5,7-trihydroxy-2-chromenyl)phenyl]-8-thia-7,
9-diazabicyclo[4.3.0]nona-1(9),2,4,6-tetraen-2-yl}benzoic
acid. In the design, we used benzothiadiazolylbenzoic acid
as an electron acceptor by considering its strong electron
withdrawing ability in some excellent dyes reported by
Yao and coworkers [21]. The position of the BTBA substi-
tution to cyanidin is based on our previous work [12];
TDDFT calculations of cyanidin revealed that the electron
density cloud of the lowest unoccupied molecular orbital
(LUMO) is highly localized and denser in the selected
hydroxyl group.

2. Computational Details

The molecular structures of P01-1, cyanidin, and benzothia-
diazolylbenzoic acid (BTBA) are computed using Spartan’10
software [22] to retrieve the molecular geometry coordinates.
Both DFT and TDDFT calculations are performed using
Gaussian’09W software [23]. The molecular structures of
P01-1, cyanidin, and BTBA are fully optimized using Becke’s
three-parameter hybrid functional using Lee-Yang-Parr
hybrid functional (B3LYP) [24] in ethanol. The electronic
structures and total energies are calculated using 6-31g (d)
basis set which adopted to describe metal-free atoms. All of
the calculations include the solvation effect in ethanol using
the polarizable continuum model (PCM) [25]. The lowest 5
singlet-singlet excitations are included in the TDDFT calcu-
lations. The models of electron density of various energy
levels of the P01-1 are visualized, and absorption spectra of

P01-1, cyanidin, and BTBA are simulated using GaussView
version 5.0 [26].

The synthetic strategy to reach P01-1 is by coupling
cyanidin and bromo-benzothiadiazolylbenzoic acid together
via Ullmann cross coupling reaction [27, 28]. Cyanidin can
be extracted from natural flowers and fruits; benzothiadiazo-
lylbenzoic acid (BTBA) can be synthesized by following a
procedure reported by Yao and coworkers [21].

3. Results and Discussion

3.1. DFT Calculation. DFT calculations are performed on the
P01-1molecule with a solvent effect on ethanol. For compar-
ative purposes, we also performed calculations on cyanidin
and BTBA. The results are summarized in Table 1. It is
observed that the band gap value of P01-1, obtained after
geometry optimization in ethanol, is smaller than HOMO-
LUMO gap values of cyanidin and BTBA in ethanol.

3.2. HOMO-LUMO Energy Levels. Molecular orbitals and
their properties such as corresponding energy are very useful
to identify the best sensitizers for DSSCs. The highest
occupied molecular orbital (HOMO) represents a donating
ability of electrons; LUMO represents acceptability of elec-
trons. For the efficient electron injection and regeneration
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Figure 1: Fundamental molecular structure of cyanidin, BTBA, and P01-1.

Table 1: Summary of DFT computational calculation of cyanidin,
BTBA, and P01-1 constituents in ethanol with geometry
optimization.

Sensitizer
With geometry optimization

HOMO (eV) LUMO (eV) Energy gap (eV)

Cyanidin −6.18 −3.39 2.79

BTBA −6.33 −2.55 3.78

P01-1 −6.18 −3.66 2.52
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processes, LUMO of sensitizer must be above the conduc-
tion band edge of TiO2 (−4.0 eV) while HOMO of sensi-
tizer must be below the energy level of the redox couple
(−4.8 eV) [29–31]. The DFT calculations (see Table 1)
show that the P01-1 satisfies the conditions for efficient
photo-energy conversion.

3.3. TDDFT Calculations and Absorption Spectra. TDDFT
simulations are performed on the newly designed sensitizer
P01-1, cyanidin, and BTBA, to gain perceptions on the
excitation energy, electronic transition, optical properties,
and UV-Vis absorption spectra for the singlet-singlet
transition with hybrid functional B3LYP in ethanol solution.
The lowest 5 singlet-singlet excitations are included in the
TDDFT calculations.

The excitation energies, oscillator strengths, and molar
extinction coefficient for the five states of P01-1 and cyanidin
calculated using B3LYP on 6-31g (d) basis set are shown in
Table 2, and the computer simulated UV-Vis absorption
spectra obtained for the P01-1, BTBA, and cyanidin via
TDDFT calculations are depicted in Figure 2.

Oscillator strength expresses the strength of transitions
to the excited states. The higher the oscillator strength, the
higher the possibility for the molecule to be sensitized
[32–36]. Except in the third excitation state, all other excita-
tion states up to fifth excitation state have shown that oscilla-
tor strengths of P01-1 are higher than those of cyanidin.

P01-1 has produced four significant oscillator strengths
up to the fifth excitation states except third excitation state,

while cyanidin only produced three significant oscillator
strengths at the first, third, and fifth excitation states. This
suggested that P01-1 has more potential to be sensitized as
compared to cyanidin. In addition, the λmax values of the
P01-1 at each five excitation states shifted to longer
wavelengths compared to λmax of cyanidin by 75.59 nm,
36.95 nm, 52.78 nm, 94.45 nm, and 109.11 nm, respectively.

The absorption spectra of cyanidin and the BTBA extend
only up to 800nm and 550nm. Interestingly, the absorption
spectra of the P01-1 have shown a redshift up to near IR of
1000 nm (Figure 2). The absorption bands of P01-1 are more
intense and broad in the visible region. The absorption
maxima of P01-1 has bathochromic shifts of 75.59 nm as
compared to that of cyanidin. Furthermore, they have
hyperchromic shifts of 8.577 (103M−1·cm−1). These shifts
in the modified dyes are favorable to effectively lead to an
efficient sensitization.

3.4. Molecular Orbitals. The electron density clouds modelled
at the transition of various energy levels that correspond to
the first five excited states of P01-1 are shown in Figure 3.
At different energy levels, it could be observed that elec-
tron density clouds are localized in different regions of the
P01-1 molecule.

Almost all levels of the ground state energy such as
HOMO-4, HOMO-2, HOMO-1, and HOMO levels of
P01-1 are π-type. At the HOMO, HOMO-1, and HOMO-3
levels, the electron density clouds are mostly delocalized over
the entire molecule of P01-1 but, at the HOMO-2 level, the
electron density cloud is more localized in the benzene ring
of the cyanidin unit of P01-1.

In the P01-1molecule, the electron cloud of LUMO is π∗

type and the molecular orbital is localized at cyanidin unit.
Here, the electron density cloud is observed to be denser in
a chromenylium unit than the benzene dial on cyanidin unit
of P01-1. The photogenerated electrons are excited to

Table 2: Computed excitation energies in (eV), (nm), and the
oscillator strength (f ) of the cyanidin and P01-1 obtained by
TDDFT calculations at B3LYP/6-31g (d) level with the inclusion
of geometry optimization under the solvation effect of ethanol.

Sensitizer

Optimized in ethanol
Calculated
energy

Oscillator strength MO configuration

(eV) (nm) (f ) (coefficient)∗

Cyanidin

2.52 492.16 0.583 H➔L = 0.695

2.82 439.86 0.010 H-3➔L = 0.318

H-2➔L = 0.467

H➔L+1 = 0.211

3.17 391.21 0.273 H-3➔L = 0.322

H-2➔L = 0.192

H-1➔L = 0.586

3.88 319.36 0.025 H-4➔L = 0.687

4.49 276 0.055 H-3➔L = 0.516

P01-1

2.18 567.75 0.795 H➔L = 0.703

2.60 476.81 0.054 H-2➔L = 0.132

H-1➔L = 0.665

2.79 443.99 0.007 H-2➔L = 0.685

3.00 413.81 0.312 H➔L+1 = 0.668

3.22 385.11 0.148 H-4➔L = 0.613

H-1➔L = 0.194

H➔L+1 = 0.187
∗Molecular orbitals with configuration coefficient < 0.1 are not shown.
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Figure 2: UV-Vis absorption spectra obtained for the P01-1, BTBA,
and cyanidin via the output of TDDFT calculations with the
solvation effect of ethanol solution.
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chromenylium unit on the electrode of TiO2. Subsequently,
electrons are easily injected into the conduction band of
TiO2 [32]. This electron injection is most possible from the
chromenylium unit as it has denser electron density cloud
in the LUMO π∗ state. Therefore, the anchoring group of
P01-1 molecule that may efficiently inject electrons into the
TiO2 is deduced to be the hydroxyl group.

4. Conclusions

The molecular geometries, electronic structures, and
absorption spectra of the newly designed molecules of
the P01-1 sensitizer are investigated by DFT and TDDFT
computational analyses. By evaluating HOMO and LUMO

energy levels obtained from DFT calculations of geometry-
optimized structure of P01-1 molecules with solvent effect
in ethanol, P01-1 satisfied the main requirement for efficient
electron injection, where the LUMO level of P01-1 is higher
than the conduction band of the TiO2 and the HOMO level
of P01-1 is sufficiently lower than the redox couple. Further-
more, the band gap of P01-1 is smaller than that of cyanidin
and BTBA in ethanol.

The UV-Vis absorption spectra reveal that the P01-1
complex extends absorption spectra from 800nm to
1000 nm range with bathochromic and hyperchromic
shifts. All these results suggest a more promising sensitiza-
tion ability of P01-1 which is designed by modifying the
sensitizer, cyanidin.
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Figure 3: The behavior of electron density clouds at the various energy levels corresponding to the first five excited states of P01-1 in ethanol
using the TDDFT simulation with isovalue of contour = 0.03.
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