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Accurate forecasting of solar energy is essential for photovoltaic (PV) plants, to facilitate their participation in the energy market
and for efficient resource planning. This article is dedicated to two forecasting models: (1) ARIMA (Autoregressive Integrated
Moving Average) statistical approach to time series forecasting, using measured historical data, and (2) ANN (Artificial Neural
Network) using machine learning techniques. The main contributions of the authors could be synthetized as follows: (1)
analysis and discussion of the experimental and simulated results regarding solar radiation forecast, as well as energy production
prediction and forecasting based on ARIMA and ANN models for two case studies: (a) laboratory BIPV system developed at the
Polytechnic University of Bucharest and (b) large PV park placed in a specific site of the south of Romania. A variability index
of solar radiation was introduced for the model improvement; (2) comparison between the ARIMA and ANN results to
highlight the ARIMA model which is more efficient than the ANN one; (3) optimized method defined by the GMDH model
(Group Method of Data Handling) proposed to provide a software program for calculation of the PV energy production.

1. Introduction

Solar energy is one of the most promising sources of power
generation for residential, commercial, and industrial appli-
cations [1–5]. Photovoltaic solar energy, based on PV sys-
tems, has increased progressively in recent years due to its
advantages of being abundant, inexhaustible, clean, and envi-
ronmentally friendly [6–8].

Reliable and accurate forecasts play a key role in
improving PV solar power plants [1–3, 9–12]. The main
challenging problem in the production of solar energy is
the intermittent electricity generation using PV systems,
due to weather conditions. A variation in temperature
and solar irradiance can have a profound impact on the
quality of electricity production, leading to a decrease of
more than 20% in the PV energy production provided
by real PV installations. This limits the integration of PV
systems into the grid. Therefore, an accurate short-term
forecast of photovoltaic energy is very useful for the effi-
cient daily/hourly management of electricity production
and storage in the grid [13].

Accurate forecasting of solar energy is essential for PV
plants, in order to facilitate their participation in the energy
market and for efficient resource planning [1–3]. Various
methods have been reported in the literature for the forecast
of PV energy [2, 12]. These methods can be divided into four
classes: (i) statistical approaches to time series forecasting,
using measured historical data (ARIMA) [14]; (ii) machine
learning techniques, in particular Artificial Neural Networks
(ANN), based on machine learning approaches [15]; (iii)
physical models based on numerical weather prediction and
satellite imagery [16]; and (iv) hybrid approaches that repre-
sent a combination of the first three methods [17].

The beauty of the ARIMA model lies in its simplicity and
can be applied only to stationary time series [14, 18, 19].
Therefore, our data from the time series, which are seasonal
and nonstationary, are transformed into a stationary series
for the application of the ARIMA model. The model can be
developed using sophisticated statistical techniques [20].
The optimal approach is selected and validated using the
Akaike Information Criterion (AIC) and the residual sum
of squares (SSE).
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Another statistical model is based on the seasonal analy-
sis of the ARIMA time series (SARIMA) and is further
improved by incorporating short-term solar radiation pre-
dictions derived from the NWP (numerical weather predic-
tion) model [19]. Such a model can be used in energy
forecast simulation software for buildings, such as Energy
Plus, TRNSYS, or eQuest, both for existing buildings and in
the design of new buildings [20, 21].

On the other hand, data-based models are determined by
mathematical models and measurements. They do not
require detailed knowledge of buildings or equipment. Their
forecasts are mainly based on historical data, which are avail-
able using the control systems implemented in buildings for
(1) building automation systems (BAS) and (2) building
energy management systems (BEMS). The accuracy of these
models depends on the quality of the selected forecast model,
as well as the quality and quantity of available data. Such
models are easy to adapt to changing conditions and are rel-
atively easy to be used. In most cases, the relationship
between the predicted variable and its physical function is
not clearly established [17, 22].

In recent decades, researchers have been dedicated to
improving efficiency and building energy use through vari-
ous techniques and strategies. Energy forecasting in an exist-
ing building is essential for a variety of applications, such as
demand response, fault detection and diagnosis, predictive
model control, energy optimization, and management.
Energy estimation models are a promising field of research,
and this is true given the new advances in artificial intelli-
gence and machine learning. Such models have been widely
applied to both building energy systems and HVAC (heating,
ventilation, and air conditioning) systems, as they can help
with a variety of tasks. Most conventional approaches for
solar energy forecasting are limited to discover the data cor-
relation but are not able to analyze them in depth and dis-
cover relevant information. With many data in the modern
power system, the use of conventional approaches is not
appropriate to guarantee an accurate forecast [15, 20, 23].

Recently, Deep Learning (DL) approaches have emerged
as powerful machine learning tools that allow shape recogni-
tion and regression analysis, as well as prediction applica-
tions [24–26]. DL approaches are becoming increasingly
popular due to their real ability to describe time series data
dependencies. Recently, many Deep Learning models have
been proposed, including Boltzmann machines, Deep Belief
Networks (DBNs), and Recurrent Neural Networks (RNNs).
RNN is a type of neural network that exploits the sequential
nature of input data. RNNs are used to model time-
dependent data and give good results, which have proven to
be successful in several application fields [15, 23, 27]. Short-
TermMemory Networks (STMN) are a type of RNNs, which
are able to cope with the storage of information for much
longer periods of time [16, 28–30]. They are considered to
define one of the most used RNN models for predicting data
from time series, which perfectly correspond to the problems
of PV energy production.

Zhao and Magoulés published a review study in 2012,
focusing on the main approaches to energy prediction
and forecasting in buildings [20]. Specifically, the authors

compared physical models with those based on machine
learning, as well as with statistical ones. The authors
noted that machine learning-based models had the high-
est accuracy and flexibility, especially compared to statis-
tical models. Vector support machines have been
developed to outperform ANN models; one of the areas
recommended for future investigations is that of opti-
mized applications.

In 2017, Wang and Srinivasan [23] explored the use of
models based on artificial intelligence (AI) and overall
models for predicting and forecasting the energy use of build-
ings. The authors provided a breakdown of how artificial
intelligence as a whole was applied to predict the energy of
the buildings. Most AI-based works were applied to an entire
building load with hourly data. The authors also explored
how overall methods were applied in predicting the energy
of buildings. It was noted that such assemblies have been
widely applied to fields outside the energy of buildings, and
the results showed improved performance compared to
unique forecast models.

Akhter et al. [31], Van Deventer et al. [32], Das et al. [33],
and Seyedmahmoudian et al. [34] analyzed and compared
different forecasting models for PV energy production,
including the hybrid ones; their strengths and weaknesses
were highlighted.

At the same time, the benefits of model optimization
were discussed.

The main objective of this study was to apply the
advanced techniques of ARIMA and ANN models for two
cases: (1) a lab BIPV system and (2) a large PV park placed
in the south of Romania. The obtained simulated and exper-
imental results were compared and allowed to have interest-
ing information regarding the energy production forecast on
short term, as well as on long term; it could be very useful for
improved performance of energy prediction and forecasting
for buildings based on statistical approaches and artificial
intelligence tools.

2. Conceptualization and Methodology

2.1. The Advanced Statistical ARIMA Model. The ARIMA
(Autoregressive Integrated Moving Average) model estab-
lishes a remarkable method used in short-term solar radia-
tion forecasting [14]. The functionality of the ARIMA
model is represented in Figure 1 [35, 36]. The software used
to make the forecast, respectively, IBM SPSS, is a predictive
analysis program, which offers a wide range of statistical pro-
cedures: linear regressions, Monte Carlo simulations, geospa-
tial analysis, etc.

The model chosen in this article for the solar radiation
forecast is of the ARIMA (1,0,0) or (1,1,0) type. This choice
is due to the Akaike Informational Criterion (AIC) [19].
The AIC is used to evaluate the model, depending on the
entered data; the aim is to determine the quality of the statis-
tical model on a dataset, establishing whether this model is
more efficient than other models. The ARIMA model pro-
vides a relative estimate of the information used to determine
the processes that could generate the data.
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The Akaike statistical criterion for the ARIMAmodel can
be calculated based on the following relation [35, 36]:

AIC = 2k − 2 ln Lð Þ, ð1Þ

where L represents the maximum value given by an estima-
tion function (MLE (Maximum Likelihood Estimation))
and k represents the number of estimated parameters. The
minimum value of the AIC result defines that the corre-
sponding model is the most efficient.

The SPSS program [35, 36] automatically calculates the
AIC, which is a parameter for model fitting.

If the forecast process contains seasonal fluctuations, as
in this case, the process becomes SARIMA ðp, d, qÞ ðP,D,QÞ s,

where p is the order of the AR process, d represents the differen-
tiation term, q is the order of the moving average, P represents
the order of AR seasonal processes, Q represents the MA order,
D is the order of seasonal differentiation, and s represents the
length of the seasonal period [19].

The peculiarities of the model used in this forecast are
highlighted by defining a backshift operator B of the time
series [9]: BZt = zt−1, where zt and zt−1 are two consecutive
observations of the time series. Then, Bj can be defined as
Bj

Zt = zt−j. Using standard notation, ф ðBÞ is the autoregres-
sion operator, represented as a polynomial in the backshift
operator: ф ðBÞ = 1 − ф1B − ф2B

2 −⋯−фpB
p, and θ ðBÞ the

mobile operator is represented by a polynomial in the opera-
tor backshift: θ ðBÞ = 1 − θ1B − θ2B

2 ⋯−θqBq. Having d—the
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Figure 1: Operation of the ARIMA model for the energy production forecast of a photovoltaic system; AC and PAC autocorrelation
functions are used.
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degree of nonseasonal differentiation and at the white noise,
from a mathematical point of view, the ARIMA model could
be written as follows:

ф Bð ÞWdzt = θ Bð Þ at , ð2Þ

where W is the differentiation operator which is the equiva-
lent of result 1‐B.

We call this model ARIMA ðp, d, qÞ, where p, d, and q
are process orders. In our model, the self-regression delay
is determined separately for each month represented by
the number of lighting hours, and the hours with zero
irradiation (night hours) are neglected. As a consequence,
we have used the ARIMA model ðx, 0, 0Þ, where x repre-
sents the number of hours in a day with solar radiation
of those months (for example, for January it is 10, and
for July it is 16).

ARIMA ðx, 0:0Þ was used to avoid the SARIMA model
(seasonal model) [19, 35, 36]. The seasonality component
is taken into account by the autoregression component,
where the autoregression is equal to the period. 10 in Jan-
uary represents the fact that the morning value from 8
o’clock correlates with the value of the next day from 8
o’clock, which is in the 10th place from the first value,
since we have used only 10 values each day. In other
words, in the used experimental data string, there is an
autocorrelation of 10 orders.

2.2. The Advanced ANNModel Based on Artificial Intelligence
(AI). Neural networks are a set of processing elements that
have been developed separately from standard regression
techniques. The ability to “mimic” natural intelligence by
learning from experience makes this technique very attrac-
tive for solar radiation predictions. Functioning like a bio-
logical brain, a neural network is made up of a large
number of interconnected neurons. Two main classes of
neural network architecture can be identified, namely, (1)
the architecture with the propagation of information from
the input data to the output data, also called feed-forward
architecture, and (2) the architecture of recurrent networks.
The functionality of the neural network model is repre-
sented in Figure 2 (see [15, 25]).

The ANNmodel is also used to estimate global solar radi-
ation at an hourly interval, based on the following meteoro-
logical parameters: air temperature ðTÞ, relative humidity

ðRHÞ, atmospheric pressure ðPÞ, wind speed ðWÞ, cloudiness
ðCÞ, and hours of the day ðHÞ:

RG = f T , RH, P,W, C,Hð Þ: ð3Þ

The main parameters of the ANN model used in this
study are as follows [35, 36]: the number of neurons in
the hidden layer is 1, the initial weight is 0.3, the learning
rate is 0.3, and it used the Sigmund logarithmic function.
The 10 days of meteorological data are included in the
learning process.

3. The PV Energy Production Forecast for a Lab
BIPV (Building Integrated
Photovoltaic) System

3.1. Results and Discussion: Solar Radiation and Energy
Production Forecast Based on the ARIMA and ANN Models
for a Lab BIPV System

(a) The BIPV system from the Polytechnic University of
Bucharest is a demo system connected to the grid; it
was put into operation in July 2008 (see Figure 3)
[11]. It consists of six PV panels, an inverter, equip-
ment for monitoring and storing data, and a labora-
tory station for monitoring meteorological
parameters. The power delivered by the PV panels
is 615Wp; they are semitransparent and have a
power of 85Wp each (type 1), respectively, and
120Wp each (type 2). The system consists of three
modules of type 1 and three modules of type 2

Also, to complete the BIPV system and make it func-
tional, there is an inverter that makes the conversion
between dc and ac, as well as monitoring and data storage
equipment. The inverter is of the Sunny Boy SB700 type
and achieves a high efficiency of conversion of direct cur-
rent into alternating one, which it then delivers to the
electricity distribution grid.

With the mentioned technical resources of the studied
BIPV system, data regarding the brightness and perfor-
mance of the PV system were collected, in terms of power
(Pac) for a period of five days. Three days were considered
for the forecasting process, and the other two days were
used to validate the results. Figure 4 illustrates the
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Figure 2: Functionality of the ANN model for the energy production forecast of a photovoltaic system.
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evolution of the power and brightness parameters, over a
period of one day of the chosen interval.

The detailed comparison, which provides data every 15
minutes, allows us to obtain important information about
system performance. An unexpected decrease in power can
be seen in the second half of the day. The explanations can
be the following:

(i) The photovoltaic window is oriented to the east, so
that the incident solar radiation is maximum in the
first part of the day

(ii) The system is shaded in the second part of the day,
due to the architecture of the building

The solar radiation data, obtained with the help of the lab
weather station, were used for the short-term solar radiation
forecast, using various methods, in the location where the
BIPV system is placed [11].

The results of the ARIMA model are represented by
the input dataset for 13.06-15.06 2012, and the model is
checked by the data for 16.06-18.06 2012 [11, 35, 36]
(see Table 1).

Figure 3: BIPV system developed within the laboratory of nanostructures, solar cells, and PV systems from the Department of Physics,
Faculty of Applied Sciences, Polytechnic University of Bucharest (inside/outside view).
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Figure 4: Time evolution of power (W) and brightness (klux) parameters.

Table 1: The accuracy of the ARIMA model.

Statistical fitting Average

R2 0.811

RMSE 18,367.868

MAPE 199.410

MaxAPE 3,838.473

MAE 10,359.011

MaxAE 54,998.512

R2 represents how much of the variation of the dependent variable is
determined by the estimated quantity, RMSE (Root Mean Squared Error)
represents the difference between the predicted values and the observed
ones, MAPE (Mean Absolute Percentage Error) represents the accuracy of
the forecasted model, and MaxAPE (Maximum Absolute Percentage Error)
is the largest predicted error, expressed as a percentage. This error is useful
to determine the efficiency of the forecast. MAE (Mean Absolute Error)
represents the degree of variation of the measured data compared to the
forecast. MaxAE (Maximum Absolute Error) is the largest error in the
forecast, like MaxAPE, also useful in determining the efficiency of the
forecast at the point with maximum error.
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Figure 5 shows the adjustment of the ARIMA model
between the forecasted and measured data.

(b) Taking into account five meteorological variables,
namely, air temperature, relative humidity, atmo-
spheric pressure, wind speed, and sunshine duration,
the forecast was made for 16.06.2012, using the
method of neural networks (ANN) (see Figure 6)
[11, 35, 36]

A statistical relationship is defined between global solar
radiation and energy production, taking into account the
technical parameters of the system. The losses of the system
due to its location were also taken into account.

The values of the predicted data for Pac were compared
with the measured ones; this situation is represented in
Figure 7. The error calculated between the measured and
the predicted values of Pac using the ANN model is 8.89%.

3.2. Improving the Forecast Quality by the Variability Index of
Solar Radiation. The meteorological data used in the study of
the solar radiation forecast for a lab BIPV system come from
the Archive of the National Meteorological Authority [9].
The parameters were measured in the Bucharest-Afumati
weather station (44° 30′N 26° 13′E, h = 91m, 8 km away
from Bucharest, WMO code 15421) and represent data
obtained every hour during 2008-2009. The meteorological
tools and observations correspond to the WMO instructions
(Global Observation SystemManual, 2010). The meteorolog-
ical variables included in this study are global solar irradiance
in kJ/m2, average air temperature in °C at a height of two
meters, atmospheric pressure in mbar, relative humidity,
wind speed in m/s, and cloudiness in oktas.

At the Bucharest-Afumatzi meteorological station, the
global solar irradiance is automatically measured on a hori-
zontal surface, with the pyranometer CM11 Kipp&Zonen-
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Figure 5: Adjusting the forecasted ARIMA data with the measured ones.
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Delft. The pyranometer sensor is a thermopile protected
from external effects by a double glass dome. It has the fol-
lowing features: a response time (95%) of 15 seconds, spectral
range 305-2800 nm, sensitivity 4-6μV/W/m2, nonlinearity
< ±0:6% (<1000W/m2), this being installed inside the mete-
orological platform, facing south, at a height of 2 meters.

In the solar radiation forecast of the BIPV lab system
from the Polytechnic University of Bucharest, both studied
models were used, namely, ARIMA and ANN [9, 11]. The
error of the solar radiation forecast depends on its daily
variation. At the same time, the daily variation of solar
radiation showed an important correlation with clouding;
thus, cloud information will be needed to increase the
accuracy of the forecast.

However, this type of calculation requires a large amount
of input data and a huge computational ability. In most cases,
acceptable results cannot be obtained. In order to take into
account the influence of the clouding factor but at the same
time reduce the number of input data, it is found that the
affected situations are determined by an empirical index, as
an input parameter, namely [11],

VDR =
σDR
χMR

, ð4Þ

whereVDR is the variability index of the solar irradiance, χMR
is the average of the monthly global solar irradiance, and σDR
is the standard deviation of the daily global solar irradiance.

In fact, this index quantifies the variation of solar irra-
diance for a given day, compared to the general situation
in a given month; the variation of solar irradiance in the
previous days is taken into account indirectly by the
monthly average. This daily index provides more detailed
information, as well as the classification based on synoptic
situations, the latter variant including a longer period with
various clouding factors. By default, the index provides an
important correlation with the clouding factor, r = 0:66 in

2008 and r = 0:61 in 2009, both being considered at a
probability level of 9.99%. The average number of days
with cloudiness, which denotes VDR < 0:5, is 7.93 in 2008
and 7.69 in 2009, the standard deviation being 0.79 and
0.95, respectively. At the same time, the average number
of days with cloudiness, showing a VDR > 0:5, is 4.49 in
2008 and 4.57 in 2009, the standard deviation being 2.27
and 2.53, respectively. As a consequence, the value of
VDR indicates changes in global solar radiation related to
the following situations:

(a) VDR < 0:5: fog or cloud cover situations

(b) VDR > 0:5: situations with partly cloudy or clear sky

In our study, four different situations are analyzed based
on the cloudiness quantified by the VDR index, and then, the
forecasts of solar radiation values are developed indepen-
dently of each other. The main reason for this classification
is to reduce the synoptic situations represented by the two
classes of cloud cover types.

The four situations include changes in the amounts of
cloudiness on the previous day and on the forecast day and
are as follows (see Figure 8) [9]:

(1) Cloudy/foggy day on the forecast day and partly clou-
dy/clear sky on the previous day VDR < 0:5 (previous
day VDR > 0:5)

(2) Cloudy/foggy situation on the forecast day and clou-
dy/foggy sky situation on the previous day VDR < 0:5
(previous day VDR < 0:5)

(3) Partly cloudy/clear sky on the forecast day and clou-
dy/foggy sky on the previous day VDR > 0:5 (previous
day VDR < 0:5)

(4) Partly cloudy/clear sky on the forecast day and partly
cloudy/clear sky on the previous day VDR > 0:5 (pre-
vious day VDR > 0:5)
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Figure 7: Comparison between measured and forecasted values of Pac for 17.06.2012.
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We have analyzed the accuracy of the solar irradiance
forecast developed in the four situations using a time series
for the ARIMA and ANNmodels in order to quantify the sig-
nificance of the forecast error in each case [22, 27]. Consider-
ing the frequency of situations during the investigated period,
the most common situation is the fourth, which represents
64% of cases. The least common situation is the second, with
a frequency of occurrence of only 8-11% of cases. The results
of the analysis are represented in Figure 9. By this method,
the errors of daily solar radiation forecasts can be quantified
even during the forecasting process, separating only three sit-

uations, namely, the cloudy situation, the fog situation, and
the one with partly overcast sky/clear sky conditions.

3.3. The Solar Radiation Forecast on Short and Long Term

3.3.1. Short-Term Solar Radiation Forecast with Application
for a BIPV Lab System. Using the forecast models discussed
in Section 3.1, respectively, ARIMA and ANN, we have made
a short-term forecast, taking into account the synoptic situa-
tions of the days quantified by the VDR index. For each situ-
ation, a random example is analyzed for each month, in 2008

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y 
of

 so
la

r i
rr

ad
ia

nc
e (

%
)

< 0.5 previous day
> 0.5

0.5 previous day
< 0.5

0.5 previous day
< 0.5

0.5 previous day
> 0.5

VDR index (–)

2008
2009

11.2 13.2
8.2

11.2
15.1 13.2

65.6
62.4

Figure 9: Relative frequency of solar irradiance/clouding situations quantified by the VDR index, using the Bucharest/Afumatzi weather
station.

Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

100
200
300
400
500
600
700
800
900 January

So
la

r i
rr

ad
ia

nc
e (

kJ
/m

2 /d
ay

)
1. < 0.5 Previous day > 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

100
200
300
400
500
600
700
800
900

Day

January

So
la

r i
rr

ad
ia

nc
e (

kJ
/m

2 /d
ay

)

2. < 0.5 Previous day > 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

100
200
300
400
500
600
700
800
900

Day

January

So
la

r i
rr

ad
ia

nc
e (

kJ
/m

2 /d
ay

)

3. < 0.5 Previous day > 0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

100
200
300
400
500
600
700
800
900

Day

January

So
la

r i
rr

ad
ia

nc
e (

kJ
/m

2 /d
ay

)

4. < 0.5 Previous day > 0.5

Figure 8: The four cloudy change situations quantified by the VDR index, based on solar irradiance data measured at the Bucharest-Afumatzi
Meteorological Station (kJ/m2/day).

8 International Journal of Photoenergy



and 2009. For both models, the analyzed time series is 10
days. The accuracy of the forecasts is quantified by calculat-
ing the mean square relative error, using the relation:

rRMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
〠
n

t=1
Ft − Atð Þ2

s

∗
100
Gn

, ð5Þ

where Ft represents the predicted value, At represents the
current value (measured), n is the number of predicted
points, and Gn represents the daily average of the current
(measured) values.

Tables 2 and 3 contain the results of the forecasts corre-
sponding to the four situations. It is noted that the best
results are obtained in the case of partly cloudy/clear sky

on the forecast day and partly cloudy/clear sky on the pre-
vious day, where the monthly rRMSE varies between 6.2
and 53%, and the annual one is less than 26.7%. In the
case of cloudy/foggy sky on the forecast day and cloudy/-
foggy sky the day before, as well as partly cloudy/clear sky
on the forecast day and partly cloudy/foggy sky on the
previous day, the accuracy of the forecasts is relatively
similar, ranging between 52.6% and 96.8%. In the case of
cloudy/foggy sky on the forecast day with partly cloudy/-
clear sky on the previous day, the forecasts show a huge
error of over 250%.

Comparing the two models, ARIMA and ANN, it was
observed that the overall amplitude of errors is relatively sim-
ilar in each case, but at the same time, the ARIMA model
offers better results by 2.9% in the fourth case. We can

Table 3: rRMSE values in the case of four quantified situations of theVDR index. Processed data from the 2009 year for a forecasting period of
10 days.

Month
<0.5 (the day before)

>0.5
<0.5 (the day before)

<0.5
>0.5 (the day before)

<0.5
>0.5 (the day before)

>0.5
ARIMA ANN ARIMA ANN ARIMA ANN ARIMA ANN

1 291.1 356.1 55.2 65.1 57 76.5 25.7 33.3

2 67.4 111.3 56.2 42.2 86.2 104.8 28.9 18.8

3 299.5 367.3 51 40.6 69.6 100.2 26.8 23.8

4 141.3 108.5 131.8 50.2 103 113 20.8 17

5 237.3 232 60.1 70 55.2 87.5 9.8 14

6 189.1 168.3 No data No data 69.5 84.6 15 24.2

7 207.6 204.1 No data No data 87.7 108.5 21.5 28.8

8 327.9 233 No data No data 61.6 67.7 6.2 19.3

9 469.9 440.4 232.3 66.5 75.8 84.6 15 29

10 No data No data 131.4 35.4 83.9 94.1 53.4 20.3

11 443.8 551.1 98.7 53 82.1 95.6 16.7 24

12 344.6 334.5 54.5 50.2 87.1 113.8 51.4 33.5

Average 274.5 282.4 96.8 52.6 76.6 94.2 24.3 23.8

Table 2: rRMSE values in the case of the four quantified situations of the VDR index. Processed data from the 2008 year for a forecasting
period of 10 days.

Month
<0.5 (the day before)

>0.5
<0.5 (the day before)

<0.5
>0.5 (the day before)

<0.5
>0.5 (the day before)

>0.5
ARIMA ANN ARIMA ANN ARIMA ANN ARIMA ANN

1 168.6 194.7 35.6 56.9 79.2 90 9.2 15.9

2 197.9 191.6 58.6 40.5 103.7 115.6 9.9 21.8

3 232.7 209.1 53.3 77.6 47.6 64.4 39.4 42.6

4 191.4 184.4 101.9 77.4 67.4 92.1 22.2 26.3

5 136.6 127 53.5 59.9 51 66.5 12.9 17.2

6 101 95.3 46.8 66.7 51 69.4 16.3 22.9

7 132.3 134.1 85.1 72.5 44.8 69.2 25.6 36.4

8 No data No data No data No data No data No data 23.8 20.9

9 No data No data No data No data No data No data 6.9 10.9

10 423.3 347.3 No data No data 100.4 108 12.4 32.6

11 105.9 68.2 70.9 26.6 99.7 105.5 30 24.5

12 136.0 183.2 58.7 58.2 87.4 89.7 35.6 48.2

Average 182.6 173.5 62.7 59.6 73.2 87 20.4 26.7
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conclude that the accuracy of the forecasts depends closely
on the daily variation of the solar radiation controlled by
the clouding factor, and the weather series forecast provides
acceptable results in the case of partly cloudy/clear sky on
the forecast day with partly cloudy/clear sky the previous
day (see [9, 15]).

Using the models of solar radiation forecast, and estab-
lishing the most frequent situation of the days from the mete-
orological point of view, the solar radiation forecast for
January 20, 2009, was made and is represented in Figure 10.

With the help of this forecast, another forecast was elab-
orated, that of the power delivered by the lab BIPV system,
represented in Figure 11.

The error calculated in this case was 26.9% and is consis-
tent with the errors calculated for the solar radiation forecast,
namely, 26.7%. This result is due to the improvement of the
solar radiation forecast by integrating the data related to dif-
ferent meteorological parameters (temperature, cloud cover,
etc.), as well as by separating the synoptic situations accord-
ing to the variability index.

3.3.2. Long-Term Solar Radiation Forecast with Application
for a BIPV Lab System. We have also analyzed the decade
variation of solar radiation as long-term changes to be
taken into account in solar energy applications. For the
analysis of the change trend, we have applied the linear

regression model. The annual data come from the World
Radiation Data Center database (http://wrdc.mgo.rssi.ru)
and represent data corresponding to the period 1975-
2006 for the Bucharest weather station. The linear trend
is significant at a probability level of 95%, thus identifying
an increase in solar radiation. The magnitude of the
absolute changes is 36.5 (±2.43) J/cm2 day-1/decade
(Figure 12).

Based on the analysis of multiannual changes in solar
radiation (J/cm2 day-1), the power forecast of the BIPV sys-
tem for 2013 was made (see Figure 13).

It was observed that the maximum power production
of the BIPV system is achieved in May. The total produc-
tion forecast for 2013 is 163 kW, a result that is in line
with the power achieved in the previous year, of 157 kW.
We can conclude that the best forecast result can be
obtained in situation (4) of partly cloudy/clear sky on
the forecasted day and partly cloudy/clear sky on the pre-
vious day VDR > 0:5, rRMSE—the annual error being 22.3
in the case of ARIMA and 25.3 in the case of ANN. In
this case, ARIMA gives the best result in line with Reikard
[9, 23] who showed that at 60-minute time resolution, the
ARIMA model forecast dominates all time series forecast-
ing methods in four from the six test stations used in the
study. In the other synoptic situations, the errors are large.
Given the frequency of occurrence of the four synoptic
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Figure 11: Predicted (forecast) and measured (real) power for 20.01.2009.
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Figure 10: Solar radiation forecast for 20.01.2009 prepared with ARIMA and ANN models.
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situations presented above, the situation in which we
obtain the best results appears in 65.56% of the days of
a year, so acceptable forecasts can be made in 65% of that
year. In the case of the other situations, namely, (1), (2),
and (3), physical and/or satellite models are required [24].

The results of the study contributed to the improvement
of the forecasts of the photovoltaic systems, which will be
used for the analysis of an experimental PV park [31, 32].

4. The Energy Production Forecast for a PV
Park Using the ARIMA and ANN Models

4.1. Short Presentation of an Experimental PV Park. The
experimental PV park from Grojdibodu (located in southern
Romania) has in its composition 1931 strings, each string hav-
ing 21 Suntech PVmodules of 245W. In total, there are 40,551
PV modules totaling an installed power of 9,934kW. Solar
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Figure 13: Power forecasted by the BIPV system for 2013, based on the estimation of multiannual solar radiation.

Figure 14: View of the PV park from Grojdibodu.
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radiation data are acquired by 2 pyranometers and 10 calibra-
tion solar cells. The pyranometers are located in the meteoro-
logical station within the PV park, and the solar calibration
cells are placed at each transformation center, thus being
arranged on the entire surface of 33ha of the park. The pyran-
ometers and calibration cells are placed in a plane that has the
same inclination to the horizontal as PV modules. There are a
total of 20 Green Power PV500 inverters. The energy pro-
duced is measured at the connection point, and the furthest
inverter is located at 400m from this connection point. Each
transformation center contains two inverters. The PV module
is made of 72 polycrystalline silicon solar cells.

A view of the PV park from Grojdibodu is presented
in Figure 14, and its electrical diagram is shown in
Figure 15 [35, 36].

The main meteorological parameters of the Grojdibodu
location defining the PV park are indicated in Table 4 [35, 36].

The technical parameters of the studied PV system/PV
module, used in the forecast, are presented in Tables 5(a)
and 5(b). Figure 16 shows the I‐V (current-voltage) charac-
teristics for the Suntech Power PV module used in the com-
ponence of the studied PV park.

The technical performance indicators of the Grojdibodu
PV system for one year are designated in Table 6.

4.2. Results and Discussion: Energy Production Forecast for
the Experimental PV Park. The purpose of the forecast was
to size an experimental PV park located in the south of
Romania, at Grojdibodu. Thus, a comparison was made for
the results obtained by numerical modeling, with those mea-
sured in the PV park, as well as a comparative analysis of the
programs used in terms of their efficiency. For simulation, we

Table 4: Meteorological parameters for Grojdibodu location.

Solar radiation
Annual average

temp.
Annual average
wind speed

Albedo

1.78 kWh/m2/day 11.5°C 3.2m/s 0.2

Table 5

(a) Technical parameters of the PV park from Grojdibodu

Installed power 9,934 kW

Power of the PV module 245W Suntech Power 245

Total number of PV modules 40,551

Number of PV modules per string 21

Number of strings 1931

Number of inverters 20—Green Power PV500

Used surface 33 ha

(b) Technical parameters of the PV modules—main components of
the PV experimental park

PV module parameters

Nominal efficiency 13.9098%

Maximum power 269.850 Wcc

Maximum voltage 35 Vcc

Maximum current 7.7 Acc

Open circuit voltage 44.5 Vcc

Short circuit current 8.2 Acc
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Figure 15: Electrical diagram of the studied PV park.
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have used the data measured by the meteorological station
within the PV park, considering the optimization of the PV
system parameters, the increase of its energy efficiency, and
the improvement of its global efficiency [26, 35, 36].

With the help of the ARIMA and ANN models, the
forecast of surface solar radiation (SSR) was made, using
data obtained from the PV park. Forecasts for 10 days
have been developed based on the previous time series.
The periods were chosen randomly, and the forecasts were
checked for clear or partially clear days, which have the
variability index of direct solar radiation VDR > 0:5. The
variability index refers to the classification of synoptic sit-
uations (clear or cloudy). These situations are not included
in the forecasts made. The index helps to validate fore-
casts; thus, statistical forecasts are more effective in the
case of partly cloudy/clear sky on the forecast day and
partly cloudy/clear sky on the previous day VDR > 0:5. In
the case of “cloudy” situations (1), (2), and (3), the rRMSE
has large errors; for this reason, the statistical/empirical
method for forecasting is not useful, and physical models
are needed to improve it.

The correlation between the variability index and nebu-
losity was calculated in order to validate the index. The index
shows the cloudiness on that day, without using cloudy data.
The aim was to obtain information about nebulosity from
solar radiation data. The validation of the index was per-
formed for a shorter period; for example, in cases where the
index had a value > 0:5, we checked whether the nebulosity
was low or not, and vice versa. Following the verifications,
the correlation was significant; as a result, we have used
VDR instead of nebulous data.

Short-term solar radiation forecasts were developed
using the ARIMA and ANN models. The efficiency of
the forecasted time series is quantified by rRMSE. The

model was improved by separating the days with clear
sky from the days with a high degree of cloudiness and
using the variability index of solar radiation, VDR. The
separation of synoptic situations was performed on time
series, not on predicted values. It has been established that
the most common cases for the use of the VDR index are
days with clear sky on the forecast day and the day before.
These days represent more than 75.4% of the total number
of days of the year.

For the rest of the days when there are situations of
cloudy sky or high fog, the forecast provides very large
errors. The forecasted results conclude that the ARIMA
model is more efficient than the ANN model. The statis-
tics are significant in the case of ARIMA (1,0,14), this
being the reason why this variant was chosen for analysis.
Also, comparing the results of the forecast with the mea-
sured values, we noticed that the ARIMA model (1,0,14)
is more efficient than the ARIMA (1,0,7). The ARIMA
(1,0,7) and ARIMA (1,0,14) models were selected after
performing several iterations. The statistical test used to
identify the most significant model is Box Ljung Statistics.
This test is applied in the case of ARIMA on the residues
of a fitted model, not on the original series, and verifies
that these residues do not show autocorrelation.

The results of the measurements and forecasted values
for August and September 2013 are presented in Figures 17
and 18. The accuracy of the predictions is quantified using
relative absolute mean error (rMAE) and relative mean
square error (rRMSE):

rMAE = 1
n
〠
n

i=1
∣Ft − At∣ ×

100
Gn

,

rRMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
〠
n

i=1
Ft − Atð Þ2 × 100

Gn

s

,
ð6Þ

where the following notations are introduced: Ft is the pre-
dicted value,At is the measured value, n is the number of pre-
dicted points, and Gn is the daily average of the measured
values. Table 7 shows the measured and forecasted values
for 10 days in August 2013, while Table 8 shows the same
data in September 2013 for 10 days.
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Figure 16: I‐V characteristics of Suntech Power PV module.

Table 6: Performance indicators of the PV park from Grojdibodu.

Performance indicators (in the first year)

Energy produced annually 13,069,573 kW

Capacity factor 15.0%

Energy efficiency 1,316 kWh/kW

Performance ratio 0.83
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The two models offer good efficiency in terms of rela-
tive errors, but forecasts with errors below 40% are present
only in the summer periods, especially in July, August, and
September characterized by high values of solar radiation.
In the case of low SSR, this methodology produces very
large errors.

Based on the predicted values of solar radiation, the elec-
trical power that would be inserted in the national power dis-
tribution grid could be calculated taking into account the

efficiency of the PV park. Most likely, a global relationship
for estimating the energy generated was [35, 36]

E = A ∗H ∗ PR, ð7Þ

where E represents the delivered energy (kWh), A represents
the total surface area covered by the PV modules, H repre-
sents the average annual solar irradiance on the inclined
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Figure 17: Solar irradiance forecast for Grojdibodu PV park, for 10 days, in August 2013, using the ARIMA and ANN models.
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Figure 18: Solar irradiance forecast for Grojdibodu PV park, for 10 days, in September 2013, using the ARIMA and ANN models.

Table 7: Measured and forecasted values for 10 days, August 2013, based on ARIMA and ANN models. This table is reproduced from [35]
under the permission of the editor.

Year Month Day
ARIMA (1,0,14) (Wh/mp) ARIMA (1,0,7) (Wh/mp) ANN (Wh/mp)
Measured Forecasted Measured Forecasted Measured Forecasted

2013 7 31 4,451.3 6,138.76 4,451.3 6,459.48 4,451.3 7,044

2013 8 1 6,103.6 6,822.83 6,103.6 7,354.92 6,103.6 6,844

2013 8 2 7,240.3 6,353.43 7,240.3 6,916.88 7,240.3 6,963

2013 8 3 741.6 6,754.42 7,416.6 6,878.25 — —

2013 8 4 6,091 6,878.99 6,091 6,894.17 6,091 7,024

2013 8 5 7,388.08 7,598.88 7,388.08 7,393.5 7,388.08 7,019

2013 8 6 7,101.34 7,006.33 7,101.34 6,974.19 7,101.34 7,002

2013 8 7 7,214.13 7,512.72 7,214.13 7,200.2 7,214.13 7,101

2013 8 8 7,285.4 7,055.09 7,285.4 7,069.23 7,285.4 7,098

2013 8 9 7,325.3 7,109.01 7,325.3 7,210.03 — —
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PV panels (Wh/m2), and PR (performance ratio) represents
the efficiency of the PV system.

The comparison between the forecasted energy and the
energy inserted in the grid is made between 01.08.2013
and 09.08.2013 for the analyzed experimental PV park
(see Table 9).

Considering the data collected within the PV park, the
monthly exported energy shows that in the period chosen
for testing 01-09.08.2013, a quantity of 513.98MWh was
delivered in the distribution grid. The share of the mea-
sured solar irradiance, corresponding to this value of the
delivered energy, was 63165.75Wh/m2.

Table 8: Measured and forecasted values for 10 days, September 2013, based on ARIMA and ANNmodels. This table is reproduced from [35]
under the permission of the editor.

Year Month Day
ARIMA (1,0,14) (Wh/mp) ARIMA (1,0,7) (Wh/mp) ANN (Wh/mp)
Measured Forecasted Measured Forecasted Measured Forecasted

2013 9 19 — — — — — —

2013 9 20 6,624.2 6,123.75 6,624.2 5,721.44 6,624.2 5,431

2013 9 21 5,078 6,379.47 5,078 5,973.61 5,078 5,421

2013 9 22 6,997.1 5,857.37 6,997.1 5,038.02 6,997.1 5,315

2013 9 23 5,907 6,697.06 5,907 683.91 5,907 5,210

2013 9 24 5,595.3 5,228.81 5,595.3 5,847.36 5,595.3 5,019

2013 9 25 6,976.2 6,379.57 6,976.2 5,745.71 6,976.2 4,696

2013 9 26 6,661.8 5,745.95 6,661.8 5,755.16 6,661.8 5,668

2013 9 27 5,983.8 5,882.45 5,983.8 5,756.6 5,983.8 5,706

2013 9 28 4,089.2 5,472.23 4,089.2 5,755.73 — —

Table 9: Main results of the energy production by the experimental PV park from Grojdibodu forecasted for the period 01-09.08.2013.

Day 1 2 3 4 5 6 7 8 9

Hours when the inverter is running
(solar irradiance > 10W/m2)

13.75 13.25 13 13 13 13.25 13 13 13

Total hours ∗ string 26,565 25,599 25,116 25,116 25,116 25,599 25,116 25,116 25,116

Total solar irradiance (Wh/m2) 6,103.6 7,240.3 7,416.6 6,091 7,388.08 7,101.34 7,214.13 7,285.4 7,325.3

Exported active energy (MWh) 50.77 59.48 60.74 48.49 60.18 56.62 59 59.16 59.54

PR (%) calculated in SCADA 83.51 82.55 82.22 79.99 81.83 80.07 82.12 81.54 81.66

Real availability (%) 100 100 100 97.5 98.84 98.11 100 100 100

Availability given by the
manufacturer (%)

100 100 100 97.5 98.84 100 100 100 100

Events in which energy production
is disrupted

— — —
Inverter

off 6 hours
Inverter: motherboard
damaged (replaced)

Inverter
off 15min

— — —

∗String hours with energy loss — — — 627.9 291.34 483.82 — — —

Estimated energy losses (MWh) — — — 1.8 0.4 1.75 — — —

513.98 513.39 519.90
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Figure 19: Difference between the measured values of solar irradiance and predicted ones based on the ARIMA model.
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Using the ARIMAmodel (1,0,14), the solar irradiance for
this period was forecasted at 63091Wh/m2, respectively, and
at 63891Wh/m2 using the ARIMA model (1,0,7). Taking
into account the technical parameters of the system and the
forecast for solar irradiance, the energy forecast with the
ARIMA type model will be 513.39MWh, respectively, and
519.90MWh (Figure 19).

5. Comparative Analysis of Different
Forecasting Models

A comparison of different forecasting models (algorithms)
developed in various countries is presented in Table 10.

The results obtained in the present article were
compared based on ARIMA and ANN tools with new
advanced forecasting models (algorithms), like PSO,
GA, SVM, MLR, and RT [31–34]. The accuracy was
much better in these cases. However, the authors have
studied two interesting PV installations, namely, a BIPV
lab system and an experimental PV park; both were
placed in the south of Romania. Based on our results,
it was established that the ARIMA (1,0.14) model is
more efficient than the ANN one and is very close to
the experimental case (see Figure 19). Although our
approach is dedicated especially to short-term forecast,
the long-term solar radiation forecast was discussed
too with application for a BIPV system developed at
the Polytechnic University of Bucharest. This feature is
different from the other more advanced forecasting
models presented in Table 10.

6. Optimized Forecasting Method for Energy
Production Based on GMDH Model: Case
Study—PV Park in Romania

The GMDH (Group Method of Data Handling) represents
a family of inductive algorithms for the mathematical
modeling of multiparametric datasets that are able to auto-
matically optimize the used models [37]. In the GMDH,
continuous or discrete input variables can be introduced,

and depending on their type, optimal parametric or non-
parametric algorithms can be identified.

In order to optimize the energy production developed
by a Romanian PV park, a specific approach was con-
ceived to render efficient solar radiation prediction on
the surface of PV panels for a PV park. As the prediction
method involves a large amount of data and a great com-
puting power, Romania’s territory was divided into 28
regions, considering that each region possesses at least
one actinometric station.

For the created regions, important meteorological
data will be provided for solar radiation prediction
and will be introduced into advanced models for pre-
diction and evaluation (ARIMA, ANN). The goal is to
improve prediction efficiency in both effective results
and computing time.

Alongside corresponding solar radiation data and
associated factors, for an efficient prediction, it will be
introducing also the PV park’s characteristics [38]. Sys-
tem loss categories are present in all PV systems but dif-
fer from one system to another. It is important to
mention the fact that the PV park loss is not an aggre-
gate of particular losses. These losses affect the system
individually, their impact being calculated for each com-
ponent. The losses are due to the dust deposits on the
module’s surfaces, shadows within the emplacement zone,
snow deposits, electrical installation’s asymmetry, losses
between module’s connections (wire harness loss), con-
nection loss, etc. Also, the degrading agent must be con-
sidered; it represents the production loss during the
maintenance period. Considering the PV park’s parame-
ters and also the system loss, the energy produced by
the PV park was determined both during the days 04,
08, and 14 of July for 2013 and 2014 and during the
days 29, 30, and 31 of July 2013 and 2014. The results
are presented in Table 11.

Forecasted values show acceptable results correlated
with the errors for solar radiation forecasting. Since the
forecasts were made using data from previous days with-
out taking into account future forecasts, this method could
be optimized by introducing additional parameters that

Table 10: Comparison of different forecasting models.

Ref. Year of publ.
Forecasting

model
Error Time horizon Location

[34] 2018
ARIMA, GA,
PSO, DE

VAR, WME 1 day Canada

[33, 34] 2018, 2018 SVM RMSE, MRE 15min. China

[31, 34] 2019, 2018 NWP MAE, MBE, RMSE, 1 h, 3 h USA—California state

[32, 34] 2019, 2018 ANN NRMSE, NMAE, NBE 1 h Italy

[34] 2018
SVM, NN,
MLR, RT

RMSE 2 h Australia

Present article: BIPV lab
system

2021: to be
published

ARIMA, ANN
RMSE,MAE, MAPE,
MaxAPE, MaxAE

15min, 10 days
(time series)

South of Romania, Bucharest,
BIPV lab system

Present article:
experimental PV park

2021: to be
published

ARIMA, ANN rMAE, rRMSE
10 days (time

series)
South of Romania,

experimental PV park
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meteorologically describe the following day. Research con-
tinues to identify correlations between meteorological
parameters that could accurately be forecasted for a given
day and their impact on solar radiation.

7. Conclusions and Prospects

Short-term solar radiation forecasts were developed using
the ARIMA and ANN models. The efficiency of the fore-
casted time series is quantified by rRMSE. The models
were improved by separating the days with clear sky from
the days with a high degree of cloudiness using the vari-
ability index of solar radiation, VDR. The separation of
the synoptic situations was performed on time series, not
on the predicted values. It has been established that the
most common cases for the use of the VDR index are days
with clear sky on the forecast day and the day before,
where the day “forecast” is represented by the day “tomor-
row” and the day “before” is represented by “today” or the
day on which the forecast is made. These days represent
more than 75.4% of the total number of days of the year,
so only these cases were chosen. For the rest of the days
when there are situations of cloudy sky or high cloud
cover, these forecast solutions offer very large errors. The
results of the forecast attest to the fact that the ARIMA
model is more efficient than the ANN model. The statis-
tics is significant in the case of ARIMA (1,0,14), this being
the reason why this variant was chosen for analysis. Also,
comparing the results of the forecast with the measured
values, we notice that the ARIMA model (1,0,14) is more
efficient than the ARIMA (1,0,7). The ARIMA (1,0,7) and
ARIMA (1,0,14) models were selected after performing
several iterations. The statistical test used to identify the
most significant model is Box Ljung Statistics. This test
is applied for ARIMA on the residues of a fitted model,
not on the original series, and verifies if these residues
do not show autocorrelation. The Box-Ljung model, also
known as the statistically modified Box-Pierce model, pro-
vides guidance on whether the model is specified correctly.
A value significantly lower than 0.05 implies that within

the observed data there is a structure that is not relevant
for the model. A value greater than 0.05, as determined
in the case, indicates that the chosen model is correct
(see [9, 35, 36].

The future work will be based on a new optimized fore-
casting method for PV energy production, presented in
Section 6. Taking into account that the optimized predic-
tion and forecasting method would involve a large amount
of data and great computing power, Romania’s territory
could be divided into 28 regions; each region would possess
one actinometric (solar radiation) station. A polynomial
neural network based on the GMDH (Group Method of
Data Handling) approach would be used. It would be rep-
resented by a family of inductive algorithms (parametric
and nonparametric), which could optimize automatically
the energy production of the PV park.

Abbreviations

PV: Photovoltaic
ARIMA: Autoregressive Integrated Moving Average
ANN: Artificial Neural Network
BIPV: Building Integrated Photovoltaics
GMDH: Group Method of Data Handling
AIC: Akaike Information Criterion
SARIMA: Seasonal ARIMA
NWP: Numerical weather prediction
TRNSYS: Transient system simulation tool
eQuest: Quick energy simulation tool
Energy Plus: Open source software
BAS: Building automation systems
BEMS: Building energy management systems
HVAC: Heating, ventilation, and air conditioning
DL: Deep Learning
DBN: Deep Belief Networks
RNN: Recurrent Neural Networks
STMN: Short-Term Memory Networks
AI: Artificial intelligence
IBM SPSS: Predictive analysis program
MLE: Maximum Likelihood Estimation

Table 11: PV park—comparison between measured and forecasted energy using PR of the PV system.

Date PR (performance ratio) (%)
Measured exported
energy (MWh)

Forecasted
energy (MWh)

Percentage difference between
measured and forecasted values (%)

04 July 2013 81.58 57.47 67.45 17%

04 July 2014 84.98 49.47 66.96 35%

08 July 2013 84.2 57.36 52.79 8%

08 July 2014 84.04 56.83 61.64 8%

14 July 2013 85.72 63.15 67.73 7%

14 July 2014 88.31 30.89 76.71 148%

29 July 2013 80.05 58.11 56.36 3%

29 July 2014 67.02 36.28 44.03 21%

30 July 2013 83.36 49.33 59.87 21%

30 July 2014 83.42 59.75 56.61 5%

31 July 2013 86.31 38.5 62.22 62%

31 July 2014 85.81 35.66 52.35 47%
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AR: Autoregressive
MA: Moving average
AC and PAC: Autocorrelation command and partial auto-

correlation command
RH: Relative humidity
RMSE: Root Mean Squared Error
MAPE: Mean Absolute Percentage Error
MaxAPE: Maximum Absolute Percentage Error
MAE: Mean Absolute Error
MaxAE: Maximum Absolute Error
WMO: World Meteorological Organization
WRDC: World Radiation Data Center
VDR: Variability index of the solar irradiance
rMAE: Relative mean absolute error
rRMSE: Relative mean squared error
PR: Performance ratio
GA: Genetic algorithm
PSO: Particle swarm optimization
DE: Differential evolution
SVM: Support vector machine
MRE: Mean relative error
VAR: Variance error
WME: Weekly mean error
MBE: Mean bias error
NRMSE: Numerical root mean squared error
NMAE: Numerical mean absolute error
NBE: Numerical bias error
RT: Regression tree
MLR: Multiple linear regression
NN: Neural network.
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