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Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at
room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-
visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is
about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the
transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by
Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical
gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap
is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin
films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the
optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin
films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically
conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.

1. Introduction

Photovoltaic solar energy is an electrical energy produced
from solar radiation by photovoltaic solar cells [1]. This kind
of energy is the smartest way to produce electricity, and it
has many advantages, such as direct generation of electricity
from sunlight [2, 3]. It is a renewable source and clean
[4–11], as well as friendly to the environment [5, 8,
11–14]. Photovoltaic energy is useful in different applica-
tions and devices [15–21].

The prices of the solar cells based on (Si) have declined
so speedily that panel expenses now make up <30% of the
costs of a fully installed “solar-electricity-system” [22].
Because of their fragility, Si thin sheets cannot be treated
on their own, but they must be mechanically supported.
The researchers proposed to scale thick substrates by adding

different materials such as aluminum, silver, nickel, and
epoxy [23–26]. They are generally composed of a mixture
of inorganic particles embedded in a polymer matrix.

In recent years, the research interest in the development
of a new material of polymer-inorganic nanocomposites
with improved properties has been very high [27–33], and
most research has been directed towards the use of materials
in the form of thin films. The nanocomposites allow improv-
ing mechanical, electrical, optical, optoelectronic, and mag-
netic properties. For this reason, many studies have shown
that hybrid nanocomposites are used in optoelectronic or
optical applications requiring high visible transparency and
shielding against ultravisible transparency [34–40].

Today, energetic deposition means are widely used for
the manufacture of thin film optical components [41]. These
processes allow the fabrication of thin film materials with
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excellent repeatability, whose optical properties are very
close to those of the solid material, thus opening doors to
higher performance treatments that are insensitive to the
constraints of the external environment. This was only possi-
ble with the technology developments in thin film deposition
using several physical deposition techniques such as reactive
sputtering [42], electron beam evaporation [43], and arc depo-
sition [44, 45]. In particular, the sol-gel method has emerged
as one of the most promising processes, as it is economical
and efficient in the production of thin films [46, 47] as well
as transparent and homogeneous films which are suitable for
a variety of substrates. In fact, many works are devoted to this
method [48–51]. In this paper, we report a simple and eco-
nomical method for elaborating thin films of epoxy/silicone
blend loaded by nitrogen-doped carbon nanotubes (N-CNTs).
The nanocomposites are thin films having interesting optical
properties. These films may offer potential new opportunities
for photovoltaic applications caused by their specific chemical
and electrical properties [52–55].

2. Experimental Work

2.1. Material and Methods. The elaborated matrix contains
epoxy which is a colorless viscous liquid of 99.9% purity,
supplied along with the hardener from Toronto Research
Chemicals and silicone gel from Keol having high purity
level (>99%). The fillers are the nitrogen-doped carbon
nanotubes (N-CNTs) which were prepared using physical
vapor deposition according to explained protocol in our pre-
vious paper [50].

Substrate cleaning is a very important step that takes
place in a clean room, as this step determines the adhesion
and homogeneity of the deposited layers. The substrates
must be free of grease, dust, and scratches. The substrates
chosen for our study are blades with Indium Tin Oxide
(ITO). The procedure for cleaning the substrates is as
follows:

(1) Brushing with detergent, rinsing with deionized
water

(2) Ultrasonic cleaning for ten minutes in a beaker filled
with detergent

(3) Rinse with deionized water

(4) Ultrasonic cleaning again, but this time in a beaker
filled with deionized water, for seven minutes

(5) Steps 3 and 4 are performed three times

(6) Last rinsing with deionized water

(7) Dry at 150°C for 15 minutes

First, epoxy and silicone were mixed in a 50ml beaker
with the weight percentage of epoxy which is always kept
higher than that of silicone and after a strong stirring, the
hardener is added to avoid anisotropy and in order to keep
homogeneity. The neat matrix contains 75wt% of epoxy,
10wt% of silicone, and 15wt% of hardeners. Afterward,
the N-CNTs were added with weight percent (0.00, 0.07,

0.1, and 0.2% of N-CNTs) in order to obtain homogeneous
nanocomposites with consideration that they are formulated
using the same process.

The resulting mixture was deposited on the ITO glass
substrate at room temperature. The prepared films were
thermally cured at 103 for 1 hour then at 115°C for 30min
in the oven to obtain the epoxy/silicone N-CNT films.

2.2. Technical Characterizations. After preparing the thin
films of epoxy/silicone N-CNT, microstructural and optical
characterizations were carried out, using, respectively, the
scanning electron microscopy and UV–visible technique
which is based on the property of material and its ability
to absorb certain wavelengths of the UV-visible domain.
This method determines the transmission T (%) of a mate-
rial for a given wavelength λ (nm) that has been judiciously
chosen. The optical transmission spectrum for the elabo-
rated thin films was registered using a UV–visible spectro-
photometer (Jasco V-530) over the wavelength range of
300—800nm. The microstructure of the processed compos-
ite thin films was examined through SEM micrographs
which were picked up for epoxy/silicone blend loaded with
0.2wt% N-CNTs using FEI Quanta FEG 450 scanning elec-
tron microscopy (SEM).

3. Results and Discussion

3.1. Optical Properties. Figure 1 shows the transmittance (T)
spectrum of the thin films of epoxy/silicone N-CNT as a
function of wavelength at room temperature in the spectral
range of 300—800nm. The transmittance spectrum has a
high transmittance of up to 88% in the visible range for neat
epoxy/silicone blend, indicating a highly transparent mate-
rial; it is pointed out that transmittance in the overall wave-
length range is considerably reduced with the increased filler
content ranging from 0.07 to 0.2wt% N-CNT.

Figure 1 exhibits a sharp decrease in the optical trans-
mittance around 360nm; this conduct is observed in many
compounds and composites [56, 57]. Also, the optical trans-
mission, the optical band-gap values, and structural and
morphological changes of thin films are related to annealing
temperature [58] or lamp changing. The optical band-gap
values could be varied employing different precursor ions
as well as substrate types which will be helpful for a wide
variety of optoelectronic applications [59, 60]

This drastic reduction is caused by significant absorption
increasing with the quantity of the N-CNT fillers; this effect
is significant in the optimization of the fabrication of the
optoelectronic devices. The spectrophotometer allows
recording the optical transmission of the layers as a function
of wavelength and allows determining the value of the
energy of the optical gap (Eg) of the layer (characteristic of
a semiconductor), the refractive index of the films, and their
thicknesses. For this aim, we will use the following formulas
given by the method of Swanepoel [61]. The thickness of the
nanostructures is determined from the following equation:

d = λ1λ2
2 λ1n2 − λ2n1ð Þ

� �
, ð1Þ
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where n1 and n2 are the refractive indices at two adjacent
maxima (or minima) at λ1 and λ2. The average values of
thickness d of the studied thin films determined by this
equation are about 700nm.

The refractive index in the spectral region of the high,
low, and medium absorption zones can be calculated; it fol-
lows that the refractive index is given by the following
expression:

n1 = N1 + N2
1 − S2

� �1/2h i1/2
n2 = N2 + N2

2 − S2
� �1/2h i1/2

:

ð2Þ

In addition, the Swanepoel coefficient (N) in the trans-
parent spectral region can be calculated by the following
expression:

N1 = 2S Tmax 1 − Tmin
Tmax 1 × Tmin

� �
+ S2 + 1

2

� �
,

N2 = 2S Tmax 2 − Tmin
Tmax 1 × Tmin

� �
+ S2 + 1

2

� �
,

ð3Þ

where S is the refractive index of the glass and Tmax and Tmin
represent the maximum and minimum values for the trans-
mission curve.

The absorption α of the epoxy/silicone N-CNT nano-
composite is linked to transmittance through Bouguer-
Lambert-Beer relation [62]:

T = exp −αdð Þ: ð4Þ

If transmittance T is expressed in %, the absorption coef-
ficient is shown by

α = 1
d
ln 100

T

� �
: ð5Þ

From the transmittance spectra (T), we can calculate the
optical gap value of semiconductors from the Tauc formula
(Eg(eV)) defined by the following equation using [63–67]

αhνð Þ = B hν − Eg
� �n

: ð6Þ

The relation can be rewritten in a logarithmic form such
as

ln αhνð Þ = ln B + n ln hν − Eg
� �

, ð7Þ

where α is the absorption coefficient, ν is the absorption fre-
quency, B is constant, h is Planck’s constant, and n is depen-
dent on the type of optical transition. The constant n
depends on the nature of the optical gap; it is 1/2 for a direct
optical gap and 2 for an indirect optical gap.

Note that the interband transitions are accompanied by a
change of electronic dynamics. Because the laws of energy
and momentum conservation must be satisfied, the indirect
electronic band-to-band transitions are phonon-assisted,
and phonons must be involved in the electronic interband
transition to provide the necessary momentum. Their ener-
getic contribution is negligible if, for instance, the exponent
takes the value of n = 2 [68].

To determine whether the electronic transition that has
occurred in the samples studied is direct or indirect, the
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Figure 1: Curves of epoxy/silicone film transmission as a function of wavelength for different N-CNT loading rates.
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optical gap Eg must first be determined using equation (6) to
plot αhν versus hν; the value of the optical gap is obtained by
extrapolating the linear part of the curve, at the intersection
of this line with the x-axis given in Table 1; then, the photon
energy ln ðhν − EgÞ is plotted versus ln ðαhνÞ which has
been fitted with equation (7) in the linear region of the
curve, using the average-squares method, where Eg, n, and
B are fitted parameters; this process can show that the type
of optical transition of the pure epoxy/silicone mixture is
direct with the power factor n = 0:51, and the same result
was obtained for the epoxy/silicone N-CNT w% loaded.

To verify the validity of the method used, we plotted
ðαhνÞ2 versus hν as shown in Figure 2 according to the Tauc
model [69], giving the value of the direct optical gap. The
extrapolation of the linear part of the absorption edge
ðαhνÞ2 gives the band-gap energy. The use of the power fac-
tor n obtained gives a good agreement between the optical
gap bands and the Tauc slopes; almost the same optical
gap Eg is found (Table 1), so the correlation between experi-
ence and theory is compatible.

Obviously, the optical gap obtained is high for neat
epoxy (3.6 eV), because it is optically transparent, and this
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Figure 2: Plot of ðαhvÞ2 versus photon energy hv, for “epoxy/silicone N-CNT @ wt%” (@ = 0:00, 0.07, 0.1, and 0.2).

Table 1: The optical parameters: optical gap Eg, power factor (n), Tauc verified Eg, and Urbach energy Eu of the studied composite.

Composite
Parameters obtained by αhνð Þ = B hν − Eg

� �n
Tauc verified Eg (eV) Urbach energy EU (eV)

Eg (eV) Factor (n) Slope (eV·cm−1)1/n

Neat epoxy/silicone blend 3.61 0.51 4:20 108 3.6 0.19

Epoxy/silicone N-CNT 0.07wt% 3.55 0.50 3:18 108 3.38 0.43

Epoxy/silicone N-CNT 0.1wt% 3.42 0.54 3:20 108 3.3 0.61

Epoxy/silicone N-CNT 0.2wt% 3.19 0.51 2:98 108 3.1 1.33
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means that no absorption is possible in the visible; they can-
not be excited without being loaded with another element to
decrease Eg, so we load with N-CNT and we see that there is
a diminution in Eg in 3.6 to 3.1 eV (Table 1); this decrease of
the optical gap with the loading rate is essentially due to the
distortions caused in the network following the introduction
of impurity (loading) and the increase in the concentration
of free electrons; this characteristic would seem to be related
to the increase in the number of free carriers with increasing
the concentration of nanocomposite loaded in 0.07, 0.1, and
0.2 wt% N-CNT (Table 1 and Figure 3).

The system is progressively becoming more conducting
with addition of N-CNT; this seems to change slightly the
structure of the electronic bands of the neat epoxy. In addi-
tion, the variation of optical gap with increasing N-CNT
loaded concentration can also be correlated with surface
roughness and film density. When variations in interatomic
distance, length, or angle of bonding are produced in the
material, a so-called “disorder” occurs; in this case, the strip
edges described in the case of crystalline networks and
delimited by valence energy Ev and conduction energy Ec
can disappear (Figure 4); so-called localized states formed
in band tails at the borders of the optical gap in the valence
band and the conduction band are observed.

The forbidden gap is referred to as the pseudogap energy
for amorphous semiconductors as in the case of our com-
posites; we note Eg. The generation phenomena can only
happen if the light energy is larger than the band-gap energy
of a semiconductor. For a wide-band-gap semiconductor,
this band-gap energy is correspondent to the visible or ultra-
violet spectrum excitations. As a consequence, the increase
of charge carriers’ concentrations in the conduction band
may be slight, which maintains that such material type is
quite an electrical insulator. The electrical conductivity of
amorphous semiconductors can be tuned in several ways.
The basic idea is to create free charge carriers (electrons or

holes) in a wide-band-gap semiconductor through appropri-
ate fillers. This can create extrinsic impurities in the amor-
phous insulating materials which play a critical role for
improving their electrical conductivity. When the disorder
becomes too great, with the appearance of dangling links
or impurities in the material, one then recalls the notion of
Urbach parameter EU that corresponds to the transition
between the extended states of the valence band and the
localized states [70]. This phenomenon is exemplified with
the absorption coefficient (α) as a function of photon energy
near the edge of the band, exhibiting an exponential tail as
shown in Figure 5; according to Urbach’s law, the expression
of the absorption coefficient is of the form [71]

α = α0 exp hν
EU

� �
, ð8Þ

where h is Planck’s constant, α0 is a constant, ν is the fre-
quency of absorption, and EU is Urbach energy. To
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determine the disorder (Urbach energy) of thin films, we
plot the logarithm of α versus of hν:

ln αð Þ = ln α0ð Þ + hν
EU

: ð9Þ

It is shown that it is possible to obtain the information
on the dynamics of the electronic excitations of condensed
matter by Urbach’s rule. Thus, Urbach’s rule makes it fairly
easy to find the degree of the location of the states in the net-
work and to determine the effect of network disorder on the
location of the excitement [72].

Figure 5 shows the plot of ln ðαÞ versus energy hν for a
series of thin films of neat epoxy (Figure 5(a)) and epoxy/sil-
icone loaded at different concentrations (Figures 5(b)–5(d)).
Therefore, Urbach energy is determined by the reciprocal
slope of the adjusted experimental linear behavior; the
results of the study are shown in Table 1. The evolution of
the Urbach energy versus the wt% N-CNT loaded is pre-
sented in Figure 5; this figure shows that the Urbach energy

values were higher in loaded epoxy/silicone than in the neat,
and that the highest value was obtained in the most filled
loaded epoxy/silicon.

The increase in tail width can be explained by the crea-
tion of disorder and imperfections in the nanocomposite lat-
tice by addition of N-CNT.

The Urbach energy also depends on the optical energy
band Eg. The Urbach energy increases from 0.19 to 1.33 eV
while Eg decreases from 3.6 to 3.1 eV as the amount of N-
CNT increases (Table 1 and Figure 6).

The variation found in EU indicates that the N-CNT
addition creates a certain disorder, which leads to the struc-
tural characterization of the deposits, and the defects are
deduced from the Urbach energy exponential absorption tail
caused by fluctuations within the matrix optical gap. More-
over, it can be seen that the increase in Urbach’s energy
opposes the decreasing behavior of the optical gaps with
increasing w% N-CNT as shown in Figure 6, so Urbach’s
energy is consistent with the determined values of the optical
gap energy. There is also a significant change in slope above
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6 International Journal of Photoenergy



the percolation threshold, in wt% 0.07 of epoxy/silicone
composite film for optical gap and Urbach energy. Indeed,
above the percolation threshold, the electron carrier concen-
tration exceeds the density of the conduction band states, the
composites become semiconducting, and their number of
carriers increases significantly. Therefore, the optical gap
must decrease significantly, and the results are in accordance
with the theory of Burstein and Moss [73, 74].

3.2. Microstructural Insight. The cured composites exhibited
a very dense and relatively smooth surface. The SEM photo-
graphs revealed that N-CNT particles were found to be uni-
formly dispersed throughout the epoxy/silicone blend
matrix (Figure 7). This result revealed that there is a good
miscibility between the phases, in a good agreement with
elsewhere findings [75]. These findings might have a positive
impact on electrical conductivities of the studied thin films.

3.3. Electrical Properties of the Fabricated Thin Films. Con-
ductivity is a particular concern for semiconductor materials.
Measuring the conductivity of semiconductor films is not that
easy as it seems because it depends on a series of inseparable
factors, especially temperature. For Urbach energy and optical
band gap, the entire curve shows a significant slope change at a
specific threshold associated with the epoxy/silicone blend-
based composite films. The decrease in Eg and the increase
in EU become faster above this threshold. In order to evaluate
this behavior, it is more convenient to measure the relation-
ship between the DC and the change in filler load conductivity
at ambient temperature. DC conductivity is based on resistiv-
ity measurement. The two-point probe method [76] was used
to measure resistivity (it is expressed in Ω·cm) at room tem-
perature (RT). Note that resistivity represents its ability to stop

the flow of current. The resistivity measurement at ambient
temperature is performed by plotting the current-voltage
characteristics: I = f ðVÞ.

The I = f ðVÞ curves are exploited to extract the electrical
resistivity. We have measured the electrical resistivity of the
studied samples. Then, sheet resistance can be effectively
performed utilizing the following equation [77]:

RSh = R · W
L
: ð10Þ

Also, R = ρðL/AÞ = ρðL/d ·WÞ = ðρ/dÞ × ðL/WÞ in which

RS =
ρ

d
, ð11Þ
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Figure 7: SEM images of the surface of the thin film with 0.1 wt%
N-CNT.
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where ρ is the resistivity (Ω·cm), RS is electrical sheet resis-
tance (Ω), W is the width (cm), d is the thickness (cm)
which can be determined with optical measurements, and
Lpresents the length (cm), given that the conductivity is
given byσ = 1/ρin (Ω·cm)-1. The curve of DC conductivity
behavior versus filler concentrations is represented in the
inset of Figure 8.

As indicated in Figure 8, it is worthy to take note that elec-
trical conductivity of unloaded film is about 10-8 (Ω·cm)-1. It is
nonlinearly improved when N-CNT filler content is raised.
The fillers give rise then to the electrical conductivity.

3.4. Evaluation of Thin Film Performance through the
Calculation of Figure of Merit. The optical and electrical prop-
erties of the film are very important properties for all known
transparent conductive oxide (TCO) applications. Ideally, a good
TCO is identified by the optical transmission coefficient and
high electrical conductivity. Therefore, when both light trans-
mission and electrical conductivity are important, the material
is considered high performance. These two parameters are

inversely proportional and are related by a single factor called
the figure of merit (FOM). This later allows reasonable compar-
isons of film properties and allows estimation of their optoelec-
tronic properties [78]. The films represent a compromise
between conductivity and light transmission. The decrease in
resistivity involves an increase in the carrier concentration or
its mobility. Increasing the number of carriers leads to an
increase in absorption. In the present paper, the FOM of the
studied films can be evaluated, using the following equation [79]:

1
ρ:α = σ

α , ð12Þ

where

FOM = σ
α = −

1
RSh · ln T + Rð Þ , ð13Þ

where σ is the electric conductivity (Ω-1), α is the absorption
coefficient (cm-1), RSh is the surface resistance (Ω/sq), T is the
total transmission (%), and R is the total reflection (%). Here,
the best FOM is related to good optical transmission and electri-
cal conductivity. It has been shown that useful films must have a
FOM greater than or equal to 7 [80, 81]. Therefore, considering
expression (13), the variation of the FOM value of the studied
film with the filler concentration is gathered in Table 2. We
noticed that the figure of merit was improved by increasing the
load concentration.

4. Conclusion

The optical properties were studied from UV-visible spec-
troscopy to examine the transmission spectrum, optical
gap, Tauc verified gap, and Urbach energy, based on the
envelope method proposed by Swanepoel.

The study shows that the films obtained show a high
transmittance for the unloaded thin films of neat epoxy/sili-
cone blend about 88% and an average transmittance for the
loaded thin film of epoxy/silicone N-CNT about 42 to 67%
in the visible range and opaque in the UV range.

The results indicate that the film has a direct optical
transition with an optical gap of 3.61 eV for unloaded thin
films and 3.55 to 3.19 eV for loaded thin films depending
on the loading rate. The optical gap was appropriately
adapted to the direct transition model proposed by Tauc;
its value was 3.6 eV for unloaded thin films and from 3.38
to 3.1 eV for loaded thin films; then, Urbach’s energy is
determined which is inversely tended withEg which varies
from 0.19 eV for unloaded thin films and from 0.43 to
1.33 eV for loaded thin films. The obtained results show
the success of the method sol-gel to elaborate epoxy/silicone
loaded with N-CNT films with properties adapted to the
physical applications. These results also show that it was
possible to modify the loaded epoxy films by inserting a
loading. In the near future, this gives hope for applications
such like waveguides, electrochemistry, optical fibers, and
solar cells.
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Figure 8: Electrical conductivity of thin films (epoxy/silicone N-
CNT wt%) versus conducting filler concentrations.

Table 2: Variation of optical figure of merit versus conducting filler
concentrations.

Material
Surface
resistance
(Ω/cm2)

Visible absorption
coefficient α (cm-1)

Figure of
merit (Ω-

1 cm)

Neat epoxy/
silicone blend

200 0.20 0.02

Epoxy/silicone
N-CNT
0.07wt%

3 0.12 3

Epoxy/silicone
N-CNT 0.1wt%

3.8 0.05 5

Epoxy/silicone
N-CNT 0.2wt%

5 0.03 7
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