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This paper presents the design and implementation of a photovoltaic emulator, based on an accurate mathematical model of a
photovoltaic panel, instead of the look-up table method. The latter requires more memory for increasing accuracy and
considering all the desired environmental situations. Furthermore, the proposed approach takes into account the incidence solar
angle, as an input parameter, to offer the possibility of evaluating daily losses for different values of tilt angle. The validation of
the proposed emulator is carried out by comparing in real-time, both the studied panel output and the emulator output, under
variable load, temperature, and irradiation levels. The emulator is able to operate online with connected solar radiation and
temperature sensors or offline with recorded measurement vectors. The practical tests were performed on a prototype designed
using a MATLAB C MEX S-function, dSPACE board 1104, and a controlled DC/DC converter. The results showed that the
emulator was able to behave accurately as the studied photovoltaic panel.

1. Introduction

Photovoltaic emulators are nowadays becoming an alterna-
tive solution for indoor studying and analysing of photovol-
taic systems. Recall that, those electronic power devices are
able to reproduce the electrical behaviour of photovoltaic
panels under controllable conditions.

In the literature, several methods to emulate photovoltaic
panel behaviour have been studied. The reference generation
could be analogue or digital; in [1, 2], two analogue reference
generations were presented. The photovoltaic emulator
developed in [1] consists in amplifying a photodiode I-V
characteristic, which is considered as a PV cell. This method
needs a light-emitting diode to simulate solar irradiation.
Temperature control is ensured by a temperature controller
of the photodiode. The authors in [2] have proposed a
method to emulate the photovoltaic panel behaviour based
on a logarithmic amplifier, operational amplifiers, variable
resistors, adjustable linear voltage regulator, and a DC power
supply. Although the analogue methods do not have a calcu-
lation delay, they are not flexible when controlling tempera-
ture and irradiation levels. An alternative solution is using
digital reference generation combined with a power con-

verter. In the literature review, different digital controllers
were used, namely, the microcontroller [3], the field-
programmable gate array (FPGA) [4], and the digital signal
processor (DSP) [5]. A hybrid digital-analogue reference
generation is presented in [6].

A photovoltaic emulator can be considered as a con-
trolled DC power supply able to reproduce photovoltaic
panel characteristics, regardless of the environmental condi-
tions. The general architecture of the PV emulator is shown
in Figure 1.

It consists of three main elements: PV model implemen-
tation, control strategy, and power stage control [7]. The PV
model reproduces the photovoltaic panel characteristic to be
emulated; it receives as inputs, the temperature and the radia-
tion in addition to measured photovoltaic panel voltage or
current, according to the control type used for the power con-
verter, current controlled or voltage controlled. The control
strategy is the stage between the PV model and the power
converter. It determines the intersection point between the
photovoltaic emulator characteristic and the load character-
istic. The power converter could be a linear regulator, a
switching mode power supply, or a programmable DC power
supply including the closed-loop control. The switching
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mode power supplies are recommended for high-power
applications, due to their efficiency and fast dynamic
response.

Despite all the studies carried out for the design and
implementation of photovoltaic emulators, the existing
structures do not take into account all the operating condi-
tions of solar panels, such as the geographical position, time,
tilt angle of photovoltaic panels, and wind effect.

In this paper, we propose a new architecture of the pho-
tovoltaic emulator able to study the electrical characteristics
of fixed photovoltaic installations, by considering time, tilt
angle, latitude, and longitude as additional input parame-
ters. The proposed emulator can also be used for loss esti-
mation or tilt angle optimization. The control algorithm is
implemented using a flexible direct calculation method to
cover all temperature and irradiation levels. The design
and the implementation are carried out on the dSPACE
1104 controller board. The DC/DC converter is designed
to support the current delivered by the SR-20 panel under
different operating conditions. One of the strong points of
the proposed emulator is the ability to reproduce, in real-
time, a very accurate electrical power, synchronously with
a reference PV panel under real weather conditions and
variable load. The results showed a good agreement
between the emulator and the panel responses in transient
and steady states.

The rest of the paper is organized as follows. The pro-
posed emulator implementation is given in Section 2; the
model of the photovoltaic panel and its practical validation
are presented in Section 3. Section 4 is dedicated to the design
and control strategy of the power converter. Section 5 pre-
sents real-time implementation results and analysis. Finally,
some concluding remarks and perspectives are presented in
the last section.

2. Structure of the Proposed
Photovoltaic Emulator

Photovoltaic emulators developed in the literature emulate
the photovoltaic panel behaviour at the desired temperature
and solar irradiation. The latter is influenced by the incidence
angle of the sunrays, which represents the angle between the
sunlight and the normal to the surface of the panel. The
reflected and diffuse solar radiations can be neglected

compared to the direct solar radiation GD. The effective solar
radiationGi received by the panel for a given incidence angle i,
is given by [8]:

Gi = cos ið Þ ×GD: ð1Þ

The incidence angle of solar radiation on an inclined panel
depends on several angles. The illustration of these angles is
presented in Figure 2, where BO is the normal to the horizon-
tal surface, CO is the normal to the tilt surface, OE is the pro-
jection of the normal to the inclined surface on the horizontal
plane, γ is the surface azimuth angle, and β is the tilt angle,
measured from the horizontal. By applying cosine law on var-
ious mentioned above angles, one can deduce the following
relationships [9]:

cos ið Þ = cos βð Þ cos zð Þ + sin βð Þ sin zð Þ cos α − γð Þ,

sin αð Þ = sin ωð Þ cos δð Þ
sin zð Þ ,

cos zð Þ = sin δð Þ sin ϕð Þ + cos δð Þ cos ϕð Þ cos ωð Þ,

δ = 23:45° sin
360
365

284 + dð Þ
� �

,

ω = ST − 12ð Þ × 15°,

ST = t + ET ± 4 LST − Lð Þ + DST,

LST = 15°ΔGMT,

ET = 229:2 0:000075 + 0:001868 cos Bð Þð
− 0:032077 sin Bð Þ − 0:014615 cos 2Bð Þ
− 0:04089 sin 2Bð ÞÞ,

B = d − 1ð Þ 360365
,

ð2Þ

where z is the zenith angle, ϕ is the latitude, α is the solar azi-
muth angle, δ is the declination angle, d is the day of the year,
ω is the solar hour angle, ST is the solar time, LST is the local
standard time meridian, LT is the local time, GMT is the
Greenwich Mean Time, in hours, ΔGMT is the difference of
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Figure 1: General photovoltaic emulator architecture.
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LT and GMT, L is the longitude, ET is the equation time, DST
is the daylight saving time, and t is the standard time.

The incidence angle in terms of declination angle, tilt
angle, latitude, and hour angle is given by:

cos ið Þ = sin δð Þ sin ϕð Þ cos βð Þ − cos ϕð Þ sin βð Þ½ �
+ cos δð Þ cos ωð Þ cos ϕð Þ cos βð Þ½
+ sin ϕð Þ sin βð Þ cos γð Þ�:

ð3Þ

When the inclined photovoltaic panel faces the equator
(γ = 0), equation (3) becomes

cos ið Þ = sin δð Þ sin ϕð Þ cos βð Þ − cos ϕð Þ sin βð Þ½ �
+ cos δð Þ cos ωð Þ cos ϕð Þ cos βð Þ + sin ϕð Þ sin βð Þ½ �:

ð4Þ

Hence,

cos ið Þ = sin ϕ − βð Þ sin δð Þ + cos ϕ − βð Þ cos δð Þ cos ωð Þ:
ð5Þ

The developed emulator architecture is shown in
Figure 3.

According to equation (1), the cosine of the incidence
angle is multiplied by the solar radiation to calculate the
actual value of solar radiation received by the panel, under
the installation conditions. From the user-defined inputs
and the measured voltage Vpve, considered as the emulator
voltage, the PV model generates a current reference Iref that
will be compared with the current-controlled buck con-
verter output Ipve, considered as the emulator current.
The error is minimized by the PI controller to maintain
Ipve to its reference value Iref . The model and control algo-
rithm are programmed under MATLAB/Simulink and
loaded on the dSPACE controller board. The LEM
LA55-P and the LEM LV20-P are, respectively, the current
and the voltage sensors. Their outputs are connected to a
conditioning circuit to deliver a voltage between 0 and
±10 volts, adapted as an input of the dSPACE board ADC.

The dSPACE board contains a Master Floating-Point DSP
(400MHz) for processing and a Slave DSP (20MHz) for con-
trolling PWM and digital I/Os. The control parameters, the
sensor gains, and the data visualization are carried out under
ControlDesk software.

The major targeted goals, during the development of this
architecture, are (i) the design of a photovoltaic emulator
with the same response as a photovoltaic panel in the tran-
sient and steady state, (ii) considering the actual installation
conditions of photovoltaic panels. (iii) The emulator must
be able to operate in real-time with connected temperature
and radiation sensors or with stored data from other stations,
(iv) a simple and accurate control law easy to be imple-
mented in other platforms. The details of the implementa-
tion and design of each part of the architecture are given
in the following sections.

3. Photovoltaic Panel Model Implementation

A photovoltaic cell is an electric power generator, consisting
of semiconductor layers that convert solar energy into elec-
tricity. Depending on the load connected to its terminals, it
can behave as a current source or as a voltage source [10].
In the literature review, several photovoltaic models are used
to simulate the photovoltaic panel behaviour. They are
divided into two categories: electrical circuit models based
on the electrical characteristics of the photovoltaic panel
and interpolation models based on the IV characteristic of
the photovoltaic panel [11]. Even if the electrical circuit
models are less fast compared with the linear models, they
are commonly used by the researchers, due to their accuracy.
The most popular electric models are the double diode model
and the single diode model. The latest presents a good com-
promise between accuracy and simplicity [12]. The photo-
voltaic model implementation is carried out by several
methods, direct calculation method, look-up table method,
piecewise-linear method, neural network method, and
photovoltaic elimination voltage method [7]. The direct
calculation method is characterized by good accuracy and
low memory demand. In this paper, we used an electric
model (1D2R) with a numerical calculation method to
avoid the use of look-up tables to increase the model accu-
racy. The 1D2R model with the equivalent circuit is shown
in Figure 4.

The current-voltage characteristic of a photovoltaic mod-
ule is represented by equation (8).

I = Iph − ID − Ip, ð6Þ

where

ID = I0 eV/AVt − 1
� �

,

Ip =
V + RsI

Rp
:

ð7Þ
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Figure 2: Solar radiation on tilt photovoltaic panel.
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Hence,

I = Iph − I0 e V+RsIð Þ/VtAð Þ − 1
� �

−
V + RsI

Rp
: ð8Þ

The current Iph describes the photogenerated current of
the photovoltaic panel; it depends on solar radiation and
temperature as follows:

Iph =
G
Gn

Iscr + Ki T − Trð Þ½ �: ð9Þ

Vt = kTc/q is the thermal voltage, k is the Boltzmann
constant, T is the temperature of the photovoltaic panel
and A is the diode ideality factor, q is the electronic
charge, Tr is the reference temperature, Iscr is the short
circuit current at Tr , Ki is the short circuit current/-
temperature coefficient, and Gn is the nominal irradiation.

The reverse saturation current of diode I0 may be
expressed by

I0 = In
Tc

Tr

� 	3
e qEg/Akð Þ 1/Trð Þ− 1/Tcð Þð Þ, ð10Þ

where In is the nominal saturation current and Eg is the
band gap energy.

The identification of the unknown parameters men-
tioned above is based on the physical parameters of the
studied panel, given in the manufacturer’s datasheet at
standard test conditions (STCs) of temperature and solar
irradiation. The specifications of the SR-20 panel are given
in Table 1.

The model is programmed as a C MEX S-Function and
loaded on the dSPACE 1104 controller board. Firstly, the
model is validated in simulation as shown in Figure 5.

As can be seen in Figure 5, the simulated current-voltage
and power-voltage characteristics, under nominal conditions
of temperature and irradiation, reproduce the same values of
VOC, ISC, VMP, and IMP. The model is also validated with real
data of irradiation and temperature recorded for short cloudy
periods. The results of this validation have shown that the
model behaves exactly as the SR-20 panel, under variable
conditions of temperature and irradiation, as shown in
Figure 6.

4. Power Stage Design and Control

There are three main power converters used in photovoltaic
emulator applications: linear regulator [1], programmable
DC power supply [13], and Switching-Mode Power Supply
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(SMPS) [4]. Since the efficiency of the linear regulator is low,
it is rarely used in photovoltaic emulator applications. The
programmable DC power supply includes the closed-loop
control, but it suffers from the response delay. As a result,
the SMPS is more suitable for photovoltaic emulators in
terms of efficiency and dynamic response. Among the com-
mon SMPS topologies, a buck converter is used to cover the
values of the emulated panel I-V characteristic. The control
type is current control, ensured by a PI controller. The elec-
trical circuit of the buck converter is shown in Figure 7, oper-
ating in the continuous conduction mode (CCM). The design
parameters are given in Table 2.

The selection of the values of C and L is based on the
standard design equations. The DC-DC buck converter was

built using IRF540NPBF MOSFET connected to FOD3120
gate driver. The selected values of L and C are 1mH and
470μF, respectively.

The closed-loop control is shown in Figure 8. It consists
of a PI controller receiving the current reference from the
PV model. The buck converter is current-controlled. Its
transfer function, derived from the small-signal analysis, is
given by [7]:

GBUCK sð Þ = îpve sð Þ
d̂ sð Þ

=
V in/R

LCs2 + L/Rð Þs + 1
: ð11Þ

The second-order term coefficient, LC, could be neglected
(LC~1e‐7) compared to L/R (L/R~1e‐3). The system can
then be considered as a first-order system, equation (22).

GBUCK sð Þ = îpve sð Þ
d̂ sð Þ

=
V in/R
L/Rð Þs + 1

: ð12Þ

The PI parameters are tuned to ensure a fast response,
stability, and minimizing steady-state error. The closed-
loop responses for abrupt load and setpoint changes are
given in Figure 9. As can be seen, the designed controller
is able to track the setpoint Iref regardless of load and ref-
erence change conditions.

As mentioned previously, the control strategy plays a
very important role in the determination of the operating
point. There are several control strategies of photovoltaic
emulators reported in the literature, namely, the resistance
comparison method [14], the hill-climbing method [15],
the hybrid-mode controlled method [16], and the direct
referencing method [7]. In this study, we used a direct refer-
encing method that works with the SMPS and does not
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Table 1: SR-20 PV panel specifications (A.M.1.5, 1 kW/m2, 25°C)
and identified parameters of the adjusted model.

Voltage at MPP (VMP) 17.2 V

Current at MPP (IMP) 1.17A

Short circuit current (ISC) 1.28A

Open circuit voltage (VOC) 21.6 V

Maximum power (PMP) 20W

Ideality factor (A) 1.9

Charge of electron (q) 1.6e-19 C

Boltzmann constant (k) 1.38e-23 J/K

Band gap energy (Eg) 1.12 eV

Reverse saturation current at Tr (In) 5.98e-6 A

Temperature coefficient of SC current (Ki) 512.10-6 A/K

Number of cells connected in series (ns) 36

Number of cells connected in parallel (np) 1

Internal series resistance of a cell (Rs) 0.004Ω
Internal parallel resistance of a cell (Rp) 1000Ω
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require any additional algorithm. This method involves con-
necting the emulator output voltage Vpve to the PV model
input. The latter generates a current reference Iref applied
to the PI controller input, Figure 8.

At the start time, the Vpve = 0 and the photovoltaic model
generates a reference current Iref = Isc, for a given load, irra-
diance, and temperature. As Vpve increases, Iref begins to
decrease following the PV panel I-V characteristic. The PV
emulator stabilizes on an operating point when Vpve and
the output current Ipve, correspond to the output resistance
RLoad on the I-V characteristic, Figure 10.

5. Results and Discussion

Unlike previous works in this domain, the superiority of the
method in real-time processing was experimentally validated
by connecting the photovoltaic panel and the emulator to
two similar resistive loads and comparing simultaneously
both panel and emulator outputs. Under the same variable
conditions of temperature, solar radiation, load, latitude,
longitude, time, and tilt angle, the emulator must be able
to deliver the same voltage and current as the SR-20 solar
panel. The scheme of the practical platform is illustrated in
Figure 11.

A photograph of the experimental platform, with its
instrumentation, is shown in Figure 12. The solar radia-
tion, current, voltage, and temperature are, respectively,
measured by CM10, LEM LA55-P, LEM LV20-P, and
PT1000 sensors. The signals pass through a conditioning
circuit to deliver voltages between 0 and ± 10 volts,
adapted to ADC inputs of the dSPACE controller board.
The photovoltaic emulator was tested under variable load,
solar radiation, and temperature. The validation results are
given in the next subsections.

Experimental tests were carried out during alternating
sunny and cloudy periods, in Marrakech on April 2nd,

2019, from 14h 30mins to 17h 30mins. The SR-20 panel is
fixed in a position of 31 degrees facing south. The validation
was carried out progressively, by first individually testing the
effect of each of the factors, including load, irradiation, and
temperature and secondly the simultaneous variation of the
different factors, taking into account the effect of the solar
incidence angle studied in Section 2.

5.1. Electrical Characteristic Verification. To demonstrate the
validity of the proposed emulator, it would be appropriate to
start with standard offline tests, based on controlled G and T
variations. To generate the I-V characteristics, the proposed
emulator was connected to a variable load, for different
values of solar radiation and temperature. The comparison
between the obtained I-V characteristics and those of the ref-
erence panel is given in Figure 13. Test results have shown
that the proposed emulator behaves exactly like the SR-20
panel, throughout the I-V characteristic.

Since the incidence angle is related to real-time operation
of the PV system, the integration of its effect on the emulator
is validated subsequently.

5.2. Load Variation. When changing the load, the emulator
and the photovoltaic panel are each connected to three resis-
tive loads (19Ω, 15Ω, and 9Ω); switching from one load to
another is carried out, simultaneously, by controlled relays.
Figure 14 illustrates the behaviour of the emulator and panel
under load variation and during a period when the tempera-
ture and irradiation are considered constant. As can be seen
from the curve, the emulator faithfully reproduces the same
electrical behaviour as the SR-20 panel.

5.3. Irradiation Variation. The effect of variable irradiation at
stable temperature (at 29°C) is shown in Figure 15. The tests
are performed under periods of dense and less dense clouds,
inducing a variation of solar irradiation between 375W/m2

and 627W/m2. The results showed that the emulator was
able to follow accurately abrupt changes in irradiation with
a high robustness degree.

5.4. Simultaneous Variation of Load and Environmental
Conditions. In natural operation, photovoltaic panels work
under uncontrollable environmental and load conditions. A
powerful emulator should be able to reproduce the same elec-
trical behaviour as a photovoltaic panel under such condi-
tions. The test conditions are shown in Figure 16. As can be
seen, the emulator behaves in a very efficient way throughout
the test, in particular, the area between 15 and 25mins where
the three factors vary at the same time.

5.5. Incidence Angle Effect. To study the electrical behaviour
of a fixed installation through an emulator, it would be
appropriate to consider the incidence angle effect on the elec-
trical photovoltaic panel characteristic. In about 20mins,
between 14h 30mins and 14h 50mins, the incidence angle
presents a variation of more than 3 degrees, leading to a pro-
gressive output emulator error. At 14h 50mins, an adjust-
ment of the incidence angle was introduced in the emulator
input, as shown in Figure 17.
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Figure 7: Buck converter architecture.

Table 2: Design parameters of buck converter.

Input voltage (V in) 24V

Switching frequency (f SW) 20 kHz

Output voltage ripple (ΔV) 10mV

Inductor current ripple (ΔI) 30%
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An overall summary test was performed in real-time
on a fixed panel for 2 h 30mins, to highlight the perfor-
mance of our emulator for the final prototype,
Figure 18. During the test, the solar irradiation and the
temperature show significant natural variations. The load
varies arbitrarily between 19Ω, 15Ω, and 9Ω. The emula-
tor combines the measured solar irradiation with an esti-
mated incidence angle to determine the actual irradiation
received by the panel. The incidence angle changes from
49° to 82°. The current and the voltage generated by the
emulator, under the same conditions, show a perfect
agreement with those delivered by the photovoltaic panel
under consideration.

6. Conclusion

In this paper, a prototype of a high-performance photo-
voltaic emulator has been developed, including the effect
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of the incidence angle. The experimental validation was
carried out in real-time, by comparing both panel and
emulator outputs.

As the converter is a key element in the emulator archi-
tecture, special attention has been given to its control system

to maintain the same performance for any operating point.
The proposed control algorithm is based on an autotuning
PI controller, according to load and input voltage variations.
The method leads to a simple and accurate control law easy
to implement on any digital platform.
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To validate all expected performances of the proposed
emulator structure, a practical platform has been designed
and developed for this purpose. A global test scenario
was used to validate the dynamic and steady-state
responses of the emulator under realistic and possible
operating conditions.
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Figure 13: (a) Generated I-V characteristics for a fixed temperature and variable solar radiation, (b) generated I-V characteristics for a
variable temperature and fixed solar radiation.
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The obtained results showed that the emulator could
behave accurately as the reference photovoltaic panel
under variable environmental conditions and load abrupt
changes. The results showed also that for a fixed panel

the emulator considers efficiently the daily incidence angle
evolution.

A hardware platform based on a low-cost digital control-
ler is under development.
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