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The accuracy of energy management system for renewable microgrid, either grid-connected or isolated, is heavily dependent on the
forecasting precision such as wind, solar, and load. In this paper, an improved fuzzy prediction horizon forecasting method is
developed to address the issue of intermittence and uncertainty problem related to renewable generation and load forecast. In
the first phase, a Takagi-Sugeno type fuzzy system is trained with many evolutionary optimization algorithms and established
coverage grade indicator to check the accuracy of interval forecast. Secondly, a wind, solar, and load forecaster is developed for
renewable microgrid test bed which is located in Beijing, China. One day and one step ahead results for the proposed forecaster
are expressed with lowest RMSE and training time. In order to check the efficiency of the proposed method, a comparison is
carried out with the existing models. The fuzzy interval-based model for the microgrid test bed will help to formulate the energy
management problem with more accuracy and robustness.

1. Introduction

Intermittent, disperse, and dilute nature of renewable sources
like wind and solar give new challenges for the integration of
these sources in the microgrid planning and control [1, 2].
The task is even harder in islanded operation of the micro-
grid. One of the proposed solutions is to use the energy
storage system for smoothing the uncertain behavior of
generation for energy management system and to minimize
the operational cost of the system. Nevertheless, the afore-
mentioned problem is still not accurately solved and reliable
unless or until a proper generation prediction method is not
employed to address these issues [3].

In islanded operation of a microgrid, the task for smooth-
ing the fluctuations produced by renewable sources is more
challenging because limited generation options are available
in the system [4]. Therefore, in standalone systems, this cre-
ates a critical demand supply and power quality problem
unlike big geographical power systems.

To address the uncertainty and intermittence problem,
many researches have been carried out under stochastic
and robust forecast system [5–9], but the reliability of the sys-
tem and actual implementation as compared to simulation
results are the big concern in all over the world which will
lead in doing more efforts in this field.

The forecasting of renewable resources such as wind and
PV is strongly coupled with accuracy of the weather predic-
tion model because usually the wind speed and irradiance
information is utilized to forecast wind and PV power,
respectively, using empirical formula. Factors such as loca-
tion, surrounding terrain, and climatology showed a strong
relation with accuracy of weather parameter, namely, tem-
perature, vapor pressure, precipitate, cloud coverage, solar
radiation, wind speed/direction, and humidity. A short-
term wind power forecast is shown in [1]; the authors used
sparse vector autoregressive sVAR model for the wind farm
in Australia. A logit normal transformation is combined with
the spatiotemporal weather data and compared with ARIMA
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and VAR methods in order to show the authority of the
proposed method. Wind speed is predicted in [10], authors
mentioned, to develop a weather warning system for more
extreme wind speed predictions which leads to high fluctua-
tion in wind power. However, the paper did not address
neither implementation nor simulation details. The ARMA-
based-enhanced boosting technique is mentioned for day-
ahead wind power prediction in a wind farm at Jiangsu
province, China, in [11]. The method showed improvement
in 15.5% MAE with respect to the ARMA model and 3.21%
MAE for the persistence model. Nonetheless, the validation
accuracy check is not performed against more accurate tech-
niques such as wavelet-ARIMA and hybrid Kalman filter in
statistical domain. An interval-based fuzzy inference wind
forecast is performed in [12], using empirical and nonpara-
metric approach. Proposed method is applied on a Danish
wind farm to predict different prediction intervals on adap-
tive resampling-based coverage rates for confidence interval.
Authors used beta probability distribution function to calcu-
late wind power forecast error in [13]; they argued that the
fat-tailed forecast error pdf is more accurately modelled by
beta distribution. However, the model is restricted to the
particular dataset only.

Wavelet decomposition is utilized for solar radiation into
low- and high-frequency band then SVM is applied to
classify the pattern by Xiyun et al. in [14]. Historical solar
radiation and atmospheric pressure are successfully used to
get 3.78% RMSE and 12.83 MAE. Another technique [15] is
mentioned in literature for 6 h ahead the backpropagation
neural network-based solar power predictor; authors per-
formed correlation analysis on several weather parameters
and finally solar radiation and air temperature are used to
develop predictor for solar power forecast, and the proposed
method is deployed as a software package at Ljubljana,
Slovenia, for testing and validation. Autoregressive exoge-
nous ARX model is successfully integrated with numerical
weather prediction which has 35% more accuracy than per-
sistence models in [16]; AR works as a short-term predictor
and the model can predict 4 h to several days of solar thermal
power. Another ANN-NWP framework is mentioned in [17]
with a confidence interval up to 95%.

Machine learning techniques are very useful in solving
forecasting issues particularly neural network application in
load prediction [2, 18]. Neural network has a high capability
to capture nonlinear effects in the dataset, but the selection of
proper neurons, hidden layers, computational time for train-
ing, and the possibility to fall in local minima is the main
challenge to improve in NN type models. Felice et al. in [2]
discussed a neural network with regularized negative correla-
tion learning RNCL methodology, as the neural network has
high sensitivity for its initial condition; therefore, this
method is combined with the output of different networks
which gives better performance over error reduction. Intru-
sive and nonintrusive load monitoring and prediction
approaches are mentioned in [18]. Fuzzy regression model
is proposed by Hong and Wang [19] for STLF; the authors
used historical, weekday, and temperature information for
the 3-year dataset and then formulated three fuzzy linear
regression models. Mean absolute percentage error (MAPE)

was in the range of 2.6–4.58% for hourly peak load. However,
the authors did not show enough data to support the com-
plete effectiveness of the proposed method and gathering
large dataset is a difficult task in practical systems. The
Takagi-Sugeno method is used to generate scenarios in the
grid-connected microgrid by adding error probability distri-
bution values in point forecast [20]; the method reduced the
forecasting error in RG and load, plus authors also developed
a robust EMS with two-step relaxation and Benders algo-
rithm in order to maximize the exchange cost between
microgrid and utility. Finally, the system is tested with the
Monte Carlo simulation for the feasibility study. An efficient
and model independent support vector machine-based
method is discussed in [21], but the selection of kernel func-
tion, computation time, and parameter selection is the short-
coming for SVM-based approaches. A variety of statistical
prediction methods is applied for building load demand,
such as ARIMA and multiple exponential smoothing func-
tions which are also applied using dry bulb temperature data
in [22, 23] for long-term forecast, but LTF is mostly utilized
for investment and planning purposes. Hybrid approaches
for STLF also applied in various researches, such as a cooling
load of a building, are predicted using ARIMA followed by
SVM in [24]; it is used to reduce the error by 50% as com-
pared to the individual algorithm. Amean square error is also
minimized in [25] using general NN+wavelet transform
+genetic algorithm- (GA-) based fuzzy inference system
(GNN-W-GAF) for real-time data, where the NN is used to
get initial prediction using wavelet information, and then
GA is used to adjust the weights of the fuzzy inference system
in the second stage of prediction. Hybrid approach using
PSO-NN is applied in [26] by clustering data into three
inputs, namely, weekday, weekend, and holidays. However,
none of the above paper represents the uncertainty associated
with modeling of the forecast problem and STLF issues where
the density forecast is irrelevant and sequential time stamps
are highly correlated.

Stochastic and uncertain behavior of wind and PV are
not mentioned in most of the literatures as discussed earlier;
hence, this study will show the details for modelling uncer-
tainty by using fuzzy interval prediction-based approach. A
similar method is used in the study [27], where the covari-
ance of the error vector is used to develop the fuzzy regres-
sion model without mentioning the training method which
will deeply affect the accuracy of the forecast, whereas this
paper proposed evolutionary-based training for linear regres-
sors in fuzzy interval in order to get better accuracy than
existing least square and backpropagation-based method of
[27], plus performance indicators such as coverage grade
and interval band for lower and upper intervals are also
introduced in order to check the quality of the forecast.

The rest of the paper is arranged in the following order.
Section 2 provides the description of a grid-connected micro-
grid and the importance of prediction in energy management
efficiency enhancement. Section 3 provides the detail on the
mathematical model of the fuzzy interval and fuzzy PSO-
based prediction interval algorithm. Section 4 provides the
results and application description for wind, PV, and load
forecasts which are tested on the Goldwind Microgrid test
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bed, Beijing. Finally, Section 5 gives conclusion and future
recommendation for this work.

2. Importance of Prediction in
Energy Management

Energy management system (EMS) is the backbone of any
microgrid infrastructure; it is responsible for a reliable and
economical operation. It has three types of control methods,
one is centralized in which all the data gathered at a one cen-
tral processing unit, then it dispatches the control commands
under a system constraint back to the primary controllers for
execution. Second method is decentralized, where all units
collect local information and communicate with each other
for proper decision-making. Last method is hybrid control,
where local controllers collect local information and also
execute central controller commands as an upper-level con-
troller and provide a perfect coordination among all the con-
trollers. Also in Figure 1, a smart energy manager (SEM)
features are highlighted for the grid-connected and isolated
microgrid. The responsibilities of EMS in a microgrid system
include solving the optimization problem for economic dis-
patch, gathering technical and physical constraints of the
network, generating units and loads, then selecting the best
possible dispatching signals for satisfying objectives which
are set by the operator. Centralized secondary control is more
suitable for an isolated microgrid where the infrastructure is
fixed plus the demand and supply problem is crucial.
Whereas a distributed scheme is more suitable for a plug-in
play type of functionalities just like in a grid-connected

microgrid with multiple owners. The following are the oper-
ations of EMS:

(i) Generation prediction for all uncontrollable DERs,
such as wind turbine and PV panels, is usually done
by the EMS/secondary controller in next day/hour-
based timestamps.

(ii) Load forecast and demand-side management poli-
cies for all consumers are usually developed at the
secondary controller in next day/hour-based
timestamps.

(iii) State of charge (SOC) for battery and other battery
management constraints usually handled by the bat-
tery management module (BMM).

(iv) Connection status for grid and price forecast for util-
ity in next hour/day format is performed at the sec-
ondary controller.

(v) System diagnostic, security, state estimation, black
start, self-healing, and other active/reactive power
adjustment checks are usually done by the secondary
controller.

Considering uncertainties in the renewable generation
source, spinning reserve becomes a necessary part of the
microgrid as an energy buffer to mitigate the fluctuation plus
smoothing the overall voltage and power profile. This spin-
ning reserve also creates economic and management-related
hurdles which lower the motivation to invest in microgrid-
related systems. Hence, an accurate prediction of these

MG energy manager
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power
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response
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Figure 1: Microgrid energy manager.
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uncertain units is necessary in a sliding horizon fashion in
order to get the forecast from several minutes to several days.
Similarly, load uncertainty is purely unavoidable, due to the
fact that usually in a traditional power system the customer
has no participation in the decision-making process, which
makes it very difficult to predict and control. Forecasting tech-
niques can be divided into different time horizons, such as
very short-term (1min–1hr), short-term (1hr–1 week),
medium-term (1 month–1 year), and long-term (1 year and
above), different spatial resolutions (0.01 km to 100 km), and
techniques, for example, statistical, machine learning, and
physical/numerical. Numerical weather prediction (NWP) is
concernedwith theweather forecast and relatedwith the anal-
ysis of a number of variables in multidimensional calculation
space; it followed the relation of thermodynamics, fluid
dynamics, and chemical reaction of the air particles. For lower
temporal and spatial resolution, NWP prediction is very
accurate. Statistical forecasting methods rely on consistent
historical data and are very computationally efficient and fast
but for nonlinearity machine learning techniques they are
appropriate. Machine learning usually falls into an overfitting
problem for training dataset, but up to this date it is very reli-
able, as well as it is improving by the passage of time. Hence,
an EMS for the microgrid system must be accounted for the
uncertainties in the forecast in order to take better decisions.

3. Fuzzy Takagi-Sugeno Modelling

Fuzzy prediction interval (FPI) modelling is utilized in a
variety of studies in the past, and it is used to forecast power
output for nondispatchable sources. FPI is useful for approx-
imation of nonlinear dynamic system, and it facilitates to
develop robust EMS formulation which is the ultimate scope
of this study. The number of rules is minimized in this study
which makes the partition of output variable space that is
projected onto the input variable space in order to get the
optimal solution for fuzzy sets and rules. Fuzzy clustering
approach is used to make that partition and get the premise
parameter. Fuzzy c-mean clustering is applied to develop
initial clusters, minimizing the intracluster variance, and
assigning initial weights that will be adjusted in later stages
in order to avoid local minima. The Takagi-Sugeno-based
fuzzy model is helpful to achieve consequence parameters
based on the least square method.

A linear membership-based fuzzy rule space is developed
by Takagi-Sugeno in [28, 29], which is capable of estimating a
variety of nonlinear systems. The idea is to partition the space
of input andoutput variables into separate linear fuzzy
subspaces and then combine into normalized membership
function β; this method is called premise parameter selection
by Takagi-Sugeno in [28]. Let us suppose that a linear rela-
tionship is established between the input and output variable.

z = 〠
n

i=1
βi a

i
0 + ai1x1 + ai2x2 +⋯ + aikxk ,

= 〠
n

i=1
ai0βi + ai1x1βi + ai2x2βi +⋯ + aikxkβi ,

1

where βi is the normalized membership function of ith rule
Ri (i = 1⋯ n), input/output dataset x1j, x2j,… , xkj maps to
zj at interval k, j is the measurement vector from 1 to m,

the total output vector is Z = z1, z2,… , zm
T , and the coeffi-

cients of linear functions ai0, ai1,… , aik are solved by the least
square method to find the optimal minima of these weights
and n denotes the total number of rules. Extension of this rule
(1) for multivariable can be written as ẑ = x, y, w ; here, ẑ is
the predicted vector which depends on x, y are inputs, and
w is a control vector.

ẑ = 〠
n

i=1
βi ai0 + ai1x1 + ai2x2 +⋯ + aikxk + bi0

+ bi1y1 + bi2y2 +⋯ + bikyk

2

More explicitly for the given problem of forecasting in
this paper, the T and S framework (2) can be extended to
matrix notation t timestamps.

ẑt = f TS xt−1, yt−1, wt−1 ,
= βixt−1 1 yt−1 wt−1 A,
=ϒTA,

3

where the t − 1 subscript shows the historical data vector,

A = a0,… , ak, b0,… , bk
T , where a0 = a10,… , an0

T which
are the weight vectors which are used for error reduction
in the proposed method later in this paper and ϒ is the
fuzzy regression matrix. The set of predictions can be
shown as error vector e for forecast:

ẑt =ϒTA + ej 4

Fuzzy partitioning method is used in this paper to
minimize the number of rules based on fuzzy c-mean
clustering approach.

(1) Interval identification: In order to approximate func-
tion families for various sets of intervals because the
deterministic solution is not reliable in renewable/
load predictions, hence, the author calculated fore-
casting intervals with certain interval bandwidth σ
and fuzzy covariance model of error.

ẑtU = f TS xt−1, yt−1, wt−1 + σUCovTSe xt−1, yt−1, wt−1 , 5

ẑtL = f TS xt−1, yt−1, wt−1 + σLCovTSe xt−1, yt−1, wt−1 , 6

where σ is the interval width and can be adjusted for the
given dataset with certain coverage grade CG and CovTS is
the covariance of the target and predicted data model as
Cove = yj − ŷ j same as T and S mentioned earlier.

Hence, the fuzzy regression model ϒ parameters are
identified by clustering and with (5) and (6), the coef-
ficient A and covariance matrix Cove is trained using
evolutionary search algorithms such as the least
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square combined back propagation (FR), particle
swarm optimization (PSO), firefly (FF) optimization,
cultural algorithm (CA), and genetic algorithm (GA)

(2) Interval band: Interval band is introduced in term of
σ, where the lower the value of σ indicates the
smaller bandwidth of the interval and lower the
probability of missing real measurement value from
the predicted values.

γ =
RMSEmax − 〠q

p=1RMSEerrorp

α

RMSEmax
7

In the above relation, α represents the point error
RMSE of the historical prediction q. RMSEmax is the
maximum training root mean square value. Interval
band is directly related with γ such as σ = 1 − γ.

(3) Coverage grade: In order to classify the forecast sys-
tem based on performance, the authors in this paper
introduced the coverage grade CG system. This per-
formance evaluation method with interval band gives
the insight into the accuracy of predictions. The levels
of CG is divided into 3 levels, namely, A, B, and C.

CG =
〠m

j=1κ

m
8

Coverage grade is calculated to adjust the σ value and is
the interval; κ is the binary parameter which shows that
whether the measurement data lies inside of the interval
or not. Lower values of RMSE in point forecast gives the
bandwidth for respective grades such as A grade 90%
<CG ≤ 100% coverage, B grade 70%<CG ≤ 90% cov-
erage, and C grade low < CG ≤ 60% coverage. Based
on defined parameters, the proposed method will
constantly improve the performance of the forecast
using interval band and coverage grade tuning with
(7) and (8). For example in terms of CGq, a fore-
caster with A30 label indicates the operator that the
algorithm is running on best performance for past
30 historical points.

3.1. Particle Swarm Optimization for FPI. Swarm-based opti-
mization techniques are very much dependent on the initial
conditions, but the ability of avoiding local minima is much
higher provided that the parameters are carefully selected
and initialized. Particle swarm is a well-known global optimi-
zation technique which mimics the bird flocking approach
like other swarm optimization techniques. All birds are look-
ing for food (min/max objective) in different directions, and
a bird close to the food will be followed (distance and velocity
are set on every step) by the swarm and finally, it converges
on the solution in [30].

Velt+1particle = wintVel
t
particle + cplr

1
dist ptpartlocal − xtparticle

+ cglr
2
dist ptpartglobal − xtparticle ,

9

where Vel, p, and x are the velocity, best position, and posi-
tion, respectively, for each particle at the t interval. Further-
more, wint, cpl, and cgl are inertial weight, local learning
coefficient, and global learning coefficient, respectively. r1dist
and r2dist are the random distribution of the particle. The com-
plete PSO-based training algorithm for fuzzy model tuning is
mentioned in Algorithm 1.

4. Case Study

4.1. Microgrid Test Bed. This paper used the data from the
Goldwind Microgrid test bed which is located (3945′23.6′N,
11631′56.3″E) in the suburb of Beijing, China. The microgrid
system consists of a wind turbine which is rated at 2.5MW;
two photovoltaic system, one is 250 kW and the other one
is 200 kW capacity; two battery systems connected with bidi-
rectional converters; four fuel generators include diesel and
natural gas fuel type; and the maximum rated load of
3MW for the office building on the site. Simplicity of this
forecast scheme is the reduce input variable set which is easily
available and faster to predict, and it can modify for the next
step predictions, for example, wind velocity and historical
wind power are used for future wind power prediction; sim-
ilarly, historical load data is used for future load forecast. The
impact of other weather parameters is embedded in the his-
torical power output, but in case of load, it is more related
to the time of the day rather than the weather data. All the
NWP [weather research and forecasting model (WRF)] infor-
mation for the next day such as wind velocity and solar irradi-
ance are acquired from the FTP server of Goldwind
Technology, whereas the other historical information is col-
lected from the SCADA system. PSO algorithm is used to
modify the weight matrix of the fuzzy set of functions which
are separated into 5 clusters and then interval bands are
obtained with different coverage grades in order to check the
forecast performance. The results are presented in 10min
sampling time with one step to one day (144 steps) ahead pre-
dictions. One day ahead prediction is performed every 10min
interval based on the input data for real and predicted values.

Flowchart is shown in Figure 2 for the PSO-based fuzzy
prediction interval scheme; two step training is applied on
every time stamp. In the first step, historical data is acquired
and fuzzy set of membership functions is initialized in clus-
ters using fuzzy c-mean clustering method. After that, PSO
is applied in order to get optimal-trained fuzzy model with
lowest RMSE value, and it sends the power reserve signal to
the EMS module in case of a higher RMSE than the set
points. In the second step, the model acquires next day ahead
weather parameters in order to get the initial forecast; later
on, the coverage grade is calculated and checked against the
set point of CG value (in percentage), if the value is above
the set point then the interval band adjusts and again calcu-
lates the next step ahead the forecast else, the model will train
and update again accordingly. Finally, an Intel i5, 2.53GHz
quad-core processor with 4GB RAM laptop is used to
compute the results of this study.

4.2. Wind Prediction.Wind power prediction is done by FPI,
June 11, 2016, to July 26, 2016, data are used to train and July

5International Journal of Photoenergy



27 to Aug 12, 2016, data are used for validation purposes. All
the data are gathered from the SCADA of the Goldwind
Microgrid test bed, Beijing. The rated capacity of this single
PMSG type wind turbine is 2.5MW. Wind velocity and his-
torical power are the training inputs with 10min of sampling
time. The linear regressor for input variable (wind speed) and

output variable (wind power) are vr and pr , respectively, in
discrete time. As in interval prediction, the output of exoge-
nous variable is related to the last historical values t − 1
then, in accordance with the notation zr = v3r−1, pr−1 where
r is the discrete variable. Hence, the ith rule for the member-
ship function in terms of linear regressors for the wind

Start

Generate fuzzy
membership functions and
initialize swarm particles

Normalized input data:
historical load, wind
power, solar power, wind
velocity, and solar irradiance

Update speed and
velocity in the direction
of lowest RMSE

Achieve
best?

Initial forecast and
generate lower
and upper bounds

Next point forecast

Get next day wind
velocity, solar irradiance
from FTP, and recent
power value as initial
from measurement

Max iteration?

Feasible CG?

Adjust �휎 and
check RMSE

Power reserve increment
signal to EMS

Error counter
overflow?

Done

Yes

No
Yes

Yes

No

Yes

No

No

No

Figure 2: Flowchart of the proposed method.

Get Initial Parameters (fuzzy model weights, cost function,
variables count, variables range, max iteration, population
size, inertial weight and damping ratio, personal and
global learning coefficient)
for 1 to population size do
Initialize the position [30], velocity, personal and global
best of each particle based on the cost function.

end for
repeat
for 1 to population size do

Update velocity of a particle using (9)
Update position, velocity and cost of each particle
Apply minor limits for the velocity of each particle
if particle cost ≤ particle best cost then

update personal best
if particle best cost ≤ best solution cost then
Update global best

end if
end if

end for
Best cost of iteration ← best solution cost
Update inertial weight

until Maximum iteration & minimum error achieve

Algorithm 1
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energy prediction is defined by clustering approach which is
mentioned in Section 3.

ẑr = Pw r = 〠
n

i=1
βi a

i
0 + ai1v

3
r−1 + ai2v

3
r−2 +⋯ + aikv

3
r−k

+ bi0 + bi1pr−1 + bi2pr−2 +⋯ + bikpr−k
10

Here, A = a0,… , ar−144, b0,… , br−144
T is same as

mentioned earlier and considers PU
w r and PL

w r as the
lower and upper bounds related to Pw r such that PL

w r
≤ Pw r ≤ PU

w r for all r in discrete space. Furthermore,

AU = aU0 ,… , aUr−144, b
U
0 ,… , bUr−144

T
is for PU

w r and AL =
aL0 ,… , aLr−144, b

L
0 ,… , bLr−144

T
is for PL

w r . These parame-
ters, namely, AU and AL can be adjusted based on training
with PSO. The prediction intervals now can be written as

PU
w r = f TS v3r−1, pr−1 + σUCovTSwind v3r−1, pr−1, Cov

e
r−1 ,

11

PL
w r = f TS v3r−1, pr−1 + σLCovTSwind v3r−1, pr−1, Cov

e
r−1 ,

12

CovTSwind = 〠
n

i=1
βi zr−1 Cover−1,i, 13

where covariance of past error Cover−1 is integrated with the
fuzzy interval of input and error as CovTSwind. Next, the lower
and upper bounds for the fuzzy interval-based wind power
Pw are calculated based on the coverage grade, and interval
band is adjusted accordingly.

Figure 3 shows the one day ahead forecast of wind
power and error value for 144 steps. This can be easily
judged from the graph that the error increases more at the
sharp changes in measured wind power. The value of mean
square error (MSE), root mean square error (RMSE), error
mean, and standard deviation gives insight about the fore-
cast, for example, the RMSE [kW] is 7.5035 which is very
satisfactory result achieved through the PSO integration in
the T and S model.

In Figure 4, case 1 presents the gradual variation in one
day ahead wind forecast and measured power with different
coverage grades based on different values of σ. It should be
noted here that the CG of level C has a narrower band with
some data points whereas the grade A level CG can be
accounted for almost all data points but the uncertainty is
higher, whereas level B has fewer data points compared to
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Figure 3: One day ahead RMSE value of wind forecast.
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A but the uncertainty is lower than A. Hence, for a normal
day with gradual change of wind velocity forecast, an opera-
tor can go with grade C or B level predictions but in case 2,
the abrupt wind velocity alerts from day ahead of the NWP
forecast data where the level of uncertainty is higher, so one
should choose grade A or B as shown in Figure 5. Further-
more, higher variability in real values is captured accurately
with the help of grade A prediction intervals; hence, the
operator or EMS can adjust the spinning reserves based
on the level of uncertainty required. Power reserve capa-
bility can cope against forecasting uncertainty by leaving
an adequate margin for controllable units to compensate
the mismatch. Here, the mechanism will only alert EMS
for the possible mismatch.

Table 1 shows the comparative results obtained by
applying other techniques to check the forecast error for
one step (10min) and one day ahead. The table mentioned
train time, mean absolute error (MAE), and RMSE for 4
different approaches including fuzzy regression (FR) [27],
cultural algorithm (CA), firefly (FF) algorithm, and genetic

algorithm (GA) apart from PSO. It should be noted that
longer horizon has a higher error than one step ahead
except CA. Based on the results obtained, fuzzy prediction
model with PSO outperforms other techniques in terms of
lowest RMSE in long-horizon forecast whereas CA has the
worst RMSE value and train time due to the fact of falling
in local minima. GA also shows a better result in one step
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Figure 4: Fuzzy interval prediction for one day ahead (case 1) wind power with coverage grades.

Figure 5: Fuzzy interval prediction for one day ahead (case 2) wind power with coverage grades.

Table 1: Comparison of prediction interval forecast for wind power.

Model
One step ahead One day ahead

Train time (s)RMSE
(kW)

MAE
(kW)

RMSE
(kW)

MAE
(kW)

FR 5.97 9.47 8.52 8.91 11.4

CA 189.9 10.15 39.5 26.78 131.3

FF 7.83 2.41 9.42 8.94 145

GA 1.88 8.72 10.19 8.35 60.1

PSO 4.28 6.67 7.5 9.8 56.4
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ahead than PSO but for longer run it has higher RMSE than
PSO. FR shows significant fast train time as mentioned in
[27], but PSO shows superior results for one-day head
forecast for local dataset.

4.3. Solar Prediction. Solar power fuzzy model is described
in this section using the data acquired from June 11, 2016,
to July 26, 2016, for training and July 27 to Aug 12, 2016,
for validation. The rated capacity of the PV panel at the top

Figure 6: One day ahead RMSE value of solar forecast.

Figure 7: Fuzzy interval prediction for one day ahead (case 1) solar power with coverage grades.
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of the Goldwind Technology office building is 450 kW, but
due to efficiency issues, we can only observe power close to
200 kW at peak sunny days. Here, the input variables for
the training of the proposed model are irradiance data from
NWP and historical solar power output at 10min interval
(144 points in a day) pr = ps: hence, zr = irr−1, pr−1 is
the relation for the identification procedure mentioned
in Section 3.

ẑr = Ps r = 〠
n

i=1
βi a

i
0 + ai1irr−1 + ai2irr−2 +⋯ + aikirr−k

+ bi0 + bi1pr−1 + bi2pr−2 +⋯ + bikpr−k
14

Here, A = a0,… , ar−144, b0,… , br−144
T is the weight

vector which is tuned with PSO and considers PU
s r and

PL
s r as the lower and upper bounds related to Ps r , such

that PL
s r ≤ Ps r ≤ PU

s r for all r in discrete space. Hence,
AU and AL are calculated for certain coverage grade and
interval band.

Figure 6 shows the predicted solar output and the error
value for 144 points ahead. The day starts from midnight
where zero values are recorded. Additionally, the error
increases at the peak period of the day and RMSE (kW) value
is recorded as 11.4727.

A normal sunny day solar power forecast result is
shown in Figure 7 as case 1. The forecast shows zero
values at midnight and evening intervals while the peak
power output is recorded around the afternoon time.
Note that the predicted value is slightly lower than that
of the real one in the rise up and peak period and slightly
higher than the real value at the falling period due to the
inaccuracy in the NWP value for day-ahead irradiance.
However, the interval with grade B (70–90%) is sufficed
to capture uncertainty at peak points of the day which
is a more important time for the operator or EMS to

properly allocate the extra power using spinning reserves.
Another scenario in case 2 is shown in Figure 8; here, the
abrupt and unwanted change in solar power due to irreg-
ular sunlight is completely missed by predicted value at
the peak point of the day, whereas grade A (90–100%)
level interval band captured this trend at the cost of
higher uncertainty.

Table 2 shows the comparison between PSO-based fuzzy
model and other fuzzy models in terms of RMSE and MAE
values for solar power forecast. The results show one day
ahead and 10min ahead forecast, lowest training time
obtained with FR, whereas the lowest RMSE for one day
and one step ahead is achieved with PSO, which again
showed better performance than other techniques.

4.4. Load Prediction. For load predictor modeling, a dataset
consisting of 10min samples is acquired from 4 May to 28
April 2016 for training and 28 April to 16 May 2016 for
the validation purpose. Load data consist of historical
power demand of the office building at Goldwind Technol-
ogy, Beijing. The maximum load demand of the building is
about 3MW. With the help of correlation analysis, the
temperature correlation with demand is almost vanished
because of very short duration for spring and autumn in
Beijing; hence, the air conditioning and heating loads are

Figure 8: Fuzzy interval prediction for one day ahead (case 2) solar power with coverage grades.

Table 2: Comparison of prediction interval forecast for solar power.

Model
One step ahead One day ahead

Train time (s)RMSE
(kW)

MAE
(kW)

RMSE
(kW)

MAE
(kW)

FR 5.44 5.41 12.97 8.2 1.22

CA 5.65 5.63 12.57 7.73 46.69

FF 5.3 5.28 13.42 8.28 45.7

GA 5.53 5.50 12.32 7.65 23.43

PSO 4.05 4.03 11.47 7.04 20.95
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balanced out and only start as well as end of time for work
are correlated with the demand. Using the identification
method, we can safely consider the historical power
demand pattern pr = pl in order to predict next day ahead
power demand zr = pr−1 in order to avoid complexity.

ẑr = Pl r = 〠
n

i=1
βi a

i
0 + ai1pr−1 + ai2pr−2 +⋯ + aikpr−k , 15

where A = a0,… , ar−144
T is trained by PSO and similarly

considers PU
l r and PL

l r as the lower and upper bounds
related to Pl r such that PL

l r ≤ Pl r ≤ PU
l r for all r in

discrete space. Hence, AU and AL are calculated for certain
coverage grade and interval band. Weekdays and holiday
effects can be integrated with the exogenous variable of the
fuzzy interval model for better accuracy, but this job can be
done by tuning the model everyday with the past 30-day data
pointwindows in order to refresh themembership parameters
of the model.

Figure 9 represents the load power prediction for one day
ahead (1–144) data and the RMSE value is recorded as 21.82.
It is worth noting that the base load around midnight and
evening is accurately captured by the fuzzy model where
the small deviations are observed at the peak levels of the pre-
dicted demand power, but this issue can be tackled with the

rolling horizon type of EMS such as the model predictive
controller-based energy manager, because at each time step
EMS will trigger for new values and similarly the forecast
module also updates its calculation which changes to the
new operating points.

In Figure 10, case 1 is shown for the one day ahead load
prediction of a weekday using the last day power values as
the input. The day starts with the midnight flat load demand
around 00–06, then the rise up time starts from 07–10 where
the office usually starts, then there have two peaks around
11–13 and 14–16 corresponds to the peak hours pre- and
postlunchtimes, after that, a falling edge starts followed by a
constant load indicates the off work time. This scenario is
accurately predicted by the fuzzy model because the constant
pattern in load demand of working days plus the coverage
gradeC andB contain themajority of the data pointswith very
narrow interval band which shows very low RMSE values. In
another load demand scenario shown in Figure 11 as case 2,
the pattern is same but the sudden changes at peak time or
maximum demand time is very crucial in predicting optimal
reserve allocation. As seen here, grade A is successful in
capturing more than (95%) of measurement values.

Table 3 shows the comparison between PSO-based fuzzy
model and other evolutionary-based fuzzy models in terms of
RMSE and MAE values for load power forecast. PSO again
performs better in terms of RMSE for one day ahead forecast,

Figure 9: One day ahead RMSE value of demand forecast.
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but the training time takes much longer than that of the
FR-based training model. Overall, PSO performs well in
demand forecast and can be improved more with the

additional input of training parameters including time of
the day, work, and weekend information.

5. Conclusion

Improved fuzzy interval prediction model trained with meta-
heuristic algorithms is proposed in this paper, which is the
premise study for energy management system of the micro-
grid test bed in Beijing. The fuzzy interval prediction model
is helpful in getting close to real results for the uncertainties
associated with the nondispatchable renewable generation
and consumer demand. Fuzzy prediction intervals are gener-
ated for wind, solar, and load for one day ahead prediction
using real-time values, and the results are characterized into
different coverage grades based on the accuracy of the fore-
cast. Wind and solar showed the higher level of accuracy in
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Figure 11: Fuzzy interval prediction for one day ahead (case 2) load power with coverage grades.

Table 3: Comparison of prediction interval forecast for demand
power.

Model
One step ahead One day ahead

Train time (s)RMSE
(kW)

MAE
(kW)

RMSE
(kW)

MAE
(kW)

FR 20.67 18.28 23.38 14.86 20.22

CA 31.11 26.27 51.16 34.59 112.9

FF 16.25 14.10 22.81 15.19 309.8

GA 18.9 17.09 22.47 14.9 153.7

PSO 5.85 46.7 21.83 14.58 115.3
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Figure 10: Fuzzy Interval prediction for one day ahead (case 1) load power with coverage grades.

12 International Journal of Photoenergy



the forecast due to the fact that these sources are directly
related with their respective input variables whereas load
forecast accuracy can be improved with more information
and active interaction of the consumer in decision-making.
All the results are shown with the traditional fuzzy regression
and metaheuristic techniques, where the proposed method
showed superior results in terms of lower RMSE and eval-
uation scores than the other approaches. Furthermore, the
error and coverage level information achieved through the
proposed scheme will improve the utilization of reserves
more robustly in the microgrid. Future work will address
the implementation details of energy management system
based on the input of this prediction algorithm for the
same microgrid test bed.
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