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The global demand for renewable energy is growing, and one of the proposed solutions to this energy crisis is the use of photovoltaic
systems. So far, they are a reliable solution, as they are nonpolluting and can be used almost anywhere on the planet. However, the
design and development of more efficient photovoltaic cells and modules require an accurate extraction of their intrinsic
parameters. Up to date, metaheuristic algorithms have proven to be the best methods to obtain accurate values of these intrinsic
parameters. Hence, to extract these parameters reliably and accurately, this paper presents an optimization method based on the
principle of bald eagle search (BES) during fish hunting. This search is divided into three steps: in the first stage (space
selection), the eagle selects the space with the largest number of prey; in the second stage (space search), the eagle moves into
the selected space to search for prey; in the third stage (dive), the eagle swings from the best position identified in the second
stage and determines the best point to hunt. Thus, we used the proposed BES algorithm to determine the parameters of the
single-diode model (SDM), the double-diode model (DDM), and the PV modules. This algorithm converges very quickly and
gives a root mean square error (RMSE) of 9.8602e — 04 for the single-diode model and 9.8248e — 4 for the dual-diode model.
The results obtained show that the proposed algorithm is more efficient than the other methods available in the literature, in
terms of the better accuracy of the results obtained. The good harmony of the I-V and P-V characteristic curve of the calculated
parameters with that of the measured data from a PV module/cell data sheet proves that the proposed BES should be used
among the methods provided in the literature for the identification of PV solar cell parameters.

1. Introduction

The energy demand of almost every country in the world is
increasing due to its large-scale industrial expansion, popu-
lation growth, and the continuous growth of per capita
energy consumption. It is worth noting that most of the
energy needs are in the form of electricity. In contrast, the
use of fossil fuel-based electricity generation has reached sat-
uration levels due to increased environmental concerns and

limited resources. Thus, the gaps between demand and pro-
duction in the future must be filled by renewable energy
sources [1]. However, as the solar energy obtained from a
solar PV module is not constant, a major challenge is there-
fore to maximise the use of solar energy due to the unpre-
dictability of the power output of PV modules caused by
the resulting variations in irradiance levels and cell temper-
ature [2]. Thus, the competition to optimize and increase
the efficiency of photovoltaic cells has led researchers to find
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methods to determine the intrinsic parameters of these cells.
In the literature review, several methods have been proposed
for the extraction of the parameters; each of these methods
has drawbacks, either in terms of complexity of use and
accuracy or in terms of convergence and speed. These
methods are classified into three categories: analytical,
numerical, and metaheuristic methods [3].

In the analytical method, a set of transcendental equa-
tions is solved to estimate the parameters of the solar cell.
The main advantage of the analytical method is the speed
of calculation and relatively accurate results. Analytical
methods are simple, with a short computation time. Some-
times, a single iteration is sufficient to obtain the result [4].
Although this approach is very popular, it is not always easy
to apply. In addition, they need many data points of the I-V
curve, which in turn complicates the computation [5]. Ana-
lytical methods include Lambert’s W function [6], Taylor
series expansion [7], and Chebyshev polynomials [8, 9].
Some of these methods estimate 5 parameters, and others
extract only the series and shunt resistance. The main weak-
ness of analytical methods is that they are only suitable for
standard conditions; consequently, they have poor results
with variable ambient conditions [10]. Numerical methods
with curve-fitting techniques are better than analytical
methods. The algorithms of these methods provide accurate
results by evaluating all points of the PV-IV curves using the
algorithm [10].

Metaheuristic algorithms are global optimization tech-
niques which do not impose any restrictions on the problem
formulation and have the ability to solve various complex
problems [11]. In the literature, many metaheuristic algo-
rithms have been suggested for extracting the parameters
of PV solar cell models, such as the Genetic Algorithm
(GA) [12, 13], the Cuckoo Search (CS) Algorithm [11, 14],
Particle Swarm Optimization (PSO) [15-17], Differential
Evolution (DE) algorithm [18], Artificial Bee Colony
(ABC) algorithm [19-21], Artificial Algorithm of Bee Swarm
Optimization (ABSO) [22], Bacterial Foraging Optimization
(BFO) algorithm [23, 24], Biogeography-Based Optimiza-
tion (BBO) algorithm [25], Floral Pollination Algorithm
(FPA) [26, 27], Jaya Optimization Algorithm (JAYA) [28,
29], Salp Swarm Algorithm (SSA) [30], Bird Mating Optimi-
zation (BMO) algorithm [31], Teaching-Learning-Based
Algorithm (TLBO) [20, 32-34], Whale Optimization Algo-
rithm (WOA) [35-37], Backtracking Search Algorithm
(BSA) [38], Sine-Cosine Algorithm (SCA) [39], Imperialist
Competitive Algorithm (ICA) [40, 41], Multiverse Opti-
mizer (MVO) algorithm [42], Ant-Lion Optimizer (ALO)
algorithm [43, 44], Eagle Strategy (ES) [45], Cat Swarm
Optimization (CSO) [46], Harmony Search (HS) [47], Fire-
fly Algorithm (FA) [48], Simplified Swarm Optimization
(SSO) [49], Moth-Flame Optimization (MFO) algorithm
[50], Water Cycle Algorithm (WCA) [51], Enhanced Vibra-
tion of Particles System (EVPS) [52], Harris Hawks Optimi-
zation (HHO) [53], Shuffled Frog Leaping (SFL) algorithm
[54], Metaphor-Free Dynamic Spherical Evolution (DSCE)
[55], enhanced metaphor-free gradient-based optimizer
(EGBO) [56], delayed dynamic step shuffling frog-leaping
algorithm (DDSFLA) [57], evolutionary shuffled frog leap-
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ing with memory pool (SFLBS) [58], enhanced spherical
evolution (LCNMSE) [59], random reselection particle
swarm optimization (PSOCS) [60], boosting slime mould
algorithm (CNMSMA) [61], and Teaching-Learning
Artificial-Based Bee Colony (TLABC) [20]. Comparative
with analytical and numerical approaches, these metaheuris-
tic algorithms were able to provide satisfactory results for the
extraction of PV model parameters. However, these meta-
heuristic algorithms still have inherent drawbacks. For
example, HS is very sensitive to the initial population, PSO
is easily subjected to premature convergence, ABC is poor
when the system is in operation, and CS suffers from slow
convergence [11].

This paper presents a comprehensive study on the esti-
mation of design parameters for SDM, DDM, and PV mod-
ules using the bald eagle search (BES) algorithm [62]. The
paper is organised as follows: Section 1, introduction; Sec-
tion 2, mathematical models and analysis of different models
for cells, modules, and PV; Section 3, illustration of the for-
mulation and optimization problem of models; in Section 4,
we present the methodology for applying the optimization
algorithm to estimate the model parameters; Section 4 pre-
sents the results and discussions and finally we conclude
the paper.

The main contribution of our work is that we are pro-
posing a new algorithm (BES) to extract the parameters of
different cell models (single diode, double diode) and photo-
voltaic panels. Comparisons were made between the BES
and the different algorithms on the extraction of the param-
eters of the three models. Comparing the results obtained
using BES with those obtained through other methods, the
accuracy and the reliability of the results can be clearly
observed. Thus, BES can be an effective alternative for the
parameter extraction from PV models.

2. Photovoltaic Model Description

In practical applications, a single-diode model (SDM) and
double-diode model (DDM) are commonly used to describe
the nonlinear voltage-current characteristics of photovoltaic
systems. This section describes the properties of each of
these two models [3, 52, 57].

2.1. Single-Diode Model. The single-diode model is shown in
Figure 1. This model is the most used in many researches
and better than the two-diode models (described after) due
to its behaviour which is closer to a PV cell than the series
resistance model (simplified) and its simplicity for the math-
ematical calculation [29].

I=I,, —1q—1Ig, (1)
V+R,x1I
= )
sh
Tl —1.{e q(V+ R, x1I) ) V+R xI
= — X - - @z — - —_—,
R AWTI T, Ry,
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F1GURE 1: Single-diode equivalent model.

with I; as the saturation current of the diode, g the
charge of one electron (q=1.60217646 x 1079C), n the ide-
ality factor of the diode, K Boltzmann’s constant (K =
1.3806503 x 107%*J/K), and T the temperature in Kelvin.

The equation model (3) is also called the implicit model
with five unknown parameters: Iph, I Ry, Ry, and n.

2.2. Two-Diode Model. Due to its simplicity and accuracy,
the above-mentioned single-diode model has been widely
used to describe the static characteristics of the photovoltaic
cell. However, the single-diode model has inherent draw-
backs as it assumes that the ideality factor of the diode
remains constant throughout the range of output voltage
variation [29]. Currently, the closest electrical model to a
photovoltaic cell is the two-diode (double exponential)
model, where the cell is of course presented as an electrical
current generator whose behaviour is equivalent to a current
source with two diodes in parallel. The two-diode model is
shown in Figure 2 [18, 52].

I= Iph —Ig = Igp = I,

o q(V + R xI) B
I=1I, I““(exp(nlxKxT 1

q(V+RS><I)
— EAL R 4
ISd2<eXp(n2><K><T 1 (4)
V4R xI

Rsh

The parameters of this double-diode model to be esti-
mated are I, Ligp» Igps Rys Ryy> 1> and ny,

D1 D2 Roy %

A4 A4

A4
IphA I
Xi Xi Ry
I N

4

Y Y

VIN,

e,
FiGURE 3: Equivalent model of a PV panel.
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F1GURE 4: Flowchart of BES algorithm.
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TaBLE 1: Parameter range of different PV models.

Parameters Single and double diode Photowatt-PWP201 STM6-40/36 STP6-120/36
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
L, (A) 0 1 0 2 0 2 0 8
Ty I Iy (uA) 0 1 0 50 0 50 0 50
R, (Q) 0 0.5 0 2 0 0.36 0 0.36
Ry, () 0 100 0 2000 0 1000 0 1500
1, Ny, Ny 1 2 1 50 1 60 1 50

TasLE 2: Comparison of the results obtained from single diode model R.T.C. France solar cell with other methods in the literature.

Algorithm Iy (A) Igq (pA) R, (Q) Ry, (Q) n RMSE

BES 0.7607 0.3230 0.0364 53.7185 1.4812 9.8602¢ — 04
ILSA [68] 0.7607 0.3229 0.0364 53.7204 1.4811 9.8602¢ — 04
GAMS [3] 0.7607 0.3230 0.0364 53.7185 1.4812 9.8602¢e — 04
ITLBO [69] 0.7607 0.3230 0.0364 53.7184 1.4812 9.8602¢ — 04
IMFO [67] 0.7607 0.3234 0.0363 53.7608 1.4813 9.8602¢ — 04
IJAYA [63] 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603¢ — 04
MADE (18] 0.7607 0.3230 0.0363 53.7185 1.4811 9.8602¢ — 04
EVPS [52] 0.7607 0.3250 0.0363 53.8960 1.4821 9.8609¢ — 04
GOTLBO [64] 0.7608 0.3297 0.0363 53.3664 1.4833 9.8856¢ — 04
TLABC [20] 0.7608 0.3230 0.0364 53.7164 1.4812 9.8602¢ — 04
CLPSO [70] 0.7608 0.3430 0.0361 54.1965 1.4873 9.9633¢ — 04
TLBO [71] 0.7607 0.3294 0.0363 54.3015 1.4831 9.8733¢—-03
TPTLBO [72] 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602¢ — 04
DSCE [55] 0.7607 0.3230 0.0363 53.7185 1.4811 9.8602¢ — 04
EGBO [56] 0.7608 0.3230 0.0364 53.7185 1.4811 9.8602¢ — 04
DDSFLA [57] 0.7608 0.3191 0.036 53.3770 1.4800 9.8630¢ — 04
SELBS (58] 0.7607 0.3230 0.0363 53.7185 1.4811 9.8602¢ — 04
LCNMSE [59] 0.7607 0.3230 0.0363 53.71 1.4811 9.8602e — 04
PSOCS [60] 0.7607 0.3230 0.0363 53.719 1.4812 9.8602¢ — 04

CNMSMA [61] 0.7607 0.3230 0.0363 53.7182 1.4811 9.8602¢e — 04
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FiGure 5: Characteristics of the measured and estimated curve with one diode: (a) I-V and (b) P-V.

2.3. The PV Model. The PV module model is shown in

parallel and in series, respectively. Thus, for this PV model,
Figure 3 [52, 63, 64].

five unknown parameters (I, I, Ry, Ry, and n) have to
be identified.

I=I,,xN,-I4xN, 2.4. Objective Function. For a single-diode model, the objec-
. a((VIN) + (R, /Np) xI) . tive function is expressed as
P nxKxT (5)

f(V, I,X) :IPh _Isd <exp (M) — 1) — w

>

V(N,/N,) + R xI nx KT Ron
Rsh ’ X= {Iph’Isd’ Rs’Rsh’n}'
(6)
where N, and N, represent the number of solar cells in For the double-diode model, the objective function is

$01.30 =ty (o (87D 1) - (e (D) ) V]

nlxKXT nzxKxT Rsh > (7)
X= {Iph’ Isdl’ ISdZ’ RS’ Rsh’ ny, nz}_
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TaBLE 3: The individual absolute error and relative error of a single-diode model obtained by BES.
Item Test data Simulated current Power

V (V) I(A) I (A) IAE (A) Py, (W) RE

1 -0.2057 0.7640 0.764112 0.000112 -0.157178 -0.000146
2 -0.1291 0.7620 0.762687 0.000687 -0.098463 -0.000902
3 —-0.0588 0.7605 0.761379 0.000879 -0.044769 -0.001156
4 0.0057 0.7605 0.760178 0.000322 0.004333 0.000423
5 0.0646 0.7600 0.759079 0.000921 0.049037 0.001211
6 0.1185 0.7590 0.758066 0.000934 0.089831 0.001230
7 0.1678 0.7570 0.757116 0.000116 0.127044 -0.000153
8 0.2132 0.7570 0.756166 0.000834 0.161214 0.001102
9 0.2545 0.7555 0.755111 0.000389 0.192176 0.000515
10 0.2924 0.7540 0.753689 0.000311 0.220379 0.000413
11 0.3269 0.7505 0.751417 0.000917 0.245638 -0.001222
12 0.3585 0.7465 0.747383 0.000883 0.267937 -0.001183
13 0.3873 0.7385 0.740152 0.001652 0.286661 -0.002238
14 0.4137 0.7280 0.727430 0.000570 0.300938 0.000783
15 0.4373 0.7065 0.707043 0.000543 0.309190 -0.000769
16 0.4590 0.6755 0.675389 0.000111 0.310003 0.000165
17 0.4784 0.6320 0.630925 0.001075 0.301835 0.001700
18 0.4960 0.5730 0.572180 0.000820 0.283801 0.001432
19 0.5119 0.4990 0.499971 0.000971 0.255935 -0.001945
20 0.5265 0.4130 0.414157 0.001157 0.218054 -0.002802
21 0.5398 0.3165 0.318194 0.001694 0.171761 -0.005352
22 0.5521 0.2120 0.213046 0.001046 0.117623 -0.004934
23 0.5633 0.1035 0.103375 0.000125 0.058231 0.001209
24 0.5736 -0.0100 -0.007341 0.002659 -0.004211 0.265897
25 0.5833 —-0.1230 -0.123850 0.000850 -0.072242 -0.006910
26 0.5900 —-0.2100 -0.206601 0.003399 -0.121895 0.016186
Total IAE 0.023977

The parameters can be estimated by minimizing the
objective function RMSE(X), i.e., by searching for the solu-
tion vector x [11, 16, 29, 65, 66].

RMSE(X) =

where X represents the parameters composed of the
solution vector. V and I are the measured voltage and cur-
rent, respectively. N represents the number of experiments.
Hence, to estimate the parameters is equivalent to search
the X in the range which minimizes the objective function.

3. Problem Formulation

The problem can be set as an optimization problem with the
objective to minimize the difference between the measured

and estimated current. The objective function (OF) is
defined as the root mean square error (RMSE), where the
error function is defined as the difference between the esti-
mated and experimental currents. It is expressed as follows
[11, 16, 29, 65, 66]:

N

Min (RMSE(X)) = | 5 (e~ iea (X)) 9)

where RMSE(X) is the objective function to minimize, N
is the number of points measured, I . is the measured cur-
rent, and I; .. (X) is the estimated current.

For a single-diode model, the fitness function is
expressed as

1Y
N2

Min (RMSE(X)) =

q
(Ik,mes - Iph + Isdl (exp ( (
k=1

Vk,mes + Rs X Ik,mes)) 1> +

Vk,mes + Rs X Ik,mes : (10)
n xKxT ’

Rsh



International Journal of Photoenergy 7
TABLE 4: Statistical results for R.T.C. France PV cell single diode.
. RMSE
Algorithm Min Mean Max Std.
BES 9.8602¢ - 04 9.8602¢ — 04 9.8602¢ — 04 2.6314e-13
ITLBO 9.8602¢e — 04 9.8602¢ — 04 9.8602¢ - 4 2.19¢-17
IMFO 9.8602¢ — 04 9.8767e — 04 9.9641e - 04 2.1810e - 06
IJAYA 9.8606e — 04 1.0261e - 03 1.1223e - 03 4.160e - 05
GOTLBO 9.8602¢ — 04 1.4388¢e - 03 1.0289¢ - 03 1.01e - 04
CLPSO 9.9455e - 04 1.0507e - 03 1.1865e — 04 4.6730e - 05
TPTLBO 9.8602¢ — 04 9.8602¢ — 04 9.8602¢ — 04 2.28e—-17
MADE 9.8602¢ — 04 9.8602¢ — 04 9.8602e — 04 2.47e-15
TLABC 9.8602¢ — 04 9.9852e — 04 1.2358¢ - 03 1.86e - 05
TLBO 9.8722e - 04 1.0476e — 04 1.0397e - 03 6.59¢ - 05
DSCE 9.8602¢e — 04 9.8602¢ — 04 9.8602¢ — 04 1.1320e - 09
EGBO 9.8602¢ — 04 9.9500e — 04 1.1161e - 04 2.62e - 05
DDSFLA 9.8630e — 04 1.0819¢ - 03 1.3056e - 03 8.6464e — 05
SFLBS 9.8602¢ — 04 9.8602¢ — 04 9.8602e — 04 1.4301e - 14
PSOCS 9.8602¢ — 04 9.8602¢ — 04 9.8603e — 04 1.7459¢ - 09
0.04
0.03 4
£ 002
=
0.01 4
0 . -
0 50 100 150
Iteration
FIGURE 6: Convergence curve during the parameter extraction for one diode.
with X =[I,,, [ 4, R, Ry, ] the parameters to be For the double-diode model, the fitness function is
estimated.
. 1 & q(Vk,mes + Rs X Ik,mes) q(Vk,mes + Rs X Ik,mes) Vk,mes + Rs X Ik,mes ?
Min (RMSE(X)) = J N; <1k,mes — I+ I <exp (W) - 1) +1 <exp <W> - 1> + T) .
(11)

with X = [Ty, Iy, Ligo R> Ryy» 1, 1] the parameters to
be estimated.

In this paper, the approach of bald eagle search (BES) is
used for the optimization of results of equations (10) and (11).

4. Bald Eagle Search (BES) Algorithm [62]

Bald eagles are occasional predators and are at the top of
the food chain only because of their size. Furthermore,

bald eagles are considered scavengers that feast on any
available, easy, and protein-rich food. Bald eagles are an
opportunistic forager that mainly select fish (alive or
dead), especially salmon, as the primary food. Bald eagles
frequently hunt from perch but may also hunt while in
flight. They are capable of spotting fish at enormous dis-
tances because obtaining fish from water is difficult. When
they start to search for food over a water spot, these eagles
set off in a specific direction and select a certain area to
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TaBLE 5: Comparison of the results obtained from the double-diode model R.T.C. France solar cell with other methods in the literature.

Algorithm I (A) Lg, (@A) I, (uA) R, (Q) Ry, (©) n, n, Best RMSE
BES 0.7608 0.2259 0.7493 0.0367 55.4854 1.4510 2.000 9.8248e -4
GAMS [3] 0.7608 0.2260 0.7594 0.0367 55.4854 1.2186 1.6247 9.8293e -4
ITLBO [69] 0.7608 0.2260 0.7493 0.0367 55.4854 1.4510 2.0000 9.8248e -4
IMFO [67] 0.7607 0.2350 0.6837 0.0367 55.2997 1.4537 2.0000 9.8252¢ -4
IJAYA [63] 0.7601 0.0050 0.7509 0.0376 77.8519 1.2186 1.6247 9.8293e -4
MADE [18] 0.7608 0.2246 0.7394 0.0368 55.4329 1.4505 1.9963 9.8261e —4
EVPS [52] 0.7607 0.2975 0.2504 0.0363 55.8827 1.4749 1.9726 9.8510e — 4
GOTLBO [64] 0.7608 0.2717 0.2595 0.0366 53.6187 1.4668 1.9161 9.9544¢ - 4
CLPSO [70] 0.7606 0.2875 0.2686 0.0366 55.2895 1.9586 1.4652 9.9224e -4
TLABC [20] 0.7608 0.4239 0.2401 0.0367 54.6680 1.9075 1.4567 9.8415e -4
TLBO [71] 0.7610 0.2947 0.1373 0.0366 53.1210 1.4730 1.9938 1.0069¢ - 03
TPTLBO [72] 0.7608 0.7434 0.2266 0.0367 55.4831 2.0000 1.4513 9.8248e - 04
DSCE [55] 0.7608 0.6980 0.2318 0.0367 55.3750 1.9999 1.4553 9.8250e — 04
EGBO [56] 0.7608 0.225 0.749 0.0367 55.4855 1.4510 2.0000 9.8248e - 04
DDSFLA [57] 0.7608 0.2931 0.2271 0.0365 54.3710 1.4730 2.0000 9.8434e - 04
SFLBS [58] 0.7607 0.7759 0.2285 0.0367 55.5496 2.0000 1.4498 9.8249¢ - 04
LCNMSE [59] 0.7607 0.7493 0.2259 0.0367 55.4854 2.0000 1.4510 9.8248e - 04
PSOCS [60] 0.7607 1.0000 0.1981 0.0368 56.172 2.0000 1.4401 9.8297¢ — 04
CNMSMA [61] 0.7607 0.2259 0.7506 0.0367 55.4854 1.4510 1.9999 9.8249¢ - 04
04 ‘ ‘ TWO dio@e moéel ‘ ‘ ’ 0.8 Two dio§e moéel
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FiGure 7: Characteristics of the measured and estimated curve with two diodes: (a) P-V and (b) I-V.
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TABLE 7: Statistical results for R.T.C. France PV cell two diodes.

Algorithm Min Mean R Max Std.
BES 9.8248e - 04 9.9518e - 04 1.1881e - 03 4.6013e - 05
ITLBO 9.8248e - 04 9.8812e - 04 9.8497e — 04 1.54e - 06
IMFO 9.8252¢ - 04 9.9737e - 04 1.1409¢e - 03 3.2939¢ - 05
IJAYA 9.8380e — 04 1.0240e - 03 1.3507¢ - 03 8.5647e — 05
GOTLBO 9.8407e — 04 1.4380e - 03 1.0453e - 03 1.01e - 04
CLPSO 9.9224e - 04 1.0522e - 03 1.1462e - 03 4.3141e - 05
TPTLBO 9.8248e - 04 9.8602¢ — 04 9.8363¢ - 04 9.31e-07
MADE 9.8261e - 04 9.8608e — 04 9.8786e — 04 8.02e - 05
TLABC 9.8415e — 04 1.0555e - 03 1.5048¢ - 03 1.54e - 06
TLBO 1.0069¢ - 03 1.1598e - 03 1.5206e - 03 1.56e — 04
EGBO 9.8248e - 04 9.8484e - 04 9.8681e - 04 1.66e — 04
DDSFLA 9.8434e - 04 1.1071e - 03 1.4225e - 03 1.3014e - 04
SFLBS 9.8249¢ - 04 9.8541e - 04 9.8787e - 04 1.7882e - 06
PSCOS 9.8297e - 04 1.0286e - 03 1.4133e¢-03 9.9217e - 05
begin the search. Accordingly, finding the search space is 0.1
achieved by self-searching and tracking other birds with 0.08 .
the concentration of fish (dead or alive).

The proposed BES algorithm mimics the behaviour of é 0.06 1
bald eagles during hunting to justify the consequences of 2 0.04
each hunting step. This algorithm is divided into three parts, 0.02 |
namely, search space selection, search in the selected search
space, and swooping. 0 0 P 100 150

Iteration

4.1. Selection Stage. In the selection stage, bald eagles identify
and select the best area (in terms of amount of food) within
the selected search space where they can hunt for prey.
Equation (12) presents this behaviour mathematically.

P =Py tax (P P;) xr, (12)

inew mean

where « is the position change control parameter that
takes a value between 1.5 and 2 and r is a random number
that takes a value between 0 and 1; P; ., and P; are updated
position and old position, respectively, at time i. In the selec-
tion step, the bald eagles select an area based on the informa-
tion available from the previous step. The eagles randomly
select another search area that differs from the previous
search area but is located nearby. Py, denotes the search
area that is currently selected by the bald eagles based on
the best position identified in their previous search. The
eagles randomly search all points near the previously
selected search space. Meanwhile, P, indicates that these
eagles have used all the information from the previous
points.

4.2. Search Stage. In the search stage, bald eagles search for
prey within the selected search space and move in different
directions within a spiral space to accelerate their search.

FiGure 8: Convergence curve during the parameter extraction for
the two-diode models.

The best position for the swoop is mathematically expressed
in

Pi,new :Pi +y(l) * (Pl _Pi+1> +x<i) * (Pl _Pmean>’ (13)
(i) = xr (i)

@) max (|xr])’ (14)
PO

YO max () -

xr(i) = r(i) * sin (6(i)), (16)

yr(i) = (i) = cos (6(1)), (17)

0(i) = a * 7 * rand, (18)

r(i) =0(i) + R * rand, (19)

where a is a parameter that takes a value between 5 and
10 for determining the corner point search in the central
point and R takes a value between 0.5 and 2 for determining
the number of search cycles.
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TaBLE 8: Comparison of the results obtained from Photowatt-PWP201 model with other methods in the literature.
Algorithm Ion (A) Ig (nA) R, () Ry, (Q) n RMSE
BES 1.0305 3.4823 1.2013 981.9824 48.6428 2.42507e - 03
GAMS [3] 1.0320 3.2681 1.2062 828.2928 1.3445 2.4426e - 03
ITLBO [69] 1.0305 3.4823 1.2013 981.9823 48.6428 2.4251e-03
IMFO [67] 1.0305 3.4783 1.2013 980.4672 48.6385 2.4251e-03
IJAYA [63] 1.0302 3.4703 1.2011 984.8760 48.6482 2.4251e-03
MADE [18] 1.0305 3.4823 1.2013 981.9823 48.6428 2.4251e-03
EVPS [52] 1.0318 3.2679 1.2066 845.759 1.3445 2.4267e¢-03
GOTLBO [64] 1.0305 3.4991 1.2008 989.6889 48.6611 2.4251e—-03
TLABC [20] 1.0306 3.4715 1.2017 972.9357 48.6313 2.4251e-03
TLBO [71] 1.0305 3.4872 1.2011 984.8760 48.6482 2.4251e-03
CLPSO [70] 1.0304 3.6131 1.1978 1017.0 48.7847 2.4280e — 03
TPTLBO [72] 1.0305 3.4823 1.2013 981.9822 48.6428 2.4251e-03
EGBO [56] 1.0305 3.48 1.2013 981.9822 48.6428 2.4151e—-03
DDSFLA [57] 1.0306 3.4473 1.2023 971.2500 48.6040 2.4252¢-03
SELBS (58] 1.0305 3.4822 1.2012 981.9804 48.6428 2.4251e-03
LCNMSE [59] 1.0315 3.4822 1.2013 981.9741 48.6428 2.4251e-03
PSOCS [60] 1.0305 3.4823 1.2013 981.98 48.643 2.4251e-03
12 Photowatt-PWP-201 15 Photowatt-PWP-201
14 - P

z 0.8 - S 10

‘g 0.6 4 E‘

UE 0.4 .

0.2 1
0 4
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Voltage [V] Voltage [V]
—— Estimate cuve —— Estimate cuve
e Experimental cuve e Experimental cuve

(a) I-V characteristic curve (b) P-V characteristic curve

F1GURE 9: Characteristics of the measured and estimated curve with one diode: (a) I-V and (b) P-V.
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TaBLE 10: The statistical results for Photowatt-PWP201.
. RMSE

Algorithm Min Mean Max Std.
BES 2.42507e -3 2.42507e -3 2.42507e -3 2.4532e¢—-17
ITLBO 2.4251e-03 2.4251e-03 2.4251e-03 1.27e-17
IMFO 2.4251e-03 2.4294e-03 2.5005e - 03 1.3831e - 05
IJAYA 2.4251e-03 2.4393e-03 2.4289%¢ - 03 3.78e - 06
GOTLBO 2.4251e-03 2.4852¢-03 2.4419¢-03 1.38¢ - 05
CLPSO 2.4280e - 03 2.4549¢ - 03 2.5432¢-03 2.5809¢e - 05
TPTLBO 2.4251e-03 2.4251e-03 2.4251e-03 1.20e-17
MADE 2.4250e - 03 2.4251e-03 2.4251e-03 1.96e - 16
TLABC 2.4251e-03 2.4265e - 03 2.4458¢ - 03 4.00e - 06
TLBO 2.4251e-03 2.4383e-03 2.5475e - 03 2.43e-05
EGBO 2.4251e-03 2.4251e-03 2.4251e-03 2.38e—17
DDSFLA 2.4252e - 03 2.4974e - 03 2.9281e-03 1.1000e - 04
SFLBS 2.4251e-03 2.4251e-03 2.4251e-03 3.9417e-17
PSOCS 2.4251e-03 2.4252¢-03 2.4282¢-03 5.9113e - 07

This algorithm uses the polar graph property to mathe- 0.15
matically represent this movement. This property also allows
the BES algorithm to discover new spaces and increase 0.1
diversification by multiplying the difference between the %
current point and the next point with the polar point in = 005
the y-axis and adding the difference between the current ’
point and the center point with the polar point in the x
-axis. We use the average solution in the search point 0

. . 0 50 100 150
because all search points move towards the centre point. Herati
teration

All points in the polar plot take a value between -1 and 1,
and we use a special equation for the shape of the spiral
(20-22).

4.3. Swooping Stage. In the swooping stage, bald eagles swing
from the best position in the search space to their target
prey. All points also move towards the best point. Equation
(14) mathematically illustrates this behaviour.

P;pew =rand # Py +x1(i) % (P; —cl * P

+y1(i) * (Pi = €2 % Pyegy)s

i,new mean)

Cl(i) = xr(i)

1(9) max(|xr\)’
no )

MO ()

where c1,c2 €[1,2].

FiGure 10: Convergence curve during the parameter extraction for
the two-diode models.

4.4. Complete BES Algorithm. The previous steps have pre-
sented the main components of BES, which include the
selection, search, and swooping steps. To describe the
remaining operations and facilitate the implementation of
BES, the flowchart algorithm is described in Figure 4:

5. Simulation Results and Analysis

The BES algorithm is applied to extract the SDM, DDM, and
PV module parameters. To examine in more detail the accu-
racy of the data obtained by the BES method for the opti-
mized parameters, the current was calculated from the
values estimated on the basis of the different models and
compared with that obtained from the experimental mea-
surements. The error in the measured values for each of
the models was evaluated by IAE (individual absolute error)
and RE (relative error), calculated as shown in equations
(21) and (22), respectively.

IAE = |Imeasured - Iestimated | > (2 1)
RE = Imeasured B Iestimated ) (22)
I measured
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TaBLE 11: Comparison of the results obtained from Solar STM6-40/36 PV model with other methods in the literature.
Algorithm Ion (A) L4 (uA) R, () Ry, (Q) n RMSE
BES 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298e - 03
ITLBO [69] 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298e - 03
IJAYA [63] 1.6637 1.8353 0.0040 15.9449 1.5263 1.7548e - 03
MADE [18] 1.6639 1.1387 0.0043 15.9283 1.5203 1.7298e - 03
GOTLBO [64] 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298e - 03
TPTLBO [72] 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298e — 03
TLABC [20] 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298e - 03
TLBO [71] 1.6638 1.7307 0.0043 15.9955 1.5198 1.7305¢ - 03
EGBO [56] 1.6639 1.73 0.0043 15.9283 1.5203 1.7298e - 03
STM6-40/36 STM6-40/36
2 30
1.8 1 -
1.6 - 25 1
— 141
<12l § 20 4
E 14 5 15
5081 z
S o6l £ 10
041 5 ]
024 -
0 0

10 12 14 16 18 20 22
Voltage [V]

0 2 4 6 8

—— Estimate cuve
e Experimental cuve

(a) I-V characteristic curve

FiGURE 11: Characteristics of the measured and estimated curve

The lower and upper bounds are expressed in Table 1
[18, 63, 67].

5.1. Case Study 1: Single-Diode Model. In this case study,
the BES optimization algorithm is used to extract the
parameters of the two proposed models of the R.T.C.
France solar cell. The measured data of the characteristic
curves (I-V) of the RT.C. France solar cell are reported
in [63, 67]. Table 2 includes the results of the parameters
estimated based on BES and those estimated based on
other optimization techniques such as ILSA [68], GAMS
[3], ITLBO [69], IMFO [67], IJAYA [63], MADE [18],
EVPS [52], GOTLBO [64], DDSFLA [57], EGBO [56],
and CLPSO [70]. From Table 2, it can be seen that for
the SDM, the application of the proposed BES algorithm
results in the minimum RMSE value which is equal to
9.8602¢ - 04.

From Figure 5, it can be clearly seen that the I-V and P
-V curves of the simulated data found by BES are very com-
patible with the experimental data.

From Table 3, it is evident that all IAE values are lower
than 3.399¢ - 03 and the RE values are between —6.91e —
03 and 2.65897e—01, demonstrating the high efficiency
identified by BES for the single-diode model.

10 12 14 16 18 20 22
Voltage [V]

0 2 4 6 8

—— Estimate cuve
e Experimental cuve

(b) P-V characteristic curve

Schutten Solar STM6-40/36 PV model: (a) I-V and (b) P-V.

Table 4 and Figure 6 show the statistical results and the
convergence curve, respectively. From Table 4, it can be seen
that BES obtains the best minimum value of RMSE.

5.2. Case Study 2: Two-Diode Model. Table 5 lists the results
obtained from the application of the BES technique to
extract the DDM parameters of the R.T.C. France solar cell.
To validate the applied technique, the table also presents the
results from the application of other techniques of GAMS
[3], ITLBO [69], IMFO [67], JAYA [63], MADE [18], EVPS
[52], GOTLBO [64], and CLPSO [70]. The table shows that
the BES optimization technique applied gives the best results
with the minimum objective function of RMSE being
0.000982484851801148.

From Figure 7, it can be clearly seen that the I-V and P
-V curves of the simulated data found by BES are very com-
patible with the experimental data.

From Table 6, it is evident that all IAE values are lower
than 2.836e — 03 and the RE values are between —1.1111e
—02 and 2.3090e — 01, demonstrating the high efficiency
identified by BES for the two-diode model.

Table 7 and Figure 8 show the statistical results and the
convergence curve, respectively. From Table 7, it can be seen
that BES obtains the best minimum value of RMSE.
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TaBLE 12: The individual absolute error and relative error of Schutten Solar STM6-40/36 PV model obtained by BES.
Item Test data Simulated current Power
V (V) I(A) I, (A) IAE (A) Py, (W) RE
1 0.000 1.663 1.663453 0.000453 0.000000 -0.000273
2 0.118 1.663 1.663247 0.000247 0.196263 -0.000149
3 2.237 1.661 1.659546 0.001454 3.712404 0.000875
4 5.434 1.653 1.653910 0.000910 8.987346 -0.000550
5 7.26 1.65 1.650561 0.000561 11.983074 -0.000340
6 9.68 1.645 1.645426 0.000426 15.927728 -0.000259
7 11.59 1.64 1.639232 0.000768 18.998696 0.000468
8 12.6 1.636 1.633714 0.002286 20.584802 0.001397
9 13.37 1.629 1.627293 0.001707 21.756902 0.001048
10 14.09 1.619 1.618328 0.000672 22.802247 0.000415
11 14.88 1.597 1.603120 0.006120 23.854427 -0.003832
12 15.59 1.581 1.581642 0.000642 24.657796 -0.000406
13 16.4 1.542 1.542430 0.000430 25.295849 -0.000279
14 16.71 1.524 1.521318 0.002682 25.421217 0.001760
15 16.98 1.5 1.499347 0.000653 25.458914 0.000435
16 17.13 1.485 1.485445 0.000445 25.445677 -0.000300
17 17.32 1.465 1.465849 0.000849 25.388510 -0.000580
18 17.91 1.388 1.387887 0.000113 24.857056 0.000081
19 19.08 1.118 1.119065 0.001065 21.351757 -0.000952
20 22.02 0 0.002386 0.002386 0.050143 —
Total TAE 0.02486996
TaBLE 13: The statistical results for Photowatt STM6-40/36.
Algorithm Min Mean s Max Std.
BES 1.7298e - 03 1.7298e - 03 1.7298e - 03 5.6525e¢—- 18
ITLBO 1.7298e - 03 1.7298e - 03 1.7298e - 03 7.13e-03
IJAYA 17548e - 03 2.5223e-03 1.9305e - 03 1.91e - 04
GOTLBO 1.7298¢ - 03 1.1244¢ - 03 4.2347¢ - 03 6.41e - 02
TPTLBO 1.7298e - 03 1.7298e - 03 1.7298e - 03 4.96e—18
MADE 1.7298e - 03 1.7298e - 03 1.7298e - 03 8.4%¢ - 14
TLABC 1.7298¢ - 03 2.1827¢ - 03 6.5053¢ — 03 9.22¢ - 04
TLBO 1.7305e - 03 4.3487¢ - 03 2.0593e - 02 3.45¢ - 03
EGBO 1.7298e - 03 1.7298e - 03 1.7298e - 03 8.22e—-18
0.15
5.3. Case Study 3: Photowatt-PWP201 PV Module. To fur-
ther validate the BES technique and show its effectiveness » 0.1
in estimating the optimal parameters of different models, g
we used this algorithm on the Photowatt-PWP201 PV mod- = .05
ule, which consists of 36 silicon cells connected in series
under operating conditions of 1000 W/m?* of solar irradia-
tion and a cell temperature of 45°C. The results obtained 0 0 50 100 150
were compared with those reported in the literature based Iteration

on other techniques.
The results have been listed in Table 8. This table also pre-
sents a comparison with the results of other techniques from

FiGure 12: Convergence curve during the parameter extraction for
Solar STM6-40/36 PV model.
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TaBLE 14: Comparison of the results obtained from Solar STP6-120/36 PV model with other methods in the literature.

Algorithm I (A) I4 (p A) R, () Rh (Q) n RMSE
BES 74716 2.3218 0.0046 23.0265 1.2596 1.6782¢-03
ITLBO [69] 7.4725 2.3350 0.0046 22.2199 1.2601 1.6601e — 02
IJAYA [63] 7.4672 2.2536 0.0046 27.5925 1.2571 1.6731e - 02
MADE [18] 7.4725 2.3350 0.0046 22.2199 1.2601 1.6601e — 02
GOTLBO [64] 7.4725 2.3350 0.0046 22.2199 1.2601 1.6601e — 02
TPTLBO [72] 7.4757 3.0100 0.0046 22.2199 1.2601 3.0343e - 01
TLABC [20] 7.4725 2.3349 0.0046 22.2117 1.2601 1.6601e — 02
TLBO [71] 7.4782 1.9194 0.0047 13.2688 1.2440 1.6892¢ — 02
EGBO [56] 7.4725 2.33 0.0046 22.2199 1.2601 1.6601e — 02
STP6-120/36 STP6-120/36
8 ‘ : ‘ 120 - - -
il 100 {-
61
s 80 {-
= E
5 4 5 60 1
5 g
O 31 ~ 20l
24
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FiGURE 13: Characteristics of the measured and estimated curve SPT6-120/36: (a) I-V and (b) P-V.

the literature ITLBO [69], IMFO [67], IJAYA [63],and MADE
[18]. The comparison validated the effectiveness of BES com-
pared to other techniques. The RMSE based on BES applica-
tion to extract the parameters of PV model is equal to
0.00242507 which is better. From Figure 9, it can be clearly
seen that the I-V and P-V curves of the simulated data found
by BES are very compatible with the experimental data.

From Table 9, it is evident that all IAE values are lower
than 4.418e — 03 and the RE values are between —6.44e —
03 and 1.3167e — 01, demonstrating the high efficiency iden-
tified by BES for the PV model.

Table 10 and Figure 10 show the statistical results and
the convergence curve, respectively. From Table 10, it can
be seen BES obtains the best minimum value of RMSE.

54. Case Study 4: Schutten Solar STM6-40/36
Monocrystalline PV Module. Here, we use the BES algorithm
to extract the parameters of the Schutten Solar STM6-40/36
PV module. It contains 36 polycrystalline cells (size 156
mm X 156 mm) connected in series. The data set contains
20 data points measured at T'=51°C [66]. For the STM6-

40/36 PV module model, Table 11 shows the results of the
parameters obtained from ITLBO, IJAYA, GOTLBO,
TPTLBO .... From the results, it can be seen that the BES
provides a better RMSE: 0.00172981370994066.

In addition, to confirm the accuracy of the extracted
parameters, Figure 11 shows the I-V and P-V curves. It is
evident that the simulated data from the BES match well
with the measured data in the voltage range for both I-V
and P-V curves.

In addition, the IAE and RE (relative error) are given in
Table 12. The TAE describes the error between the extracted
parameter and the measured data. In other words, the
extracted parameters are better when the IAE is small
According to Table 12, the sum of the IAE is less than 2.50
E — 02, which indicates that the measured and extracted data
coincide well.

To further prove the reliability of the BES, the statistical
results containing the minimum (Min), maximum (Max),
mean value (Mean), and standard deviation (Std.) are ana-
lyzed. Table 13 shows the statistical results, and Figure 12
shows the convergence curve of Photowatt STM6-40/36.
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TaBLE 15: The individual absolute error and relative error of Solar STP6-120/36 PV model obtained by BES.

Item Test data Simulated current Power

V (V) I(A) I, (A) IAE (A) P, (W) RE
1 0 7.48 7.470103 0.009897 91.007384 0.001323
2 9.06 7.45 7.452081 0.002081 93.400729 -0.000279
3 9.47 7.42 7.448954 0.028954 95.858207 -0.003902
4 10.32 7.44 7.438716 0.001284 98.086936 0.000173
5 11.17 741 7.420020 0.010020 100.437238 -0.001352
6 11.81 7.38 7.395783 0.015783 101.453230 -0.002139
7 12.36 7.37 7.363057 0.006943 101.740893 0.000942
8 12.74 7.34 7.331297 0.008703 101.079430 0.001186
9 13.16 7.29 7.284058 0.005942 99.739277 0.000815
10 13.59 7.23 7.217582 0.012418 97.226742 0.001718
11 14.17 7.1 7.088020 0.011980 94.528700 0.001687
12 14.58 6.97 6.958383 0.011617 88.460738 0.001667
13 14.93 6.83 6.814527 0.015473 86.006230 0.002265
14 15.39 6.58 6.567864 0.012136 81.881540 0.001844
15 15.71 6.36 6.348776 0.011224 78.409965 0.001765
16 16.08 6 6.046439 0.046439 74.377396 -0.007740
17 16.34 5.75 5.785110 0.035110 67.754636 -0.006106
18 16.76 527 5.278087 0.008087 0.274440 -0.001535
19 16.9 5.07 5.089126 0.019126 91.007384 -0.003772
20 17.1 4.79 4.788394 0.001606 93.400729 0.000335
21 17.25 4.56 4.545505 0.014495 95.858207 0.003179
22 17.41 429 4.272108 0.017892 98.086936 0.004171
23 17.65 3.83 3.838790 0.008790 100.437238 -0.002295
24 19.21 0 0.014286 0.014286 101.453230 —
Total TAE 0.330286

TaBLE 16: The statistical results for Photowatt STP6-120/36 obtained by BES.

Algorithm Min Mean s Max Std.
BES 1.6782e - 02 1.69034¢ — 02 1.7223e - 02 1.1219¢ - 04
ITLBO 1.6601e - 02 1.6601e — 02 1.6601e - 02 7.22e-17
IJAYA 1.6731e - 02 1.6891e - 02 1.7304e - 02 1.12e - 04
GOTLBO 1.6601e — 02 2.9588¢ — 02 1.8099¢ — 01 3.05¢ — 02
MADE 1.6601e — 02 1.6601e — 02 1.6601e — 02 1.69¢ - 15
TLABC 1.6601¢ — 02 1.6963¢ — 02 2.1497¢ - 02 9.47¢ - 04
TLBO 1.6892¢ - 02 3.6690e — 02 2.1604e - 02 3.51e-02

EGBO 1.6601e - 02 1.6601e — 04 1.6601e - 02 1.47e-16
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FiGure 14: Convergence curve during the parameter extraction for
Solar STP6-120/36 PV model.

5.5. Case Study 5: STP6-120/36 Module. The polycrystalline
STP6-120/36 has 36 cells connected in series and is mea-
sured under 1000 W/m” at 55°C. The current-voltage data
was obtained from [72]. The results have been listed in
Table 14. This table also presents a comparison with the
results of other techniques from the literature ITLBO [69],
IMFO [67], IJAYA [63], TLABC [20], GOTLBO [64], and
MADE [18]. The comparison validated the effectiveness of
BES compared to other techniques. The RMSE based on
BES application to extract the parameters of PV model
equals 0.0167828544285882. From Figure 13, it can be
clearly seen that the I-V and P-V curves of the simulated
data found by BES are very compatible with the experimen-
tal data.

In addition, the TAE and RE (relative error) are given in
Table 15. The IAE describes the error between the extracted
parameter and the measured data. In other words, the
extracted parameters are better when the IAE is small.
According to Table 15, the sum of the IAE is less than 4.64
E — 02, which indicates that the measured and extracted data
coincide well.

Table 16 and Figure 14 show the statistical results and
the convergence curve, respectively.

6. Conclusion

In this paper, we have presented a new and very recent algo-
rithm based on the metaheuristic technique, called the bald
eagle search (BES) algorithm to extract the best values of cell
and panel parameters. To demonstrate the performance of
the algorithm, many cases were implemented using the sin-
gle-diode, double-diode, and PV panel models. The current-
voltage and power-voltage characteristics of the measured
and estimated data show the good accuracy of the proposed
method. Simulation result after 20 tests and comparisons
with other methods show the accuracy and validity of the
method for extracting the parameters of a PV cell and mod-
ule. It has the advantage of producing stable results of each
test result and converging rapidly (in less than 50 iterations).
The method is verified using practical data from various
manufacturers. Its accuracy is confirmed by comparing its
RMSE with many metaheuristic methods. In all considered
scenarios, a high level of accuracy is obtained. Therefore,
the excellent correspondence of the simulated I-V and P-V
curves with the measured characteristics confirms the accu-
racy of the BES and its applicability to parameter estimation
and for solving the optimization problems of other power
systems.
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