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Photovoltaic characteristics of screen-printedmonocrystalline silicon solar cells (SPSSCs) with molybdenum oxide (MoOx) as hole-
selective layers (HSLs) were demonstrated. A H2/Ar plasma pretreatment (PPT) was incorporated into a MoOx/p-Si(100) interface,
which shows the expected quality in terms of passivation. Moreover, the charge trapping characteristics of the MoOx/p-Si(100)
interface were presented. The PPT parameters, including power, treated time, flow ratio of H2/Ar, and temperature, were
investigated. The experimental results indicate that the Si-H bond with a relatively high intensity was demonstrated for the
H2/Ar PPT. The achievement of a conversion efficiency (CE) improvement of more than 1.2% absolute from 18.3% to 19.5% for
SPSSCs with H2/Ar PPT was explored. The promoted mechanism was attributed to the reduction of the interface trap density
caused by the large number of Si-H bonds at the silicon substrate and MoOx interface.

1. Introduction

Passivated emitter and rear cell (PERC) silicon solar cells are
the mainstream of the industrial solar cells today [1–3]. To
increase the capture of photons by solar cells, PERC intro-
duces two additional layers at the rear of the cell compared
with SPSSCs [4]. The function of those layers is to improve
the passivation of the rear side and increase the reflection
of the back light [5]. However, PERC still have a small
amount of Al back surface field (Al-BSF), which will cause
recombination [6]. Thus, to improve this shortcoming, tran-
sition metal oxides, such as MoO2, V2O5, and WO3, are pro-
posed as hole-selective layers (HSLs) [7–10]. The energy
band of the p-type silicon substrate was matched with the
HSL. Moreover, oxygen vacancy defects in the film can be
utilized to transfer holes [11]. Therefore, the laser local open-
ing and Al-BSF can be prevented.

Literatures reported that hydrogen (H2) PPT in fabricat-
ing silicon heterojunction solar cells can be adopted to
improve surface atomic hydrogen coverage and avoid the
generation of defects on the silicon substrate [12]. The H2

PPT of the Si surface can lead to improvements in minority
carrier lifetime [13]. Moreover, the H2 PPT improves surface
passivation compared to classical HF dip [14]. Furthermore,
carbon and oxygen contamination can be removed from sil-
icon surfaces by a 30 s H2 plasma treatment [15]. Thus, to
enhance the interface characteristics of silicon and MoOx, a
H2/Ar PPT was investigated.

2. Experimental Methods

To demonstrate the effects of H2/Ar plasma treatment on
photovoltaic characterizations of the SPSSCs, square samples
(20 × 20mm2) of (100)-oriented p-type silicon wafers with
1–3Ω cm and 190 ± 20μm were prepared. The texturing
process was performed in a solution of 1.73% KOH at 83°C
for 10min. The front emitters were formed by phosphorus
diffusion at 840°C for doping and drive-in. After single-side
edge isolation and PSG etching processes, the sheet resis-
tances of the front emitters were demonstrated to be approx-
imately 100 ± 10Ω/sq. For antireflection coating, a standard
SiNx film with a thickness of 75 nm was deposited on the
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n+-emitters using plasma-enhanced chemical vapor deposi-
tion at a frequency of 13.56MHz. Next, an Ag front paste
was screen-printed on the front side of the SPSSCs and dried
in an infrared belt furnace at 230°C. Then, a 6-zone industrial
infrared belt furnace was utilized to fire Ag pastes into the n-
type emitters. The peak temperature and the belt speed were
set at 790°C and 508 cm/min, respectively. To protect the
front metallization of the SPSSCs, the polymer paste was
spin-cast onto the front surface of the SPSSCs at 3000 rpm
and dried at 150°C for 30min. Then, the H2/Ar PPT was per-
formed on the rear of the cells at power ranged from 50 to
70W. The treated time was tuned from 0 to 70 s. The
H2/ðH2 + ArÞ ratio and temperature were achieved from
22.2 to 66.6% and 200 to 300°C, respectively. The cell without
H2/Ar PPT was presented as a reference. Next, all HSLs con-
sist of MoOx/Ag films which were achieved by a thermally
evaporated technique. Deposition of the approximately
4 nm thick MoOx films was performed by thermal evapora-
tion from granules of MoO2 (99.9% purity). The thicknesses
of evaporated Ag were 500nm. The CEs of the SPSSCs were
measured under standard test conditions (AM 1.5G spec-
trum, 100mW/cm2, 25°C). The cross-section images and ele-
mental analysis of p-Si(100)/MoOx/Ag were examined by
transmission electron microscopy (TEM) and energy-
dispersive X-ray spectroscopy (EDS), respectively. The Si-H
bonds of the H2/Ar PPT samples were measured using
Fourier-transform infrared spectroscopy (FTIR).

3. Results and Discussion

The cross-section image and elemental analysis of p-
Si(100)/MoOx/Ag stacked films were examined by the TEM
and EDS with a line drawn as shown in Figure 1. The thick-
nesses of the MoOx HSLs and SiOx were demonstrated to be
approximately 4 and 1.8 nm, respectively. The SiOx interfa-

cial layer is present at the MoOx/Si(100) interface during
MoOx evaporation [16]. Elemental analysis of the p-
Si(100)/SiOx/MoOx/Ag stacked films by EDS is shown in
Figure 1(b). The MoOx were thermally evaporated at a base
pressure of 5 × 10−6 Torr. The Mo/O atomic ratio in the
MoOx layers was approximately 1/2.3 for the MoO2 source
granules. Literature reported that the Mo+4, Mo+5, or Mo+6

states could be presented in MoOx HSL [17]. In this work,
the O/Mo atomic ratio of 2.3 in the MoOx HSLs for the
MoO2 granule source was attributed to some oxygen already
being in the chamber during evaporation [16].

Figure 2 shows CEs vs. treated time curves of the SPSSCs
with and without H2/Ar PPT. The H2/ðH2 + ArÞ ratio and
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Figure 1: (a) TEM cross-section image and (b) elemental analysis of p-Si(100)/MoOx/Ag stacked films with H2/Ar PPT.
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Figure 2: CEs vs. treated time curves of the SPSSCs with and
without H2/Ar PPT. The H2/ðH2 + ArÞ ratio and temperature
were achieved at 22.2% and 250°C, respectively.
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temperature were achieved at 22.2% and 250°C, respectively.
The CE was enhanced by increasing the treated time. How-
ever, an excess of treated time could cause a degradation of
the CE due to the increase of dangling bond defects on the
surface, which can result in etching effects of the H2 plasma
[12]. Compared with various powers and treated time, a bet-
ter CE improvement was demonstrated at a power of 60W
for 50 s. The achievement of a CE improvement of more than
0.6% absolute from 18.3% to 18.9% for SPSSCs with and
without H2/Ar PPT was explored.

To investigate the effects of various H2/ðH2 + ArÞ ratios,
the CEs of the SPSSCs are shown in Figure 3. The CE
increases as theH2/ðH2 + ArÞ ratio is increased, until an opti-
mum of the H2/ðH2 + ArÞ ratio is reached. Above this opti-
mum condition, the CE decreases as the H2/ðH2 + ArÞ ratio
increases. The upgraded mechanism is related to a change
in surface hydrogen configuration toward lower hydrides
[13]. Excessive H2/Ar PPT will cause the surface roughness
to further degrade the characteristics of the cells [14]. Achiev-
ing CE improvement of more than 0.6% absolute from 18.9%

to 19.5% for SPSSCs with a tuning H2/ðH2 + ArÞ ratio was
explored. Thus, a H2/Ar PPT was incorporated into a
MoOx/p-Si(100) interface, which shows the expected quali-
ties in terms of passivation.

For further examining the photovoltaic characteristics of
the SPSSCs, Figure 4 shows CEs vs. temperature curves of the
SPSSCs. As the duration of temperature exposure increased,
the CE increased to 250°C and then decreased. The increase
in CE due to the PPT is familiarly considered to result from
passivation of surface defects. It has been reported that the
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Figure 3: CEs vs. H2/ðH2 + ArÞ ratio curves of the SPSSCs. The
treated parameters were addressed at 60W for 50 s and 250°C.
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Figure 4: CEs vs. temperature curves of the SPSSCs. The treated
parameters were addressed at 60W for 50 s and H2/ðH2 + ArÞ
of 44.4%.
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Figure 5: Dit of n-Si(100)/SiOx/MoOx/Ag capacitors (a) with and
(b) without H2/Ar PPT extracted from the conductance method.
The conductance of n-Si(100)/SiOx/MoOx/Ag capacitors as a
function of frequency was measured and plotted as Gp/ωA versus
voltages by biasing the Si surface in depletion condition.
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smaller effective surface recombination velocity can be
achieved by the higher deposition temperature [14]. The
results indicate that the best result in this work is a CE of
19.5% at deposition temperature ranging from 250 to 300°C.

Because MoOx/silicon contacts induce slightly Fermi
level bending on p-type silicon, the interface characteristics
were addressed by a MoOx/n-type silicon structure [18].
Figure 5 shows the interface trap density (Dit) of n-
Si(100)/SiOx/MoOx/Ag capacitors (a) with and (b) without
H2/Ar PPT extracted from the conductance method. The
conductance (Gp) of n-Si(100)/SiOx/MoOx/Ag capacitors as
a function of frequency (ω) was measured and plotted as Gp/
ωA versus voltages by biasing the Si surface in depletion con-
dition [19].Awas denoted as the area of the capacitor. Figure 5
shows that Gp/ωA of the cells without H2/Ar PPT has a max-
imum value and Dit is equal to ð2:5/qÞ ðGp/ωAÞmax at that
maximum [20]. It is also observed that the Dit values of the
cells with and without H2/Ar PPT were 1:8 × 1011 and 1:4 ×
1012 eV-1 cm-2, respectively. Obviously, a H2/Ar PPT is benefi-
cial to improve the interface characteristics of MoOx and sili-
con. To further understand the improvement mechanism,
FTIR spectra were addressed.

Infrared spectra of the cells with and without H2/Ar PPT
were measured using FTIR. The experimental conditions for
FTIR were resolution of 1 cm-1, source of Glowbar which can
provide FTIR measurement of wavenumbers ranging from
1000 to 3000 cm-1, and detector mercury-cadmium-
telluride. Figure 6 illustrates the FTIR spectra of the cells with
and without H2/Ar PPT. The spectra present an absorption
peak at 2170 cm-1, which is recognized as the Si-H bonds
[21]. The absorbance values for nontreatment samples at
2170 cm-1 are smaller than those of the H2/Ar PPT ones,
demonstrating that the amount of Si-H bonds on the silicon
surface is increased by PPT in the H2/Ar atmosphere.

Figure 7(a) indicates dark and illuminated (AM 1.5G)
current density vs. voltage curves of the SPSSCs with and
without H2/Ar PPT. A CE of SPSSCs with PPT in H2/Ar
ambient was demonstrated to be around 19.5%. The CE
was found to increase after the silicon substrate was exposed

to H2/Ar PPT for 50 s before the evaporation of MoOx.
Moreover, the open-circuit voltages of 666 and 646mV for
SPSSCs with and without H2/Ar PPT, respectively, were
achieved as shown in Figure 7(a). This can be proved by
the optimization of the interface trap charge, as shown in
Figure 5. To understand the improvement mechanism, exter-
nal quantum efficiencies (EQEs) of the SPSSCs with and
without H2/Ar PPT are shown in Figure 7(b). Compared
without H2/Ar PPT, an average increase in EQE of around
4.25% was demonstrated for H2/Ar PPT. In the long wave-
length regions, the MoOx surface passivation strongly
improves the EQE. Thus, an increase in the overall EQE
was caused by high diffusion length.
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Figure 7: (a) Dark and illuminated (AM 1.5G) current density vs.
voltage curves of the SPSSCs with and without H2/Ar PPT. (b)
EQEs of the SPSSCs with and without H2/Ar PPT.
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4. Conclusions

A H2/Ar PPT process was applied to monocrystalline silicon
substrate before depositing the MoOx HSLs. The enhanced
passivation effects of H2/Ar PPT were investigated by using
a conductance method of measuringDit, in combination with
FTIR spectroscopy. The achievement of a CE improvement
of more than 1.2% absolute from 18.3% to 19.5% for SPSSCs
with H2/Ar PPT was explored. The promoted mechanism
could be attributed to the reduction of Dit and the increase
of the Si-H bonds at MoOx and Si substrate.
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