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The microstructure is the key factor for quality discriminate of coke. In view of the characteristics of coke optical tissue (COT), a
segmentation method of coke microstructures based on adaptive clustering was proposed. According to the strategy of
multiresolution, adaptive threshold binarization and morphological filtering were carried out on COT images with lower
resolution. The contour of the COT body was detected through the relationship checking between contours in the binary
image, and hence, COT pixels were picked out to cluster for tissue segmentation. In order to get the optimum segmentation
for each tissue, an advanced K-means method with adaptive clustering centers was provided according to the Calinski-
Harabasz score. Meanwhile, Euclidean distance was substituted with Mahalanobis distance between each pixel in HSV space to
improve the accuracy. The experimental results show that compared with the traditional K-means algorithm, FCM algorithm,
and Meanshift algorithm, the adaptive clustering algorithm proposed in this paper is more accurate in the segmentation of
various tissue components in COT images, and the accuracy of tissue segmentation reaches 94.3500%.

1. Introduction

In recent years, blast furnace ironmaking technology had
developed with the continuous development of the steel
industry. So blast furnace ironmaking also puts forward
higher requirements on the metallurgical properties of coke
[1–3]. As an indispensable raw material and fuel in the blast
furnace ironmaking, coke plays the role of heating agent,
reducing agent, carburizing agent, and material column
framework in the blast furnace [4–7]. Coke structures are
one of the most important factors affecting the quality of
coke. Its optical tissue composition has a direct impact on
the reactivity of coke, its strength after reaction, and its ther-
mal conductivity. Therefore, analysis and study of coke opti-
cal tissues are of great practical significance for blast furnace
ironmaking and coking coal blending [8–10].

The relationship between coke microstructures and coke
properties had attracted a great deal of research attention
since the 1980s. For example, Singh et al. [11] studied the

thermal resistance of coking coal, Yang et al. [12] discussed
the carbonization properties and microstructures of coke,
and Lin et al. [13] studied the influence of semicoke optical
structures on the carbonization properties. In recent years,
the use of digital image processing technology for the analy-
sis and identification of coke microstructures has also
aroused widespread interest, but research results are mainly
focused on the determination of coke porosity parameters;
the automated research on coke microstructures progresses
slowly [14–24]. Based on image processing methods, Ghosh
et al. [14] measured coke microstructure information about
porosity, pore size distribution, pore wall thickness, radius,
circumference, shape, and other structural parameters.
Compared with volume analysis, image analysis provides
more information on coke structures. Shohei et al. [15]
established a coke model with a microstructure in order to
study the influence of microstructures including pores,
cracks, and inert materials on the shrinkage of coke and per-
formed thermal stress analysis using finite element methods.
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Segmentation of COTs is a prerequisite for subsequent
COT identification and classification. Chen et al. [25] inte-
grated an iterative mesh clustering algorithm into the image
segmentation algorithm to improve the segmentation accu-
racy of COTs. The algorithm worked well for the segmenta-
tion of COTs and provided a reliable basis for the automatic
identification of coke microstructures. Zhou et al. [26] pro-
posed a segmentation algorithm combining mean drift and
edge confidence for COT images. The experimental results
showed that the algorithm was more reasonable and effective
in partitioning between the different optical textures of the
coke. However, the above two methods were clustered on
the whole COT image, the algorithm is not highly targeted.
In this paper, the binary image of the COT image was
obtained based on the adaptive threshold binarization and
morphological filtering algorithm. While finding all the con-
tours of the binary image, the contour hierarchy matrix and
the contour area coefficient were introduced to filter out the
contour of the main body in the COT image, and then, the
pixels of the main body were obtained. Finally, the pixels
in the main body were subjected to adaptive clustering with
K-means to realize the segmentation of each tissue compo-
nent, comparing with the tissue segmentation algorithms
in literature [25] and literature [26]; the algorithm proposed
eliminates the effect of the pore area pixels on the effective-
ness of clustering and improves the processing speed of the
algorithm; it is more targeted to directly cluster the tissue
pixels of the main body. At the same time, the clustering fea-
ture of this article is color feature, which is simpler than tex-
ture feature. In addition, by introducing the hierarchical
matrix, the main body of the optical tissue image can be
extracted to the greatest extent. On the basis of traditional
K-means, certain improvements have been made to the sim-
ilarity measurement method, the determination of the opti-
mal cluster K value, and the selection of the initial cluster
centers to form the adaptive clustering algorithm of this arti-
cle, making the result of clustering tissue segmentation
closer to the result of manual tissue segmentation, which
also lays the foundation for the subsequent automatic iden-
tification and classification of various tissue components in
COT images.

2. Acquisition and Characterization of
COT Images

2.1. Acquisition of COT Image. The COTs are the micro-
structures observed under a polarized light microscope with
a magnification of 400-600 [27]. The micrograph acquisition
process is shown Figure 1.

As shown in Figure 1, first, the focal light film specimen
was placed on a carrier plate with mastic and flattened, then
placed on the loading platforms to focus and correct the cen-
ter of the objective lens. Second, under the incident halogen
light source, adjust the light source aperture and field of view
aperture so that the brightness of the field of view in the eve-
lens is moderate, the light is uniform, and the image is clear.
Finally, use the AxioCam HRC CCD camera to capture the
observed COT image, the light signal into electrical signals
after the signal to form a digital image on the computer.

2.2. Characteristics of COTs. Typical COTs are isotropic,
mosaic tissue (coarse grain, medium grain, and fine grain),
fiber tissue, flake tissue, inert tissue, etc. (Figure 2). Its mor-
phological characteristics in the microscopic state are as
follows:

(1) Inert tissue: irregular shape, isochromatic region of
orange or red in color, relatively gentle changes with
light change

(2) Fiber tissue: brighter color with green, trip-like dis-
tribution, and certain continuity

(3) Mosaic tissue: small isochromatic regions, the large
dispersion, and widely distributed

(4) Flake tissue: brighter color with thin edges, regular
shape, small interconnection area, and good color
consistency

3. Pixel Extraction of the Main Body in
COT Image

The focal light film specimen was made by embedding toner
into a transparent gel and curing, grinding, and polishing
[28]. Since the gelatinous material does not reflect light
when imaged under a polarizing microscope, COT images
often consist of a darker background (pixels that are not in
the main body) and colored pixels in the main body that
reflects polarized light (Figure 2). In order to obtain each tis-
sue from COT image more accurately, reduce the input of
subsequent pixels, and improve the pertinence and effective-
ness of clustering, the pixels of the main body that reflect
polarized light should be segmented first.

According to the characteristics of COTs, this paper pro-
posed a tracking method based on contour level. The impli-
cative relationship between the contours was used to obtain
the contour of the pixels in the main body and then obtains
the pixels in the main body. Meanwhile, according to the
strategy of multiresolution, the contour of the main body is
more holistic at smaller resolutions. Therefore, the algorithm
first performs multiresolution decomposition of the COT
image to ensure the integrity of the contour while improving
the processing speed. The multiresolution decomposition in
this paper is 0.25 times the original image size; in other
words, the width and height of the image become half of
the original size. The processing is shown in Figure 3.

3.1. Adaptive Threshold Binarization. It can be seen from
Figure 2 that the main body of the COT image is brighter
than the background area. In order to extract the brighter
tissue in the main body from the darker background, the
image needs to be presegmented. Commonly used image
segmentation algorithms include threshold-based segmenta-
tion algorithms, such as fixed threshold segmentation, Otsu
segmentation, and adaptive threshold binarization segmen-
tation; edge detection-based segmentation algorithms, such
as Canny edge detection algorithm; and region-based seg-
mentation algorithms, such as watershed segmentation algo-
rithm and morphology segmentation algorithm [29].
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Figure 1: The acquisition process of COT image.
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Figure 2: Several common COT images: (a) fine-grained mosaic tissue; (b) medium-grained mosaic tissue; (c) coarse-grained mosaic tissue;
(d) coarse-grained incomplete fiber tissue; (e) complete fiber tissue; (f) flake tissue.
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It can be seen from Figure 4 that the three traditional
algorithms of Otsu, morphology, and watershed do not
perform well in the segmentation of the main body in
the COT image, and there are serious undersegmentation
in the inert area at the upper left of the image (circled
by the red ellipse). In contrast, the watershed algorithm
performs better, but there is still a certain oversegmenta-
tion (circled by the red ellipse in Figure 4(f)) in the pore
area. If the image was directly processed by the adaptive
threshold algorithm, the entire main body will have a
more serious undersegmentation (Figure 4(e)). In order
to avoid the above problems, this paper introduces an
adaptive threshold binarization segmentation algorithm,
calculates the threshold value for each pixel separately,
and averages the n × n pixels around the pixel point Pði,
jÞ to obtain the threshold value F̂; then, the result of sub-
tracting the threshold offset C from F̂ is used as the
threshold of the pixel [30], the schematic diagram of the
binarization threshold was shown in Figure 5 which is

F i, jð Þ = F̂ i, jð Þ‐C: ð1Þ

There are two methods of averaging, one is the arith-
metic average of local neighborhood blocks, the other is
the weighted average of local neighborhood blocks, which
replaces the original pixel grayscale with the weighted
average of the pixel grayscale within the pixel neighbor-
hood blocks [31].

F̂ i, jð Þ = 〠
M,Nð Þ

P i, jð ÞQ i, j, M, Nð Þ,

M, Nð Þ̂ÎIAij,

8><
>:

ð2Þ

where Qði, j,M,NÞ is the weighted value corresponding to
pixel ðM, NÞ within neighborhood Aij and Pði, jÞ is the
central pixel value.

A Gaussian weighted average algorithm was chosen,
whose weight Qði, j,M,NÞ is a Gaussian transformation
of the grayscale difference between these neighborhood
pixels and the central pixel. The Gaussian function curve
shape is similar to the general correlation function curve
shape. So this is an ideal algorithm for averaging weighted

characteristics.

Q i, j, M, Nð Þ = 1/2πσ2
� �

e‐ M‐ið Þ2+ N‐jð Þ2½ �/2σ2

∑ M,Nð Þ̂ÎIAij
1/2πσ2ð Þe‐ M‐ið Þ2+ N‐jð Þ2½ �/2σ2 ,

M, Nð Þ̂ÎIAij:

8>>><
>>>:

ð3Þ

It can be seen from Figure 6(b) that the COT image after
adaptive threshold binarization still has denser noise in the
main body. However, the pixel values of the nonmain body
are basically the same. After morphological filtering, the noise
of the main body has been suppressed to a certain extent.

3.2. Contour Screening of the Main Body. The arriving image
after adaptive threshold binarization and morphological fil-
tering is the binarized image, where the contours are the
continuous edge formed by the white pixels in the 8 neigh-
borhoods of all black pixels in the binarized image. A topo-
logical analysis of an optically organized binarized image
was performed, and a binarized image row scans to deter-
mine all contours and their hierarchical relationships. Since
these contours have a one-to-one correspondence with the
regions of the original image, they can be used to represent
the original image [32].

Figure 7(a) is a line scan of a local binarized image of size
9 × 9 with one complete contour, where 1 indicates normal-
ized white pixels and 0 indicates black pixels. Scan line by line
from the first to the ninth line, if a pixel value of 0 is encoun-
tered in the scan, starting from the first neighboring pixel on
the left, traverse all the pixels in its 8 neighborhoods clockwise.
The pixel value of 1 is the contour pixel during traversa, which
was shown by the green pixels in Figures 7(b) and 7(c).

All contours can be obtained by performing the above
process on the processed binarized image. Based on the con-
nectivity of the contour region, the complete contours that
emerge during the scan are numbered and recorded as Ci.
i is added with 1 each time a new contour was found, so that
all contours in the binarized image can be obtained. Finally,
the coordinates (pin, qin) of the ith contour pixel are stored in
the corresponding set of contour Mi.

Mi = pi1, qi1ð Þ, pi2, qi2ð Þ, pi3, qi3ð ÞL pin, qinð Þf g: ð4Þ

The contours extracted in the binarized image usually
include small and incomplete edges, so it is necessary to filter
out the noise contours and retain the contours of the main
body. A contour hierarchy-based tracking method was pro-
posed to analyze the contour hierarchy matrix H½i� and then
use the connotation relationship between contours to obtain
the contours of the main body in the COT image. The flow-
chart of the contour extraction algorithm is shown in Figure 8.

Some of the contours may be inside some other con-
tours, in which case the outer contours are referred to as
the parent contours and the inner contours as the child con-
tours, while some other contours have no containment rela-
tionship with each other and are of the same level as each

Start Morphological filtering

Get all contours

Contours screening of the main
body

Segmentation of the main body
in COT image

End

Input image

Multi-resolution decomposition

Image preprocessing

Adaptive threshold binarization

Figure 3: Flowchart of the body in COT image extraction
algorithm.
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other. This implication relation is the hierarchy of contours,
which can be represented by the hierarchical matrix [32].

Each hierarchical matrix is an array of four elements ½
Ai Bi Ci Di�, where Ai represents the serial number of the
next contour in the same level, Bi represents the serial num-
ber of previous contour in the same level, Ci represents the
serial number of its first child contour, and Di represents
the serial number of its paternity contour. If the specified
contour does not exist, it was indicated by -1.

Analyze with the schematic diagram of the contour hier-
archy in Figure 9. The red number is the contour ordinal.

The green number is the organizational, for example, the
organization of contour 0 is 0, whose next contour in the
same level is contour 4, there is no previous contour, the
child contour is contour 1, and there is no parent contour,
so its hierarchical matrix is [4 -1 1 -1]. The hierarchical
matrices of the other contours are shown in Table 1.

Based on the characteristics of the contour image, it is
known that all contours can be divided into three main cat-
egories, namely, the largest contour, the contours inside the
largest contour, and the contours outside the largest contour.

The algorithm proposed traverses the hierarchical matrix
H½i� = ½Ai Bi Ci Di� of each contour and judges whether Di is
-1. If Di is -1, it means that the contour has no parent contour,
then the contour that meets this condition is the contour of the
largest contour, and the same level of the largest contour of the
third component Ci of the hierarchical matrix of these contours
is the serial number of their first child contour, and then tra-
verse the first two components Ai and Bi of these child contour

300 𝜇m

(a) (b)

(c) (d)

(e) (f)

Figure 4: The segmentation effect of several traditional algorithms in the main body: (a) original; (b) Otsu; (c) morphological; (d)
watershed; (e) fix threshold; (f) adaptive threshold.
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Figure 5: Schematic diagram of binarization correspondence.
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hierarchical matrices to get other child contours of the same
level contours. If Di is not -1, it means that the contour has a
parent contour. Similarly, traverse the first two components
Ai and Bi of this part of the contour to get all the child contours
of this part of the contour. Finally, if both Di and Ci are -1, it
means that this contour has neither a parent contour nor a child
contour, and then, this part of the contours was directly
discarded.

Following the filtering rule above, the contours retained
in Figure 9 have ordinal numbers 0, 1, 2, and 3. That is the
largest contour and the internal contour of the largest con-
tour. All contours of the sample image were processed in
the same way, and the results are shown in Figure 10(c).

As can be seen from Figure 10(c), there are still many
small contours inside the largest contour. In combination
with the COT image features, some of these internal con-
tours are the contours of the main body in COT image, while
others are noise contours in the main body. In order to
obtain the pixels in the main body more completely, further
filtering of the contours within the largest contour is
required. Therefore, the contour coefficient βi is introduced
from the point of view of the contour envelope area.

βi =
Si

Smax
 βi ∈ 0, 1ð �: ð5Þ

300 𝜇m

(a) (b)

(c)

Figure 6: Image binarization: (a) original; (b) adaptive threshold binarization; (c) morphological filtering adaptive threshold binarization.
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Figure 7: Binarized image lines scan to determine contour: (a) local binarized image pixel line scan; (b) third line scan; (c) seventh line scan.
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In formula (5), Si is the area of each contour, Smax is the
envelope area of the largest contour, and set the appropriate
contour retention confidence level η. If η ≤ βi, this contour
was retained; otherwise, this contour was eliminated. As
shown in Figure 10(d), the noise contours inside the largest

contour are basically eliminated, leaving only part of the
larger pore contours. These contours are the contours of
the main body of the COT image. Match the contour of
the main body with the original image, as shown in
Figure 10(e); basically, all the pixels of the main body in
the original image are selected. The segmentation of the
main body in the original image was finally realized, and
the segmentation result is shown in Figure 10(f).

4. Color Space Transformation

RGB is a common model for displaying color images. In the
RGB color space, R, G, B three components have strong cor-
relation. So it is not good at color image segmentation and
analysis. Therefore, it is necessary to select a more appropri-
ate color space for clustering. Common color spaces include
YUV, Lab, and HSV space. The HSV color space is more
akin to the human emotional perception of color [33, 34],
which encapsulates three pieces of information about the
hue, brightness, and saturation of the color. Therefore, the
pixels in the main body of COT image are transformed from
RGB space to HSV space.

From the distribution of normalized scatter plots of
pixels of the main body in two different spaces in
Figure 11, it is obvious that the density distribution of pixels
of the main body in HSV space is more suitable for the selec-
tion of clustering centers, and the degree of dissimilarity
between clusters is more accurate.

5. Extraction of COTs Based on
Adaptive Clustering

As can be seen from Figure 2, different COTs will have dif-
ferent colors and morphology. We can sort out the different
components by color. However, its color will be different for
different lighting. So it is not suitable for segmentation with
fixed color thresholds. To be more adaptable, the method of
adaptive clustering with K-means was adopted to extract
each COT. Convert the previously extracted pixels of the
main body to in HSV space (Figure 11(b)) as the input of
clustering. By dividing the pixels of the main body into K
clusters, this results in a high degree of similarity within
clusters and a low degree of similarity between clusters.

K-means is an unsupervised learning algorithm proposed
by MacQueen [35]. It is often used in image segmentation
and has the advantages of being fast, simple, intuitive, and easy
to implement [36]. Traditional K-means needs to manually
determine the number of clusters K, which cannot accurately
determine the number of optimal clustering centers. Besides,
since the initial clustering center was selected randomly, the
clustering process is prone to fall into the local optimal solution.
If there are duplicate clustering centers, the clustering results
will contain empty clusters, which will render the cluster results
meaningless. In order to solve the shortcomings of traditional
algorithms. This paper studies and proposes a K-means adap-
tive clustering algorithm, which was optimized from the simi-
larity measurement method, the determination of the optimal
cluster K value, and the selection of the initial cluster centers.

Start

Traverse the hierachial matrices
of all contours

Abandon this contour

Abandon this contour

Preserve this contour

Preserve this contour

End

Y

N

N

Y

Y

N
Di=–1?

n≤Bi?

Ci=–1? i=Ai,Bi

Figure 8: Flow chart of the contour selection algorithm of the main
body.

5 (0)
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0 (0)

1 (1)

2 (2)
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Figure 9: Schematic diagram of contour hierarchy.

Table 1: Hierarchical matrix for all contours in Figure 9.

Contour ordinal Hierarchical matrix

0 [4 -1 1 -1]

1 [-1 -1 2 0]

2 [3 -1 -1 1]

3 [-1 2 -1 1]

4 [5 0 -1 -1]

5 [-1 4 -1 -1]
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5.1. Similarity Measurement Method. The traditional K
-means algorithm generally uses the Euclidean distance as
a measure of the distance between clustered pixels. The sim-
ilarity between pixel sample xi = ðxih, xis, xivÞ and pixel sam-
ple xj = ðxjh, xjs, xjvÞ is usually expressed by the Euclidean
distance between them:

d xi, xj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xih − xjh
� �2 + xis − xjs

� �2 + xiv − xjv
� �2q

, ð6Þ

where xi = ðxih, xis, xivÞ represents the data of three channels
H, S, and V for pixel Xi.

Obviously, the smaller the distance, the greater the sim-
ilarity [37]. However, Euclidean distance does not distin-
guish the difference between different attributes of samples
[38]. It also fails to include the influence of the population
change and difference of samples in the distance size. So
Mahalanobis distance was proposed to measure the similar-
ity between samples instead of Euclidean distance. Mahala-
nobis distance is a method to calculate the similarity
between two samples by covariance distance [39, 40]. Com-
pared with Euclidean distance, it is not disturbed by the
dimension and measurement scale of samples, while also
removing the influence of intersample correlation.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Pixel extraction of the main body in COT image: (a) all contours; (b) the largest contour marking; (c) the largest contour and
internal contours; (d) contour of the main body; (e) match the original image; (f) pixels of the main body in COT image.

d∗ xi, xj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xih − xjh
� �

, xis − xjs
� �

, xiv − xjv
� �� �TM−1 xih − xjh

� �
, xis − xjs
� �

, xiv − xjv
� �� �q

: ð7Þ
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In formula (7), d∗ðxi, xjÞ is the Mahalanobis distance
between sample pixel i to j, xi = ðxih, xis, xivÞ and xj = ðxjh,
xjs, xjvÞ are the corresponding pixel values in the HSV space,
and M is the covariance matrix of the samples. When i = j,
the Mahalanobis distance d∗ðxi, xjÞ satisfies the following
conditions:

d∗ xi, xj
� �

≥ 0,

d∗ xi, xj
� �

= d∗ xj, xi
� �

,

d∗ xi, xj
� �

≤ d∗ xi, xkð Þ + d∗ xk, xj
� �

:

8>><
>>:

ð8Þ

5.2. Determine the Optimal Cluster Number K . As can be
seen from the color distribution of coke microimages in
HSV space, there are only some types of COTs in an image.
In order to reduce the iteration time of the algorithm, the
upper limit of K is set to 6 in the process of searching the
best cluster on color clustering. So the Calinski-Harabasz
scores are introduced to evaluate each cluster [41]. The
Calinski-Harbasz score is computed by assessing interclass
and intraclass variance.

SCH = SSE N − kð Þ
SSM k − 1ð Þ : ð9Þ

In formula (9), where k is the number of clusters, N is the
number of training sets, SSE is the interclass variance, and

SSM is the intraclass variance.

SSE = tr Bkð Þ,

Bk = 〠
k

i=1
ni ci − cFð Þ ci − cf

� �T
:

8>><
>>:

ð10Þ

In formula (10), where Bk is the interclass covariance matrix,
trðBkÞ is the trace of the interclass covariance matrix, ci is the
center of this class, and cf is for all data points.

SSM = tr Mkð Þ,

Mk = 〠
k

i=1
〠
xi

x − cið Þ x − cið ÞT :

8>><
>>:

ð11Þ

In formula (11), where Mk is the intraclass covariance
matrix, trðMkÞ is the trace of the intraclass covariance
matrix. By analyzing Equation (9), it can be seen that the
global best-clustered K value is obtained at the highest SCH
score.

5.3. Selection of Initial Cluster Centers. In order to overcome
the shortcomings of randomly selecting the initial cluster
centers in traditional K-means clustering, this paper uses
the maximum and minimum distance method to determine
the cluster centers. The steps are as follows:

(a) (b)
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0.0
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(c)
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0.4
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0.8
1.0

210 0

(d)

Figure 11: Color space transformation: (a) pixels of the main body in RGB space; (b) pixels of the main body in HSV space; (c) normalized
scatter plot of pixels of the main body in RGB space; (d) normalized scatter plot of pixels of the main body in HSV space.
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(1) Extract a pixel value set N at equal intervals from the
main body of the COT image obtained by the pre-
liminary segmentation

N = N1,N2,N3,⋯Nif g ð12Þ

(2) Extract any point in the set N as the first initial clus-
ter center K1, and calculate the distance between K1
and other sample points, and take the point with the
largest distance as the second cluster center K2

(3) For each remaining sample point Nj in the set N ,
calculate the distance dji from the existing cluster
center Ni, and take min fdjig as the representative
distance of the point Nj; select the sample point cor-
responding to the maximum value in min fdjig as
the next cluster center

(4) Repeat the above steps and calculate the SCH score in
the iterative process for each additional cluster cen-
ter until the best cluster K value was found, and then,
determine the attribution of each pixel in the main
body of the COT image according to the principle
of minimum distance

6. Experiments and Result Analysis

6.1. Preparation of Focal Film Specimen. The coal samples
selected for this experiment came from four different batches
of Saaji coal from the Central Research Institute of Baowu
Group. A focal light film specimen should be prepared
according to the provisions of China Coal Industry Associa-
tion GB/T16773-2008 before taking the images. The carbon
powder is embedded in a special mold of transparent unsat-
urated resin for curing. The diameter of the sample shall not
be smaller than 22mm; the volume of the cement must be
less than 1/3. After curing, it is manually ground and
polished until there are no obvious pitting or scratches
under the 20x dry objective lens or oil immersion objective
lens. A sample of the prepared focal light film specimen is
shown in Figure 12.

Generally speaking, the magnification of the microscopic
image is 400~600. In order to compromise, the magnifica-
tion of the microscope in this article is 500. The experimen-
tal platform is shown in Figure 13.

6.2. Extracting Experiment of Pixels in the Main Body of COT
Image. The hardware platform for this experiment is an Intel
Core i7-6700HQ CPU, GTX950M with 8GB of RAM.
Extracting algorithm of pixels in the main body of COT
image and adaptive clustering algorithm were both written
in python.

In the process of extracting the pixels of the main body
of the image, this article selects 4 typical COT images from
different batches of focal film specimen. Sample 1 is inert
fibrous tissue, sample 2 is coarse-grained fibrous tissue, sam-
ple 3 is inert fibrous sheet-like tissue, and sample 4 is inert

fibrous tissue. The image sizes are 2752 × 2208, 1950 ×
1523, 1300 × 1030, and 1300 × 1030, four sample images
with different tissue components are selected for processing,
and the results of the algorithm proposed and the traditional
segmentation algorithm are compared with the results of
manual segmentation of the pixels in the main body. The
comparison result is shown in Figure 14.

Further, in order to verify the segmentation effect of the
algorithm proposed, we define a segmentation accuracy λ of
the main part to evaluate, and its expression is as follows:

λ = 1 − A − A ∩ Bð Þ½ � + B − A ∩ Bð Þ½ �
A

λ ∈ 0, 1ð �, ð13Þ

where B is the number of pixels of the main body segmented
by the algorithm and A is the number of pixels of the main
body of the artificially marked image. The larger the λ, the
better the segmentation effect of the main body, since the
algorithm proposed searches for the pixels of the main part
at 0.25 times the original resolution; it is necessary to restore
to the original size of the image and then perform the seg-
mentation of the four algorithms. The values of A and B
for each image are shown in Table 2, substituting the A
and B values of each sample in Table 2 under different seg-
mentation algorithms into formula (13) to obtain the corre-
sponding segmentation accuracy of the main body part; the
result is λ in Table 2.

It can be seen from Table 2 that compared with the tra-
ditional algorithm, this method proposed has the best seg-
mentation effect on the main body of the COT image
among the six different methods, and the average segmenta-
tion accuracy is up to 97.6352%.

6.3. Adaptive Clustering Experiment. Perform traditional K
-means clustering and improved adaptive clustering on the
extracted pixels of the main body. In order to make the clus-
tering results more accurate, the algorithm proposed clusters
the segmented body part at the original resolution, rather
than at a lower resolution. Through a large number of obser-
vations, the upper limit of the COT type of each image is 4.
Therefore, in order to further reduce the time used for clus-
tering, the upper limit of the number of iterations K in each
clustering process was set to 6; the Calinski-Harabasz score

Figure 12: A sample of the prepared focal light film specimen.
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was used to evaluate the clustering effect to determine the
best K value of clustering. During the clustering process,
the K value and its Calinski-Harabasz evaluation score
changes are shown in Figure 15.

It can be seen from Figure 15 that the horizontal axis is
the cluster K value, and the vertical axis is the cluster score.
For the Calinski-Harabasz score, the highest score corre-
sponds to the best cluster K value. In the iterative process,
the SCH score and clustering time data corresponding to
the best K value are shown in Table 3.

It can be seen from Table 3 that the traditional K-means
clustering takes a long time to determine the best cluster K

value under the evaluation of the Calinski-Harabasz score.
The average clustering time for each image is 9.1 seconds,
and the best K value obtained under this evaluation score
is different from the number of tissue types in a single image,
which will cause the tissues with basically the same color to
be divided into multiple similar clusters, so it is also not suit-
able for segmentation of COTs.

On the contrary, the optimal K value determined by the
improved adaptive clustering under the evaluation of the
Calinski-Harabasz score is consistent with the number of tis-
sue types in the image itself. The algorithm running time for
a single image is significantly reduced compared to the

Sample 1

Sample 2

Sample 3

Sample 4

300 𝜇m

300 𝜇m

300 𝜇m

300 𝜇m

Figure 13: Experimental platform and sample images.

Sample 1

Sample 2

Sample 3

Sample 4

(a) (b) (c) (d) (e) (f) (g)

300 𝜇m

300 𝜇m

300 𝜇m

300 𝜇m

Figure 14: Different methods to extract the pixels of the main body: (a) original image; (b) Otsu algorithm; (c) morphological filtering; (d)
watershed algorithm; (e) fix threshold; (f) adaptive threshold; (g) proposed.
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traditional K-means algorithm; the average running time of
the algorithm for each image is 5.3 s.

In order to compare the difference between the algo-
rithm proposed and several other common clustering algo-
rithms, traditional K-means clustering, Meanshift
clustering, and FCM clustering were performed on the main
pixels of the four sample images. At the same time, in order

to further improve the clustering of traditional algorithms
for class segmentation effects, this article still clusters four
typical sample images in the HSV space at the original reso-
lution of the three traditional methods; the segmentation
semantic map of different methods is shown in Figure 16.

From Figure 16, to a large extent, it can be seen that the
traditional K-means algorithm, FCM algorithm, and

Table 2: Segmentation accuracy rate λ of the main body.

Method Samples A B A ∩ B λ Mean of λ

Otsu

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

2455896
1085986
416736
502255

2438937
1069145
369741
494617

56.56%
63.35%
59.42%
74.42%

63.4375%

Morphology

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

1441781
579940
136889
172056

1438154
579896
136284
172056

33.50%
34.91%
24.98%
26.30%

29.9225%

Watered

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

3111905
1412811
507959
572106

3066040
1366441
437756
554148

70.53%
79.48%
67.67%
91.95%

77.4075%

Fix threshold

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

3713309
2147599
474057
493099

3567876
1632386
407243
486323

79.92%
67.26%
62.68%
73.29%

70.7875%

Adaptive threshold

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

2684348
1397909
575520
621966

2186844
825201
361822
379977

39.45%
15.20%
27.27%
21.09%

25.7525%

Proposed

Sample 1
Sample 2
Sample 3
Sample 4

4282148
1660915
543138
654317

4199608
1626117
529914
640948

4199608
1623455
528189
640948

98.07%
97.58%
96.93%
97.95%

97.6352%
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Figure 15: Clustering process under Calinski-Harabasz evaluation score: (a) traditional K-means algorithm under Calinski-Harabasz
evaluation score; (b) adaptive clustering process under Calinski-Harabasz evaluation score.

12 International Journal of Photoenergy



Meanshift algorithm will generate more classes than the
actual number of organizations in the division of tissues.
But the algorithm in this paper is consistent in the number
of categories of tissue segmentation with the types of tissues
contained in the original image, and the distribution of tis-
sues is also roughly consistent with the results of manual
segmentation.

In order to quantitatively measure the segmentation
effect of each method, we define the tissue segmentation
accuracy rate Δ to represent the accuracy of the algorithm
segmentation, and the expression of Δ is as follows:

Δ = ∑i Pi ∩Qið Þ
∑iQi

, ð14Þ

where Pi is the number of pixels of the ith tissue seg-
mented by the algorithm in a picture and Qi is the artificial
segmentation number of pixels of the corresponding tissue.
The value of Δ evaluates the matching degree with the man-
ual segmentation result. In the four algorithms, the artificial

tissue segmentation results of each image are the same. The
number of tissue types for samples 1, 2, and 4 is 2, the num-
ber of artificial tissue segmentation pixels for each tissue is
Q1 and Q2, and the number of tissue types for sample 3 is
3, so the number of pixels for artificial tissue segmentation
is Q1, Q2, and Q3, respectively. In the same way, each clus-
tering pixel obtained by each clustering algorithm corre-
sponds to the number of segmentation types, and the
number of pixels Pi of each type was counted. The specific
values of Pi and Qi of the 4 images under the 4 clustering
algorithms are shown in Table 4.

Substituting the data in Table 4 into formula (14) to
obtain the corresponding tissue segmentation accuracy rate
Δ, the results are shown in Table 5.

From Table 5, it can be seen that the traditional K-means
algorithm, Meanshift algorithm, and FCM algorithm are dif-
ferent in the tissue segmentation accuracy of the 4 sample
images. The average tissue segmentation accuracy are
83.9025% (K-means), 62.0400% (FCM), and 62.9275%
(Meanshift). The adaptive clustering algorithm proposed
has the highest segmentation accuracy Δ of the COTs, with

Sample 1

Sample 2

Sample 3

Sample 4

(a) (b) (c) (d) (e)

Figure 16: The clustering effect of several different methods: (a) the main body of the COT image; (b) traditional K-means algorithm; (c)
FCM algorithm; (d) Meanshift algorithm; (e) proposed method.

Table 3: Comparison of cluster-related parameters before and after improvement.

Sample
Traditional K-means clustering Adaptive clustering

SCH Best K value Time (s) SCH Best K value Time (s)

Sample 1 282441.58 3 13.6 364976.31 2 7.3

Sample 2 303055.97 4 10.1 329605.76 2 4.2

Sample 3 182682.84 3 6.5 210946.23 3 6.1

Sample 4 169756.10 4 6.2 326028.14 2 3.6

Mean × × 9.1 × × 5.3

13International Journal of Photoenergy



an average segmentation accuracy of 94.3500%, and the run-
ning time of the algorithm proposed is much lower than that
of the other three clustering methods. The average segmen-
tation time of each image is 5.3 seconds.

7. Conclusions

Since the COT image is composed of a bright main body and
a dark nonbody, if the pixels of the main body are not
extracted, the pixel input of the clustering algorithm will
be very large, which will affect the timeliness of the cluster-
ing. Therefore, the concept of contour hierarchical matrix
is introduced, and then, the hierarchical relationship
between contours and the contour area coefficient are used
to extract the pixels of the main body of the tissue to achieve
presegmentation. The segmentation accuracy of traditional
algorithms in the main body of the COT image is Otsu
(63.4375%), morphology (29.9225%), watered (77.4075%),
fix threshold (70.7875%), and adaptive threshold
(25.7525%). But the segmentation accuracy of the main body
of the algorithm proposed is as high as 97.6352%. Compared
with these algorithms, the algorithm proposed has the high-
est degree of completeness in the segmentation of the main
body of the COT image.

The main body pixels obtained by presegmentation are
transformed into HSV space, and adaptive clustering is per-
formed on the basis of the original resolution of the image.
The accuracy of the three traditional clustering segmentation
algorithms in the main body of the tissue segmentation is K
-means (83.9025%), FCM (62.0400%), and Meanshift
(62.9275%). However, the tissue segmentation accuracy of
adaptive clustering proposed is as high as 94.3500%, and
the average processing time of a single image is 5.3 s. Com-
pared with the traditional clustering algorithms, the process-
ing speed of the algorithm proposed is faster, the accuracy of
tissue segmentation is the highest, and it is closer to the
result of manual segmentation, which provides the basis
for the subsequent recognition of various COTs.

Data Availability

All data, models, and code generated or used during the
study appear in the submitted article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Table 5: Comparison of the accuracy and running time of COT segmentation of several different clustering algorithms.

Sample
K-means FCM Meanshift Proposed

Δ Time (s) Δ Time (s) Δ Time (s) Δ Time (s)

Sample 1 84.39% 13.6 56.92% 56.8 81.16% 58.4 94.36% 7.3

Sample 2 81.70% 10.1 77.07% 31.5 57.11% 42.3 93.97% 4.2

Sample 3 89.17% 6.5 62.58% 15.1 47.93% 32.1 93.58% 6.1

Sample 4 80.35% 6.2 51.59% 14.6 65.51% 28.3 95.49% 3.6

Mean 83.9025% 9.1 62.0400% 29.5 62.9275% 40.2 94.3500% 5.3

Table 4: Pi and Qi of the 4 images under the 4 clustering algorithms.

Method Samples P1 P2 P3 Q1 Q2 Q3 ∑i Pi ∩Qið Þ ∑iQi

K-means

Sample 1 3490480 603890 — 3210665 1034641 — 3582444 4245306

Sample 2 1008768 482352 — 1146766 435362 — 1292532 1582128

Sample 3 271424 113136 188437 198768 109544 163115 420388 471427

Sample 4 371987 224016 — 325483 291164 — 495447 616647

FCM

Sample 1 1450048 1807339 — 3210665 1034641 — 2416280 4245306

Sample 2 931334 533578 — 1146766 435362 — 1219351 1582128

Sample 3 327239 21475 130979 198768 109544 163115 295024 471427

Sample 4 29153 599034 — 325483 291164 — 318147 616647

Meanshift

Sample 1 2869795 1135788 — 3210665 1034641 — 3445443 4245306

Sample 2 658384 463827 — 1146766 435362 — 903533 1582128

Sample 3 376189 109834 6998 198768 109544 163115 225961 471427

Sample 4 497606 117300 — 325483 291164 — 403948 616647

Proposed

Sample 1 3070446 1112857 — 3210665 1034641 — 4005945 4245306

Sample 2 1124813 501061 — 1146766 435362 — 1486782 1582128

Sample 3 190605 111880 172324 198768 109544 163115 441146 471427

Sample 4 339976 295635 — 325483 291164 — 588822 616647
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