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To forecast solar irradiance with higher accuracy and generalization capability is challenging in the photovoltaic (PV) energy
system. Meteorological parameters are highly influential in solar irradiance, leading to intermittent and randomicity. Forecasting
using a single neural network model does not have sufficient generalization ability to achieve the optimal forecasting of solar
irradiance. This paper proposes a novel cooperative multi-input multilayer perceptron neural network (CMMLPNN) to mitigate
the issues related to generalization and meteorological effects. Authors develop a proposed forecasting neural network model
based on the amalgamation of two inputs, three inputs, four inputs, five inputs, and six inputs associated multilayer perceptron
neural network. In the proposed forecasting model (CMMLPNN), the authors overcome the variance based on the
meteorological parameters. The amalgamation of five multi-input multilayer perceptron neural networks leads to better
generalization ability. Some individual multilayer perceptron neural network-based forecasting models outperform in some
situations, but cannot assure generalization ability and suffer from the meteorological weather condition. The proposed
CMMLPNN (cooperative multi-input multilayer perceptron neural network) achieves better forecasting accuracy with the
generalization ability. Therefore, the proposed forecasting model is superior to other neural network-based forecasting models
and existing models.

1. Introduction

In recent trends, solar energy is an inevitable renewable
energy source to avoid environmental hazards, climatic
changes, etc. Solar energy is receiving a center of attraction
because of the pollution-free renewable resources, and the
vast potential is available to supply power to the entire world.
Although solar energy has many advantages and special fea-
tures, one major issue for the solar energy system is irregular
in nature and volatile. Thus, it creates pressure on the power
system engineers. It requires accurate forecasting of future
solar irradiance to eliminate the problem of solar energy
system irregularity, because solar power production from
the solar PV system highly depends on solar irradiance.

Effect of shift measurement and shift noise and solution:
Measurement shift and noise cause the variability of the
solar irradiance forecasting. Onsite measurement datasets
with continuous maintenance, commissioning, sensor cali-
bration, quality check, and data evaluation can prevent the
uncertainty related to the measurement shift and noise.

The forecasting accuracy can be improved by applying
feature selection and parameter optimization. Some of the
researchers performed the forecasting accuracy improve-
ment by applying the feature selection methods [1–3]. For
machine learning and deep learning based on solar
irradiance forecasting, one of the preprocessing is feature
selection/extraction, used to remove redundant and irrele-
vant input information and extract significant input features.
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The parameter selections are greatly influencing by the solar
irradiance accuracy [4]. The significance of the feature and
parameter selection is made simpler, reduces the learning
time, and improves the convergence.

Statistical methods like time series (regression, ARMA,
LASSO, etc.), machine learning, deep learning, and hybrid
models are widely used for data-driven-based forecasting
[5–7]. Underlying mapping of solar irradiance data is effec-
tively captured by a data-driven model. Data-driven
method limitations are requiring high computation and
cost. Uncertainty quantification helps to prove the validity
of the model [8–10].

Once the future solar irradiance is forecasted, the power
system scheduling planning of reserve requirement can be
performed effectively, which reduces the pressure of power
system engineers and improves the economy. This paper is
aimed at proposing a forecasting model capable of general-
ized well and results in better forecasting output with high
accuracy to avoid the impact of meteorological parameters.

Highlights of the proposed model compared to the exist-
ing models are as follows:

(i) Averaging and combining the various input-based
individual multilayer perceptron neural network
benefits than the existing methods

(ii) Escape from the overfitting and underfitting problem

(iii) In most cases, a single individual model could not
reach the generalized solution, but the proposed
model tradeoff between variance and bias leads to
a better generalized solution.

(iv) Uncertainty regards the interannual variability
addressed by the proposed model because we use
38 year periods of datasets to build the proposed
model

(v) The proposed cooperative model is an averaging a
multi-input-based individual model that can over-
come the limitation of a single individual model
and uncertainties

(vi) The proposed model is practical and simple and
achieves improved forecasting than the existing
model

This paper, organized as Section 1, describes the intro-
duction, followed by the problem statement that is stated
in Section 2, the literature review is carried out in Section
3, the proposed methodology is explained, detailed in Sec-
tion 4, followed by Section 4 results and discussion reported
in Section 5, the informative conclusion is stated in Section
6, and proposed model limitation and future work are dis-
cussed in Section 7.

2. Problem Statement

Throughout a period (day), the power requirement varies
regarding all nations’ periods, and there is an irregularity,
such as the daytime power required is more than the night

time. Forecasting is needed to maintain the power require-
ment and power production in a balanced manner, because
it is complicated to manage due to nonrenewable energy
resources that are exhaustible and not a pollution-free
resource that endangers human life and the environment.
Nature always provides a tremendous amount of resources
to the human, and amongst one of the significant resources
is the sun (solar energy). Hence, lots of countries imple-
mented solar energy systems to fulfill the energy demand.
Still, the problem is it did not guarantee stability, and power
productions have fluctuated because of uncertainty and
meteorological effects. This intermittent nature of the power
production resource interconnected with a grid system cre-
ates security issues and a grid outage problem. The variabil-
ity of solar energy production can be overcome by accurate
future prediction so that the power system operator manages
the problem associated with solar energy integrated with the
power grid.

There is a possibility of various local minima and local
maxima in an artificial neural network because of the non-
convex function. Therefore, it has an unstable performance
and fails to generalize in some other circumstances. The
amalgamation can effectively resolve these issues and aver-
age various input-based individual forecasting models. The
paper proposes a new cooperative multi-input multilayer
perceptron neural network, and the validity is confirmed
by a solar irradiance forecasting application.

3. Literature Review

In the literature, numerous research is done in the field of
solar energy system for solar irradiation forecasting, which
is discussed as follows:

Solmaz et al. 2010 [11] presented an artificial neural
network-based solar radiation prediction. Remark: perfor-
mance was not guaranteed for other datasets. Benghamm
and Mellit 2010 [12] performed solar radiation prediction
using a radial basis function network: remark: problem of
optimal hidden neuron identification. Takenaka et al. 2011
[13] pointed out a neural network-based solar radiation pre-
diction: remark: radioactive transfer aid for performance
improvement in training and testing states.

Yadav and Chandel 2012 [14] presented a solar radiation
estimation model using an artificial neural network. Remark:
the generalization issue was not addressed; comparative
performance investigation with other existing methods was
not done. Chua et al. 2012 [15] suggested a backpropagation
algorithm, adopting a multilayer perceptron neural network-
based forecasting model for medium-term solar insolation
forecasting. Remark: the issue of apt hidden neuron estima-
tion and performance was not ascertained.

Plangklang and Nantaphunkul 2015 [16] performed a
multilayer feed-forward network with a backpropagation
algorithm (Levenberg-Marquardt algorithm)- based model
for solar irradiance forecasting. Remark: it is noticed from
the result that the ANN-based forecasting results 4.60 per-
centages of MAPE in the Omar platform. De Leone et al.
2015 [17] performed support vector regression-based
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short-term photovoltaic energy production forecasting:
remark: not generalize well.

Madhiarasan and Deepa 2016 [18] developed an innova-
tive neural network-based solar irradiance forecasting, and
they identified apt hidden neurons using a new deciding
standard: remark: overcome the generalization problem,
but sometimes, convergence takes much time because of
the average of various neural network models. Madhiarasan
and Deepa 2016 [19] performed solar irradiance forecasting
based on a new training strategy associated with a deep neu-
ral network. Remark: compared with classical deep neural
networks and other existing methods, the self-regulated par-
ticle swarm optimization-based fine-tuned deep neural net-
work results in better performance for wind speed and
solar irradiance forecasting.

Kumar et al. 2017 [20] suggested an artificial neural net-
work with four logical variables based on solar irradiance
forecasting in the long-term horizon: remark: lack a compar-
ative analysis to prove the validity of the suggested system.
Madhiarasan and Deepa 2017 [21] reviewed various recent
papers existing in solar irradiance forecasting. Jensona and
Praynlin 2017 [22] performed backpropagation neural net-
work and radial basis function network-based solar irradi-
ance forecasting. Remark: validation on NCEP and SODO
datasets, the RBFN-based forecasting leads to better results
than BPN for NCEP dataset, and BPN achieves better results
than RBFN for SODO data sets. Ehsan et al. 2017 [23] sug-
gested multilayer perceptron-based solar photovoltaic out-
put power forecasting concerns for 24 hours ahead range.
Remark: performance is not generic, and convergence is
poor.

Kartini and Chen 2017 [24] presented a combinational
solar irradiance forecasting model based on a multilayer
backpropagation neural network and K-nearest neighbor
algorithm: remark: lacking in comparative analysis. Mad-
hiarasan and Deepa 2017 [25] carried out wind speed and
solar irradiance forecasting using echo state network with
GSANPSO (gravitational search algorithm new particle
swarm optimization) based on optimized parameters and
weights. Remark: according to the receiver operating charac-
teristics (ROC), they observe that ESN-GSANPSO leads
better forecasting with respect to wind speed and solar irra-
diance than other methods.

Leu et al. 2018 [26] suggested a neural network with an
association of electromagnetism like an algorithm-based
forecasting model for short-term solar irradiance forecast-
ing. Remark: compared to BPNN, EMNN achieved better
forecasting regarding the solar irradiance forecasting appli-
cation. Lima et al. 2018 [27] pointed out one-hour advanced
solar irradiance forecasting using a multilayer perception
neural network to incorporate a backpropagation algorithm:
remark: discrepancy of performance analysis and occurrence
of generalization issues.

Luyao et al. 2018 [28] presented solar PV power output
forecasting in a short-term horizon using the weight varying
ensemble (WVE) method. Remark: generalization is not
assured, and convergence problems occurred. Wanady
2018 [29] pointed out ARMA (auto regression moving aver-
age) based on solar irradiance forecasting with meteorologi-

cal data sets. Laopaiboon et al. 2018 [30] suggested a
backpropagation algorithm associated with neural network-
based solar forecasting in the hour-ahead range. Remark:
the BPNN model performs better compared to ARMA with
respect to solar irradiance forecasting. Bruneau et al. 2018
[31] presented solar irradiance forecasting using MLP and
Xgboost (gradient boosting) with Arima vector association.
Remark: Arima vector-associated MLP and Xgboost forecast-
ing models lead to better solar irradiance forecasting with
minimal RMSE and MAE.

Shihabudheen and Pillai 2018 [32] proposed RELAN-
FIS- (regularized extreme learning adaptive neurofuzzy sys-
tem-) based forecasting model for solar irradiance and
wind speed prediction. Remark: generalization and robust-
ness were not guaranteed. Tiwari et al. 2018 [33] performed
gradient boost regression associated with numerical weather
prediction methods for solar irradiance forecasting in the
short-term time horizon. Vanderstas et al. 2018 [34] sug-
gested artificial neural network-based solar irradiance fore-
casting for two hours ahead of the time horizon. Remark:
remote monitoring stations are optimally spaced by GA.
Mohanty 2018 [35] performed solar radiation prediction
using artificial neural network models, and PV inverter
active and reactive current were controlled. Remark: the
ANFIS model results in better performance than the artifi-
cial neural network and support vector machine- (SVM-)
based models. Awad and Qasrawi 2018 [36] pointed out a
solar cell output power forecasting model using a radial
basis function neural network with the association of the
singular value decomposition, K-nearest neighbor, and K
-means clustering algorithm. Remark: generalization was
not guaranteed.

Rogies and Mohamudally, 2019 [37] suggested (NARX)
nonlinear autoregressive neural network-based PV power
production forecasting using the Lora IoT network. Remark:
comparative analysis with existing models was not
addressed. Ozoegwu 2019 [38] carried out global solar irra-
diance forecasting using artificial neural networks and non-
linear autoregression. Remark: the limitations with respect
to nonlinear autoregression and artificial neural networks
are overcome. Hence, the author got better results than
ANN and NARX. Paulescu and Paulescu, 2019 [39] pre-
sented solar irradiance nowcasting using upgraded two-
state models in the short-term horizon range. Elshaikh
et al. 2019 [40] studied artificial neural network-based solar
energy system modeling.

Sempe Leholo et al. 2019 [41] performed hourly average
solar irradiance forecasting by an artificial neural network
with various training functions. Remark: the results revealed
that the Levenberg Marquardt (LM) training function asso-
ciated with ANN achieves good results compared with other
training functions. Kamadinate et al. 2019 [42] carried out
an artificial neural network-based 1-5minute advance solar
irradiance forecasting using sky images: remark: appropriate
for very short-term horizons, a limitation with respect to
time horizon forecasting.

Nowadays, developing countries and well-developed
countries are developing lots of projects to promote power
generation from the solar energy system (PV system) to
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meet the renewable energy portfolio standard and positive
energy price policy. Various forecasting models exist in the
field of solar energy systems, which is noticed from the exist-
ing literature review, but a generic forecasting model is
needed. This paper addresses the issue with the current
methods.

3.1. Necessity of the Proposed Model. Accurate forecasting is
crucial because of the uncertainty about meteorological
influences, interannual data, and design issues regarding
the improper selection of model parameters. Despite the
accuracy, the generalization also needs to be addressed. In
solar irradiance forecasting, many challenges still exist due
to uncertain natures. Thus, a generalized and high accurate
model is obligate.

Solar irradiance poses uncertainty due to influence by
the influence of climatic conditions and meteorological
parameters. This research manages the solar irradiance
uncertainty by considering the influence parameters as the
inputs and averaging the multi-input multilayer perceptron
neural network. Due to the lack of a generic model in solar
irradiance forecasting, in this paper, we design a coopera-
tion multi-input MLPNN model, and the performance is
quantified using performance indicators. The proposed
model intends to improve the accuracy with minor fore-
casting errors.

3.2. Benefits of the Proposed Model. Solar irradiance pos-
sesses uncertainty regarding various aspects. Meteorologica-
l/atmospheric inputs are highly influenced and cause
irregularities in solar irradiance. This paper intends to
enhance the generalization ability. The proposed model
can diminish the variance concern to the inputs, interannual
data, individual models, and hidden neurons. Combining
the multi-input multilayer perceptron neural network leads
to reduced performance indicators, enhanced accuracy, and
superior generalizing ability than individual models.

4. Proposed Methodology

This paper proposes novel cooperative multi-inputs and
multilayer perceptron neural networks, and the applicability
is validated for solar irradiance forecasting.

4.1. Proposed Cooperative Multi-Input Multilayer Perceptron
Neural Network Framework and Concept. The imperfection
of each individual model can be overcome by combining
several individual models to achieve the generalization abil-
ity because the individual model’s generalization ability
could not reach the desired level. The majority of the coop-
erative model’s average cooperation of different model
results may have minor variation compared to the individual
model, and the cooperative model achieves better generaliza-
tion. Still, the individual models may be diverse in generali-
zation. Hence, the cooperative neural network model is
termed as an expert model superior to individual models.
This paper proposed a model developed based on the joined
together and averaged (ensemble) of two inputs, three
inputs, four inputs, five inputs, and six inputs associated

with multilayer perceptron neural networks, which can be
applied to the solar irradiance application.

Table 1 represented the designed parameters of the pro-
posed CMMPLNN. In CMMPLNN, each developed neural
network (MLPNN) has the same parameters except the
number of input parameters. According to Table 1, men-
tioned parameter-based design of a cooperative multi-input
multilayer perceptron neural network framework is shown
in the Figure 1 for better understanding. Solar irradiance
and temperature are considered as the inputs for the devel-
oped two input-based multilayer perceptron neural net-
works. It has one hidden layer in which the hidden
neurons vary from 1 to 20; based on the minimal error,
the optimal hidden neurons are chosen for the hidden layer
and have one output layer to forecast the solar irradiance as
the output neuron.

For the designed three input-based multilayer percep-
tron neural networks, solar irradiance, temperature, and rel-
ative humidity are considered as the inputs. It has one
hidden layer in which hidden neurons vary from 1 to 20
based on the minimal error optimal hidden neurons that
are chosen for the hidden layer and has one output layer
to forecast solar irradiance as the output neuron.

For the developed four input-based multilayer percep-
tron neural networks, solar irradiance, temperature, relative
humidity, and wind speed are considered as the inputs. It
has one hidden layer in which hidden neurons vary from 1
to 20 based on the minimal error optimal hidden neurons
are chosen for the hidden layer and has one output layer
to forecast solar irradiance as the output neuron.

The inputs are considered for the designed five input-
based multilayer perceptron neural networks, solar irradi-
ance, temperature, relative humidity, wind speed, and pres-
sure. It has one hidden layer in which hidden neurons vary
from 1 to 20. Based on the minimal error, the optimal hid-
den neurons are chosen for the hidden layer and have one
output layer to forecast solar irradiance as the output
neuron.

For the developed six input-based multilayer perceptron
neural networks, solar irradiance, temperature, relative
humidity, wind speed, pressure, and cloud cover are consid-
ered as the inputs. It has one hidden layer in which hidden
neurons vary from 1 to 20 based on the minimal error opti-
mal hidden neurons that are chosen for the hidden layer and
has one output layer to forecast solar irradiance as the
output neuron.

Table 1: Proposed cooperative multi-input multilayer perceptron
neural network designed parameters.

CMMLPNN

Input neurons = multi-inputs (2, 3, 4, 5, and 6 inputs)

Number of hidden layers =1

Number of hidden neurons =1-20

Output neuron =1

Number of epochs =1000

Threshold =1

Learning rate =0.9
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According to the amalgamation and averaging of the
developmental individual multi-input-based multilayer per-
ceptron neural network, the proposed cooperative multi-
input multilayer perceptron neural network outputs are
achieved.

4.2. Mathematical Modeling of Proposed Cooperative Multi-
Input Multilayer Perceptron Neural Network. In neural net-
work modeling, one of the thrust fields is the development
of generic models. For a multilayer perceptron neural net-
work, the output neurons are defined as neurons without
the source of any link, and hidden neurons are defined as
neurons with the linkage of input and output neurons. Input
neurons are defined as neurons with no target of linkage.
Each neuron in the neural network has an activation func-
tion, and the net input exists only in the hidden and output
neurons. The mathematical modeling of the proposed
CMMLPNN is as follows:

CMMLPNNoutput = 1
T
〠
T

n=1
CnMLPNN for n = 1, 2:3⋯ , T:

ð1Þ

Let T be the number of multi-input multilayer neural
networks:

Forecasted solar irradiance

= C2MLPNN + C3MLPNN + C4MLPNN + C5MLPNN + C6MLPNN
5 :

ð2Þ

The output of the individual MLPNN:

CnMLPNN = f 〠
m

b=1
GbSbð Þ

 !
: ð3Þ

Hidden layer output of the individual MLPNN:

Gb = f 〠
o

a=1
〠
m

b=1
raLab

 !
ð4Þ

Let S be the hidden to output layer linkage weight, L is
the input to hidden layer linkage weights, m is the number
of hidden neurons, r is the inputs, o is the number of input
neurons, and G is the output of the hidden layer.

Perform the training and testing process, compute the
performance indicator (error value), and based on the least
error value, hidden neurons are chosen in the hidden layer,
and the performance is quantified. The following formula-
tions are used in the computation of the proposed
CMMLPNN performance indicator.

MSECMMLPNN = 1
T
〠
T

n=1
MSEnMLPNN, ð5Þ

RMSECMMLPNN = 1
T
〠
T

n=1
RMSEnMLPNN, ð6Þ

MAECMMLPNN = 1
T
〠
T

n=1
MAEnMLPNN, ð7Þ
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Figure 1: The framework of the proposed cooperative multi-input multilayer perceptron neural network.
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MRECMMLPNN = 1
T
〠
T

n=1
MREnMLPNN, ð8Þ

MAPECMMLPNN = 1
T
〠
T

n=1
MAPEnMLPNN: ð9Þ

Based on the abovementioned mathematical formula-
tions, the proposed model is developed.

4.3. Experimental Design Flow. Furthermore, providing a
better understanding of the proposed model process flow
illustrated in Figure 2, which infers the clear working mech-
anism of the proposed model.

4.3.1. Algorithm of the Proposed CMMLPNN-Based
Forecasting Model. The proposed cooperative multi-input
multilayer perceptron neural network algorithm is as
follows:

(i) Start process of cooperative multi-input multilayer
perceptron neural network-based forecasting

(ii) Solar irradiance forecasting is chosen to validate
the proposed model; so, real-time measured data
related to the solar irradiance and the influencing
parameters are also acquired

(iii) The acquired real-time measured data sets possess
various parameters; each parameter has various
values and various units. The process of normali-
zation is required to resolve the variance present
in the real-time data. In this work, the proposed
model min-max normalization method is adopted
for normalization

(iv) The acquired data are classified into two sets; one
set is used for the training purpose, and another
set is used for the testing purpose. Note: both
training and testing data sets are not the same;
the unseen data during training are only consid-
ered for testing purposes

(v) The proposed cooperative multi-input multilayer
perceptron neural networks possess a compound

of five individual multi-input multilayer percep-
tron neural networks (i.e., 2 inputs MLPNN, 3
inputs MLPNN, 4 inputs MLPNN, 5 inputs
MLPNN, and 6 inputs MLPNN) each individually
developed MLPNN posses one input layer, one
hidden layer, and one output layer. The hidden
neurons in the hidden layer vary from 1 to 20; sim-
ilarly, the input neurons in the input layer vary
from 2 to 6

(vi) After choosing the individual neural network
parameters, each developed individual multilayer
perceptron neural network models (i.e., 2 inputs
MLPNN, 3 inputs MLPNN, 4 inputs MLPNN, 5
inputs MLPNN, and 6 inputs MLPNN) are under-
going the training process. Authors verify the
trained individual neural network performance
with the help of the testing data set. If it results
in acceptable performance in the testing process,
the further moves to the next phase; else, it changes
the neural network parameters again

(vii) The individually developed various input-based
multilayer perceptron neural networks achieve
good, acceptable performance in the testing

Table 2: Acquired real-time input data samples.

Solar irradiance (W/m2) Temperature (°C) Relative humidity (%) Wind speed (m/s) Pressure (mbar) Cloud cover (Oktas)

38 26 88 4.1 992 3

162 29 85 5.2 993 2

297 30 75 6.2 992 1

392 31 72 7 991 1

436 36 70 7.2 993 0

419 33 67 6 993 1

273 30 67 6.3 992 2

120 25 72 4 991 2

59 22 75 5 992 3

5 19 75 8 993 5

0 2000 4000 6000 8000 10000

Number of data samples

12000 14000 16000 18000
0

200

400

600

800

1000

1200
Dataset solar irradiance vs data samples

So
la

r i
rr

ad
ia

nc
e i

n 
(W

/m
2 )

Figure 3: Acquired dataset solar irradiance vs. data samples.
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process. All obtained results from the individual
multilayer perceptron neural networks are accu-
mulated and averaged, facilitating the cooperative
multi-input multilayer perceptron neural network
output

(viii) Check the performance of the cooperative multi-
layer perceptron neural network if its acceptable
or not. If the performance is acceptable, record
the result; else, change the number of hidden neu-
rons and again do the design, initialization, train-
ing, testing, accumulation, and averaging process
until the optimal output is achieved with minimal
errors

4.3.2. Data Description. The required real-time data are col-
lected from the NOAA (National Oceanic and Atmospheric
Administration, United States) to validate the proposed
forecasting model. The real-time data were collected for
the period from January 1981 to December 2019. A total
of 3, 32, 880 numbers of data samples of each considered
input parameter are acquired. The solar irradiance (W/m2),
temperature (°C), relative humidity (%), wind speed (m/s),
pressure (mbar), and cloud cover (Oktas) are inputs to the
developed neural network, and the neural network output is
the forecast solar irradiance (W/m2). Authors consider these
atmospheric parameters as the most influencing parameters
of the solar irradiance forecasting process.
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Figure 4: (a) Training dataset solar irradiance vs. data samples. (b) Testing dataset solar irradiance vs. data samples.

Table 3: Two input multilayer perceptron neural network performance analyses with different numbers of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 5.9621E-04 2.4400E-02 1.8400E-02 7.8434E-05 7.8000E-03 1 58

2 2.5732E-05 5.1000E-03 3.5000E-03 1.4916E-05 1.5000E-03 1 65

3 2.0864E-05 4.6000E-03 3.1000E-03 1.3117E-05 1.3000E-03 1 72

4 3.2662E-05 5.7000E-03 3.7000E-03 1.5963E-05 1.6000E-03 1 63

5 9.9427E-05 1.0000E-02 5.8000E-03 2.4773E-05 2.5000E-03 1 84

6 3.2997E-05 5.7000E-03 4.0000E-03 1.7155E-05 1.7000E-03 1 95

7 1.0345E-05 3.2000E-03 2.1000E-03 9.0101E-06 9.0101E-04 1 94

8 3.9008E-05 6.2000E-03 4.3000E-03 1.8411E-05 1.8000E-03 1 115

9 1.0326E-05 3.2000E-03 1.9000E-03 8.2489E-06 8.2489E-04 1 123

10 2.3071E-05 4.8000E-03 2.5000E-03 1.0649E-05 1.1000E-03 1 130

11 4.6940E-05 6.9000E-03 4.3000E-03 1.8278E-05 1.8000E-03 1 138

12 1.7479E-05 4.2000E-03 2.6000E-03 1.1246E-05 1.1000E-03 1 143

13 1.4382E-04 1.2000E-02 6.4000E-03 2.7454E-05 2.7000E-03 1 149

14 7.3628E-05 8.6000E-03 4.7000E-03 2.0134E-05 2.0000E-03 1 158

15 8.8216E-05 9.4000E-03 4.9000E-03 2.0812E-05 2.1000E-03 1 167

16 1.5738E-05 4.0000E-03 2.2000E-03 9.3960E-06 9.3960E-04 1 174

17 7.2175E-06 2.7000E-03 1.6000E-03 7.0335E-06 7.0335E-04 1 181

18 4.3428E-05 6.6000E-03 1.6000E-03 6.9534E-06 6.9534E-04 1 186

19 5.9552E-04 2.4400E-02 1.3500E-02 5.7478E-05 5.7000E-03 1 195

20 3.2674E-05 5.7000E-03 2.7000E-03 1.1551E-05 1.2000E-03 1 175

Bold implies the optimal result.
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Table 2 shows the acquired real-time data sample inputs.
Concerning the acquired real-time dataset, a cooperative
multi-input multilayer perceptron neural network was pro-
posed for the forecasting of solar irradiance. Some portions
of the acquired data samples with respect to the solar irradi-
ance are shown in Figure 3: acquired dataset solar irradiance
vs. data samples.

4.3.3. Normalization. To deal with the real-time data set, the
process of normalization is much needed; the real-time data
possess the variance with respect to different ranges and dif-
ferent units. Therefore, the acquired real-time data scaled
within the range of 0 to1 with the help of the min-max nor-
malization process. The normalization process aids in
accurate numeric computation and output accuracy
improvement. The real-time data are normalized based on
the following transformation equation.

Normalized input is as follows:

Ri′=
Ri − Rmin

Rmax − Rmin

� �
Rmax′ − Rmin′
� �

+ Rmin′ : ð10Þ

Let Ri be the actual input data, Rmin is the minimum
input data, Rmax is the maximum input data, Rmin′ is the min-
imum target value, and Rmax′ is the maximum target value.

4.3.4. Training and Testing. Solar irradiance prevails with
arbitrary nature. Several years (past decades) of hourly solar
irradiance and meteorological data are acquired from the
National Oceanic and Atmospheric Administration
(NOAA), which are processed for the training and testing
process of the proposed model. To evaluate the proposed
model’s effectiveness, real-time acquired data sets are used
for the training and testing process.

For the experimental simulation, 70 percentages of real-
time data sets were used in the neural network for the train-

ing process as the training data set. The remaining 30 per-
cent of the data samples of the real-time measured data set
are used in the neural network testing process as the testing
data set. We show some of the training data set portions
with respect to the solar irradiance in Figure 4(a): training
dataset solar irradiance vs. data samples; similarly, we show
some portions of the testing data set regarding solar irradi-
ance in Figure 4(b): testing dataset solar irradiance vs. data
samples.

4.3.5. Performance Indicators. Authors quantify the perfor-
mance and effectiveness based on the performance indica-
tors (i.e., MSE, RMSE, MAE, MRE, MAPE, R, and time).
Following performance indicators such as MSE (mean
square error), RMSE (root mean square error), MAE (mean
absolute error), MRE (mean relative error), MAPE (mean
absolute percentage error), and R (correlation coefficient)
are quantifying the efficacy of proposed CMMLPNN.

MSE = 1
K
〠
K

d=1
Rd′ − Rd

� �2
, ð11Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K
〠
K

d=1
Rd′ − Rd

� �2 !vuut , ð12Þ

MAE = 1
K
〠
K

d=1
Rd′ − Rd

� �
, ð13Þ

MRE = 1
K
〠
K

d=1
Rd′ − Rd

� �
/�Rd

��� ���, ð14Þ

MAPE = 100
K

〠
K

d=1
Rd′ − Rd

� �
/�Rd

��� ���, ð15Þ
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Figure 5: (a) Two input MLPNN-based forecasting model original targets compared to forecast solar irradiance. (b) Two input MLPNN-
based forecasting model forecasting errors vs. the number of data samples.
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R = 1 −
∑K

d=1 Rd′ − Rd

� �
∑K

d=1Rd

0
@

1
A

2

: ð16Þ

Let K be the total number of data samples, Rd′ is the orig-
inal target output, �Rd is the average original target output,
and Rd is the forecast output.

4.3.6. Fixation of Hidden Neurons. For neural network
modeling, the fixation of hidden neurons is a significant
problem. The hidden neurons are increased, which increases
the complexity and computation time and overfitting issue;
else, the hidden neurons are decreased, which causes the
underfitting issue [43–45]. Therefore, it is crucial to fix the
number of hidden neurons in a neural network. The pro-
posed and developed neural network model, optimal hidden
neurons, is chosen with respect to the trial-and-error
method. The developed neural network hidden layer hidden
neurons vary from one to twenty among the optimal num-
ber of hidden neurons that is chosen based on the computed
performance indicator.

5. Results and Discussion

Solar energy vendor companies require a forecasting tool for
planning effectively to achieve optimal production and dis-
patch. The power grid’s efficient operation requires accurate
forecasting of resources and power production to avoid
power outages and reduce the spare (standby) power capac-
ity. This research paper worked on cooperative multi-input
MLPNN to prevent the generalization problem and the
meteorological impact of solar irradiance forecasting.

The accumulation and average of various finite numbers
of individual artificial neural networks are known as cooper-
ative neural networks, in which considered all individual
artificial neural networks are trained and tested for the con-

sidered application. Even though the training and testing set
are the same, the developed individual neural network
results in various outputs for various hidden neurons in
the hidden layer. For multiple inputs, data sets indeed result
in variance in output. The major problem with respect to the
forecasting model results in a better result for the considered
input parameters. Still, it cannot generalize better for the
other number of input parameters. The input parameters
and hidden neurons play vital roles in neural network per-
formance. Hence, this paper proposes the cooperative
multi-input multilayer perceptron neural network. Even
though the input parameters are different, the training and
testing data sets are different, and the proposed model out-
performs especially generalizations well.

Suppose the atmospheric pressure changes lead to
changes in the wind velocity, which affects the solar irradi-
ance and temperature, similarly, cloud cover varies; it affects
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Figure 7: Two input MLPNN-based forecasting model simulation
times vs. the number of hidden neurons.
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Figure 6: (a) Two input MLPNN-based forecasting model regression graphs. (b) Two input MLPNN-based forecasting model forecasting
errors vs. the number of hidden neurons.
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solar irradiance. The meteorological impact on solar irradi-
ance forecasting is overcome by considering the most
influencing atmospheric parameters as the inputs to the
developed neural network.

This paper carried out a statistical performance analysis
of the designed and proposed neural network models with

respect to the various hidden neurons in the solar irradiance
forecasting application.

5.1. Statistical Performance Analysis of Two Input MLPNN-
Based Forecastings of Solar Irradiance. The developed two
input-based multilayer perceptron neural network (MLPNN)

Table 4: Three input multilayer perceptron neural network performance analyses with a different number of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 7.5132E-04 2.7400E-02 2.1500E-02 9.1951E-05 9.2000E-03 1 62

2 2.2009E-05 4.7000E-03 3.1000E-03 1.3413E-05 1.3000E-03 1 84

3 3.7842E-06 1.9000E-03 1.3000E-03 5.4536E-06 5.4536E-04 1 71

4 3.2406E-05 5.7000E-03 3.8000E-03 1.6203E-05 1.6000E-03 1 117

5 1.9311E-04 1.3900E-02 7.1000E-03 3.0474E-05 3.0000E-03 1 125

6 1.3315E-05 3.6000E-03 2.3000E-03 9.7935E-06 9.7935E-04 1 120

7 5.7396E-06 2.4000E-03 1.5000E-03 6.3661E-06 6.3661E-04 1 99

8 7.6763E-05 8.8000E-03 5.0000E-03 2.1517E-05 2.2000E-03 1 116

9 2.9000E-03 5.4300E-02 9.9000E-03 4.2146E-05 4.2000E-03 1 124

10 9.9727E-05 1.0000E-02 6.5000E-03 2.7714E-05 2.8000E-03 1 111

11 5.9904E-06 2.4000E-03 1.7000E-03 7.0656E-06 7.0656E-04 1 101

12 2.9376E-05 5.4000E-03 3.3000E-03 1.4139E-05 1.4000E-03 1 150

13 3.9100E-02 1.9780E-01 2.8700E-02 1.2250E-04 1.2300E-02 1 161

14 3.6238E-06 1.9000E-03 1.2000E-03 5.0432E-06 5.0432E-04 1 101

15 2.4000E-03 4.8700E-02 1.1700E-02 4.9846E-05 5.0000E-03 1 167

16 8.8000E-03 9.3600E-02 1.3500E-02 5.7755E-05 5.8000E-03 1 206

17 4.6900E-04 2.1700E-02 7.8000E-03 3.3439E-05 3.3000E-03 1 204

18 9.4980E-08 3.0819E-04 1.2680E-04 5.4138E-07 5.4138E-05 1 156

19 1.2000E-03 3.5200E-02 9.6000E-03 4.0829E-05 4.1000E-03 1 159

20 9.3967E-04 3.0700E-02 9.5000E-03 4.0628E-05 4.1000E-03 1 195

Bold implies the optimal result.
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Figure 8: (a) Three input MLPNN-based forecasting model original targets compared to forecast solar irradiance. (b) Three input MLPNN-
based forecasting model forecasting errors vs. the number of data samples.
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forecasting model performances are statistically analyzed
based on various hidden neurons from one to twenty hidden
neurons. We tabulate the results in Table 3.

From the careful analysis of Table 3, it was noticed that
the 17 numbers of hidden neurons in the hidden layer of
two input-based MLPNNs achieve the minimal errors (i.e.,
MSE as 7.2175E-06, RMSE as 2.7000E-03, MAE as 1.6000E
-03, MRE as 7.0335E-06, MAPE as 7.0335E-04, and R as 1)
among the other considered number of hidden neurons.
We show the obtained portion of the results based on two
input MLPNNs with 17 hidden neurons in the hidden layer
in Figure 5 due to page limitation.

Figure 5(a) shows the two input-MLPNN-based fore-
casting model original target comparison to forecast solar
irradiance. It implies that the developed model-based fore-
casted solar irradiance highly matched with the original tar-
get taken into consideration. Therefore, it results in very
minimal errors, which can be seen from Figure 5(b): two
input MLPNN-based forecasting model forecasting errors
vs. a number of data samples and Figure 6(a): two input
MLPNN-based forecasting model regression graphs. The
developmental model-based regression graph is linear in
nature, which states the developed model’s good forecasting
performance. Furthermore, the statistical analysis consider-
ing the number of hidden neurons is graphically represented
in Figure 6(b): two input MLPNN-based forecasting model
forecasting errors vs. the number of hidden neurons. The
hidden neurons vary, and the neural network’s stability is
also varied, which causes the irregular nature of the forecast-
ing errors. The computational time-based impact on the hid-
den neurons is shown in Figure 7. Two input MLPNN-based
forecasting model simulation times vs. the number of hidden
neurons is irregular in nature because hidden neurons
impact errors and impact the computational time, which

can be understood from Figure 7. The validation results
indicate that the proposed model is capable of forecasting
accurate solar irradiance.

5.2. Statistical Performance Analysis of Three Input MLPNN-
Based Forecastings of Solar Irradiance. The designed three
input-based multilayer perceptron neural network
(MLPNN) forecasting model performances are statistically
analyzed based on various hidden neurons from one to
twenty hidden neurons. The obtained results are tabulated
in Table 4. From the careful analysis of Table 4, it was
noticed that the 18 numbers of hidden neurons in the hid-
den layer of three input-based MLPNNs achieve the mini-
mal errors (i.e., MSE as 9.4980E-08, RMSE as 3.0819E-04,
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Figure 9: (a) Three input MLPNN-based forecasting model regression graphs. (b) Three input MLPNN-based forecasting model forecasting
errors vs. the number of hidden neurons.
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MAE as 1.2680E-04, MRE as 5.4138E-07, MAPE as 5.4138E
-05, and R as 1) among the other considered number of hid-
den neurons. We show the obtained portion of the results
based on three input MLPNNs with 18 hidden neurons in
the hidden layer in Figure 8 due to page limitation.

Figure 8(a) shows that the three input MLPNN-based
forecasting model original target comparisons to forecast

solar irradiance implies that the developed model-based
forecasted solar irradiance highly matched with the original
target taken into consideration. Therefore, it results in very
minimal errors, which can be seen from Figure 8(b): three
input MLPNN-based forecasting model forecasting errors
vs. number of data samples and Figure 9(a): three input
MLPNN-based forecasting model regression graphs. The

Table 5: Four input multilayer perceptron neural network performance analyses with different numbers of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 7.4471E-04 2.7300E-02 2.1600E-02 9.2146E-05 9.2000E-03 1 66

2 3.0940E-05 5.6000E-03 3.8000E-03 1.6033E-05 1.6000E-03 1 91

3 2.6547E-05 5.2000E-03 3.7000E-03 1.5660E-05 1.6000E-03 1 96

4 2.1062E-05 4.6000E-03 3.1000E-03 1.3174E-05 1.3000E-03 1 105

5 1.3344E-05 3.7000E-03 2.5000E-03 1.0689E-05 1.1000E-03 1 84

6 2.3965E-05 4.9000E-03 3.4000E-03 1.4307E-05 1.4000E-03 1 42

7 6.8545E-06 2.6000E-03 1.7000E-03 7.2897E-06 7.2897E-04 1 50

8 3.9139E-05 6.3000E-03 4.0000E-03 1.7231E-05 1.7000E-03 1 69

9 5.2354E-06 2.3000E-03 1.5000E-03 6.3354E-06 6.3354E-04 1 135

10 7.5525E-06 2.7000E-03 1.8000E-03 7.6150E-06 7.6150E-04 1 137

11 8.4789E-05 9.2000E-03 5.4000E-03 2.3004E-05 2.3000E-03 1 151

12 1.4577E-04 1.2100E-02 7.3000E-03 3.0965E-05 3.1000E-03 1 196

13 4.1533E-04 2.0400E-02 6.9000E-03 2.9265E-05 2.9000E-03 1 178

14 1.6703E-04 1.2900E-02 5.4000E-03 2.3216E-05 2.3000E-03 1 253

15 6.2997E-08 2.5099E-04 1.4464E-04 6.1756E-07 6.1756E-05 1 70

16 2.0957E-05 4.6000E-03 1.6000E-03 7.0276E-06 7.0276E-04 1 139

17 2.4974E-06 1.6000E-03 6.9899E-04 2.9845E-06 2.9845E-04 1 174

18 7.1545E-05 8.5000E-03 4.7000E-03 2.0092E-05 2.0000E-03 1 247

19 5.2397E-04 2.2900E-02 5.5000E-03 2.3429E-05 2.3000E-03 1 218

20 1.1324E-05 3.4000E-03 1.9000E-03 8.1852E-06 8.1852E-04 1 212

Bold implies the optimal result.
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Figure 11: (a) Four input MLPNN-based forecasting model original targets compared to forecast solar irradiance. (b) Four input MLPNN-
based forecasting model forecasting errors vs. the number of data samples.
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designed model-based regression graph is linear in nature,
which states the developed model’s good forecasting
performance.

Furthermore, the statistical analysis considering a num-
ber of hidden neurons is graphically represented in
Figure 9(b): three input MLPNN-based forecasting model
forecasting errors vs. the number of hidden neurons. The
hidden neurons vary, and the neural network’s stability is
also varied, which causes the irregular nature of the forecast-
ing errors. The computational time-based impact on the hid-
den neurons is shown in Figure 10. Three input MLPNN-
based forecasting model simulation times vs. the number
of hidden neurons are irregular in nature because hidden
neurons impact errors and the computational time, which
can be understood from Figure 10. The validation results
indicate that the proposed model is capable of forecasting
accurate solar irradiance.

5.3. Statistical Performance Analysis of Four Input MLPNN-
Based Forecastings of Solar Irradiance. The developed four
input-based multilayer perceptron neural network
(MLPNN) forecasting model performances are statistically
analyzed based on various hidden neurons from one to
twenty hidden neurons, and the obtained results are tabu-
lated in Table 5. From the careful analysis of Table 5, it
was noticed that the 15 numbers of hidden neurons in the
hidden layer of four input-based MLPNNs achieve the min-
imal errors (i.e., MSE as 6.2997E-08, RMSE as 2.5099E-04,
MAE as 1.4464E-04, MRE as 6.1756E-07, MAPE as
6.1756E-05, and R as 1) among the other considered number
of hidden neurons. We show the obtained portion of the
results based on four input MLPNNs with 15 hidden neu-
rons in the hidden layer in Figure 11 due to page limitation.
Figure 11(a) shows that the four input MLPNN-based fore-
casting model original target comparisons to forecast solar

irradiance implies that the developed model-based fore-
casted solar irradiance highly matched with the original tar-
get taken into consideration. Therefore, it results in very
minimal errors, which can be seen from Figure 11(b): four
input MLPNN-based forecasting model forecasting errors
vs. the number of data samples and Figure 12(a): four input
MLPNN-based forecasting model regression graphs.

The developmental model-based regression graph is lin-
ear in nature, which states the developed model’s good fore-
casting performance. Furthermore, the statistical analysis
considering the number of hidden neurons is graphically
represented in Figure 12(b). The hidden neurons vary, and
the neural network’s stability is also varied, which causes
the irregular nature of the forecasting errors. The computa-
tional time-based impact on the hidden neurons is shown in
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Figure 12: (a) Four input MLPNN-based forecasting model regression graphs. (b) Four input MLPNN-based forecasting model forecasting
error vs. the number of hidden neurons.
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Figure 13: Four input MLPNN-based forecasting model
simulation times vs. number of hidden neurons.
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Figure 13. Four input MLPNN-based forecasting model sim-
ulation times vs. the number of hidden neurons is irregular
in nature because hidden neurons impact errors and the
computational time, which can be understood from
Figure 13. The validation results indicate the proposed
model that is capable of forecasting accurate solar irradiance.

5.4. Statistical Performance Analysis of Five Input MLPNN-
Based Forecastings of Solar Irradiance. The designed five
input-based multilayer perceptron neural network
(MLPNN) forecasting model performances are statistically
analyzed based on the various hidden neurons, from one
to twenty hidden neurons, and the obtained results are

Table 6: Five input multilayer perceptron neural network performance analyses with different numbers of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 8.8866E-04 2.9800E-02 2.1400E-02 9.1578E-05 9.2000E-03 1 63

2 2.1000E-03 4.5800E-02 2.8200E-02 1.2054E-04 1.2100E-02 1 77

3 2.1164E+01 4.6005 2.5291 1.0800E-02 1.0798 9.9997E-01 85

4 1.4053E-04 1.1900E-02 6.8000E-03 2.8928E-05 2.9000E-03 1 86

5 1.8456E-04 1.3600E-02 7.3000E-03 3.1340E-05 3.1000E-03 1 76

6 1.4665 1.2110 1.0607 4.5000E-03 4.5290E-01 1 114

7 2.4758E-04 1.5700E-02 1.1800E-02 5.0208E-05 5.0000E-03 1 78

8 4.3498E+02 2.0856E+01 1.3909E+01 5.9400E-02 5.9386 9.9945E-01 136

9 7.9277E+01 8.9037 6.7448 2.8800E-02 2.8798 9.9989E-01 144

10 1.1000E-03 3.2500E-02 2.3300E-02 9.9492E-05 9.9492E-05 1 146

11 1.5882E+02 1.2602E+01 1.1004E+01 4.7000E-02 4.6982 9.9984E-01 167

12 2.2279E+03 4.7200E+01 3.5290E+01 1.5070E-01 1.5068E+01 9.9655E-01 176

13 5.3100E-02 2.3050E-01 8.9600E-02 3.8240E-04 3.8200E-02 1 183

14 1.4020E-01 3.7450E-01 2.2400E-01 9.5640E-04 9.5600E-02 1 192

15 9.0506E+01 9.5135 3.7441 1.6000E-02 1.5986 9.9960E-01 200

16 2.1349E+01 4.6205 2.0997 9.0000E-03 8.9650E-01 9.9994E-01 162

17 1.3000E-03 3.6500E-02 2.8500E-02 1.2188E-04 1.2200E-02 1 124

18 3.0136E+02 1.7360E+01 5.8302 2.4900E-02 2.4893 9.9907E-01 100

19 2.1978E+03 4.6881E+01 3.8933E+01 1.6620E-01 1.6623E+01 9.9662E-01 247

20 1.1940E+02 1.0927E+01 7.6431 3.2600E-02 3.2633 9.9984E-01 240

Bold implies the optimal result.
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Figure 14: (a) Five input MLPNN-based forecasting model original targets compared to forecast solar irradiance. (b) Five input MLPNN-
based forecasting model forecasting errors vs. the number of data samples.
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tabulated in Table 6. From the careful analysis of Table 6, it
was noticed that the 4 numbers of hidden neurons in the
hidden layer of five input-based MLPNNs achieve the mini-
mal errors (i.e., MSE as 1.4053E-04, RMSE as 1.1900E-02,
MAE as 6.8000E-03, MRE as 2.8928E-05, MAPE as
2.9000E-03, and R as 1) among the other considered number
of hidden neurons. We show the obtained portion of the
results based on five input MLPNNs with four hidden neu-
rons in the hidden layer in Figure 14 due to page limitation.

Figure 14(a) shows that the five input MLPNN-based
forecasting model original target comparisons to forecast
solar irradiance implies that the developed model-based
forecasted solar irradiance highly matched with the original
target taken into consideration. Therefore, it results in very
minimal errors, which can be seen from Figure 14(b): five
input MLPNN-based forecasting model forecasting errors
vs. the number of data samples and Figure 15(a): five input
MLPNN-based forecasting model regression graphs. The
designed model-based regression graph is linear in nature,
which states the developed model’s good forecasting perfor-
mance. Furthermore, the statistical analysis considering the
number of hidden neurons is graphically represented in
Figure 15(b): five input MLPNN-based forecasting model
forecasting errors vs. the number of hidden neurons.

The hidden neurons vary, and the neural network’s sta-
bility is also varied, which causes the irregular nature of
the forecasting errors. The computational time-based impact
on the hidden neurons is shown in Figure 16. Five input
MLPNN-based forecasting model simulation times vs. the
number of hidden neurons is irregular because hidden neu-
rons impact errors and computational time, which can be
understood from Figure 16.

The validation results indicate that the proposed model
is capable of forecasting accurate solar irradiance.

5.5. Statistical Performance Analysis of Six Input MLPNN-
Based Forecastings of Solar Irradiance. The developed six
input-based multilayer perceptron neural network
(MLPNN) forecasting model performances are statistically
analyzed based on various hidden neurons, from one to
twenty hidden neurons, and the obtained results are tabu-
lated in Table 7. From the careful analysis of Table 7, it
was noticed that the 2 numbers of hidden neurons in the
hidden layer of six input-based MLPNNs achieve the mini-
mal errors (i.e., MSE as 4.3744E-05, RMSE as 6.6000E-03,
MAE as 4.0000E-03, MRE as 1.7068E-05, MAPE as
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Figure 15: (a) Five input MLPNN-based forecasting model regression graphs. (b) Five input MLPNN-based forecasting model forecasting
errors vs. the number of hidden neurons.
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Figure 16: Five input MLPNN-based forecasting model simulation
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1.7000E-03, and R as 1) among the other considered number
of hidden neurons. Due to page limitation, the obtained por-
tion of the results based on six input MLPNNs with two hid-
den neurons in the hidden layer is shown in Figures 17.

Figure 17(a) shows the six input MLPNN-based fore-
casting model original target comparisons with forecast solar
irradiance, and it implies that the developed model-based

forecasted solar irradiance highly matched with the original
target taken into consideration. Therefore, it results in very
minimal errors, which can be seen from Figure 17(b): six
input MLPNN-based forecasting model forecasting errors
vs. the number of data samples and Figure 18(a): six input
MLPNN-based forecasting model regression graphs. The
designed model-based regression graph is linear in nature,

Table 7: Six inputs multilayer perceptron neural network performance analyses with different numbers of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 1.0000E-03 3.1900E-02 2.3100E-02 9.8823E-05 9.9000E-03 1 63

2 4.3744E-05 6.6000E-03 4.0000E-03 1.7068E-05 1.7000E-03 1 76

3 1.8655E-04 1.3700E-02 8.4000E-03 3.5887E-05 3.6000E-03 1 81

4 1.7000E-03 4.1300E-02 2.6300E-02 1.1221E-04 1.1200E-02 1 95

5 2.0640E-01 4.5430E-01 3.9950E-01 1.7000E-03 1.7060E-01 1 103

6 3.5592+03 5.9659E+01 4.6116E+01 1.9690E-01 1.9690E+01 9.9217E-01 111

7 2.0000E-03 4.5100E-02 2.2700E-02 9.6818E-05 9.7000E-03 1 122

8 7.9925E+02 2.8271E+01 2.0471E+01 8.7400E-02 8.7402E+00 9.9905E-01 138

9 2.4900E-02 1.5790E-01 9.9800E-02 4.2595E-04 4.2600E-02 1 145

10 7.0902E-04 2.6600E-02 1.1300E-02 4.8255E-05 4.8000E-03 1 107

11 2.3000E-03 4.7900E-02 3.9800E-02 1.6988E-04 1.7000E-02 1 104

12 3.5173 +03 5.9307E+01 4.7161E+01 2.0140E-01 2.0136E+01 9.9170E-01 176

13 8.0220E-01 8.9560E-01 4.4290E-01 1.9000E-03 1.8910E-01 1 177

14 5.9200E-01 7.6940E-01 5.2990E-01 2.3000E-03 2.2620E-01 1 195

15 4.5008E+03 6.7088E+01 5.3522E+01 2.2850E-01 2.2852E+01 9.9208E-01 119

16 2.5650E-01 5.0650E-01 3.7800E-01 1.6000E-03 1.6140E-01 1 139

17 8.4281 2.9031 1.0193 4.4000E-03 4.3520E-01 9.9998E-01 232

18 1.0000E+02 1.0000E+01 7.1652 3.0600E-02 3.0593 9.9985E-01 172

19 1.0600E-02 1.0280E-01 4.6700E-02 1.9945E-04 1.9900E-02 1 174

20 1.3955E+01 3.7357 2.9459 1.2600E-02 1.2578 9.9997E-01 231

Bold implies the optimal result.
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Figure 17: (a) Six input MLPNN-based forecasting model original targets compared to forecast solar irradiance. (b) Six input MLPNN-
based forecasting model forecasting errors vs. the number of data samples.
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which states the developed model’s good forecasting perfor-
mance. Furthermore, the statistical analysis considering the
number of hidden neurons is graphically represented in the
Figure 18(b): six input MLPNN-based forecasting model
forecasting errors vs. the number of hidden neurons. The
hidden neurons vary, and the neural network’s stability is
also varied, which causes the irregular nature of the fore-
casting errors. The computational time-based impact on
the hidden neurons is shown in Figure 19. Six input
MLPNN-based forecasting model simulation times vs. the
number of hidden neurons is irregular because hidden neu-
rons impact errors and computational time, which can be
understood from Figure 19. The validation results show
that the proposed model is capable of forecasting accurate
solar irradiance.

5.6. Statistical Performance Analysis of Proposed Cooperative
Multi-Input MLPNN-Based Forecasting of Solar Irradiance.
The proposed cooperative multi-input multilayer perceptron
neural network (CMMLPNN) forecasting model perfor-
mance is statistically analyzed based on various hidden neu-
rons, from one to twenty hidden neurons, and the obtained
results are tabulated in Table 8. From the careful analysis of
Table 8, it was noticed that the 4 numbers of hidden neurons
in the hidden layer of CMMLPNN achieve the minimal
errors (i.e., MSE as 0.000385, RMSE as 0.01384, MAE as
0.00874, MRE as 3.73E-05, MAPE as 0.00372, and R as 1)
among the other considered number of hidden neurons.
We show the obtained portion of the results based on
CMMLPNN with 4 hidden neurons in the hidden layer in
Figure 20 due to page limitation.

Figure 20(a) shows that the CMMLPNN-based forecast-
ing model’s original target compared to the forecast solar

irradiance implies that the developed model-based fore-
casted solar irradiance is highly matched with the original
target taken into consideration. Hence, it results in very
minimal errors, which can be seen from Figure 20(b):
CMMLPNN-based forecasting model forecasting error vs.
the number of data samples and Figure 21(a):
CMMLPNN-based forecasting model regression graph.
The proposed model-based regression graph is linear, stating
the developed model’s good forecasting performance. Fur-
thermore, the statistical analysis considering the number of

–1 –0.5 0 0.5 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Target

O
ut

pu
t ~

= 
1⁎

Ta
rg

et
 +

 -1
.5
e
-1

0
Training: R = 1

Data
Fit
Y = T

(a)

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500
 Forecasting errors vs number of hidden neurons

Fo
re

ca
sti

ng
 er

ro
rs

Number of hidden neurons

MSE
RMSE
MAE

MRE
MAPE
Regression

(b)

Figure 18: (a) Six input MLPNN-based forecasting model regression graphs. (b) Six input MLPNN-based forecasting model forecasting
errors vs. the number of hidden neurons.
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Figure 19: Six input MLPNN-based forecasting model simulation
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hidden neurons is graphically represented in Figure 21(b):
CMMLPNN-based forecasting model forecasting error vs.
a number of hidden neurons. The hidden neurons vary,
and the neural network’s stability is also varied, which causes
the irregular nature of the forecasting errors. The computa-
tional time-based impact on the hidden neurons is shown in
Figure 22.

CMMLPNN-based forecasting model simulation time vs.
a number of hidden neurons is irregular because hidden neu-
rons impact errors and computational time, which can be
understood from Figure 22. The proposed model’s effective-
ness is demonstrated with the experimental simulation results,
which implies that the proposed model achieves improved
generalization with more stable and accurate outputs.

Table 8: Cooperative multi-input multilayer perceptron neural network performance analysis with different numbers of hidden neurons.

Number of hidden neurons MSE RMSE MAE MRE MAPE R Time

1 0.000796 0.02816 0.0212 9.06E-05 0.00906 1 62

2 0.000444 0.01356 0.00852 3.64E-05 0.00364 1 79

3 4.232908 0.92518 0.50912 0.002174 0.217369 0.999994 81

4 0.000385 0.01384 0.00874 3.73E-05 0.00372 1 93

5 0.041378 0.0991 0.08444 0.000359 0.03606 1 94

6 0.366643 12.17678 9.43732 0.040288 4.029396 0.998434 96

7 0.000454 0.0138 0.00796 3.39E-05 0.003393 1 89

8 246.8467 9.82972 6.87858 0.029371 2.9369 0.9997 115

9 15.86092 1.82428 1.37158 0.005857 0.585612 0.999978 134

10 0.000388 0.01532 0.00908 3.87E-05 0.001912 1 126

11 31.76393 2.53374 2.21096 0.009444 0.944001 0.999968 132

12 556.975 21.30572 16.49282 0.070431 7.04184 0.99765 168

13 0.178992 0.27126 0.1149 0.000492 0.04904 1 170

14 0.146489 0.23346 0.15304 0.000661 0.065321 1 180

15 918.2618 15.33193 11.45663 0.048914 4.891572 0.998336 145

16 4.322847 1.04584 0.499 0.002135 0.213068 0.999988 164

17 1.685976 0.59312 0.21158 0.000913 0.09034 0.999996 183

18 80.27228 5.475042 2.600365 0.011131 1.11027 0.999784 172

19 439.5626 9.41328 7.80156 0.033304 3.33094 0.999324 199

20 26.67178 2.94052 2.12062 0.009052 0.905444 0.999962 211

Bold implies the optimal result.
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Figure 20: (a) CMMLPNN-based forecasting model original target compared to forecast solar irradiance. (b) CMMLPNN-based forecasting
model forecasting error vs. the number of data samples.
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The atmospheric parameters (i.e., temperature, relative
humidity, wind speed, pressure, and cloud cover) influence
solar irradiance. Because of these influencing factors, solar
irradiance possesses an irregular nature, affecting the energy
production from the solar energy system. The varying and
uncertain amount of power production from solar energy
systems leads to grid security, imbalance, and outage prob-
lems. It significantly reduces the output forecasting error
based on the proposed model to the minimum values.
Although the individual neural network achieves impressive
forecasting outputs under certain considered conditions, it
cannot generalize well under various circumstances or data
sets. The reason for proposing a cooperative multi-input
multilayer perceptron neural network is to overcome the
irregularity of meteorological parameters and the assurance
of generalization.

From the obtained results based on the proposed model,
we have confirmed that cooperative multi-input multilayer
perceptron neural networks generalize well amongst other
developed MLPNNs. It is noteworthy to mention that hid-
den neurons influence highly in neural network stability.
The proposed forecasting model improves the forecasting
accuracy with much minimal error and is generalized with
respect to solar irradiance forecasting. Henceforth, it conse-
quently aids in better power system performance with inter-
mittent solar energy integration.

5.7. Comparative Analysis of the Proposed Method with
Existing Methodologies. The proposed model’s effectiveness
is verified by real-time data-based experimental simulation
and compared the proposed model performance with other
existing traditional methods.

The inference of Table 9 based on comparative analy-
sis is the proposed CMMLPNN not only generalized well
but also a proposed competitive model that provides a bet-
ter result than other models for the comparative analysis.
We graphically illustrate the comparative analysis of exist-
ing and proposed methods in Figure 23 for better clarity
of understanding. The comparative analysis in Table 9
infer the proposed model validity on solar irradiance
forecasting.
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Figure 21: (a) CMMLPNN-based forecasting model regression graph. (b) CMMLPNN-based forecasting model forecasting error vs. the
number of hidden neurons.
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Figure 22: CMMLPNN-based forecasting model simulation time
vs. the number of hidden neurons.
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6. Conclusion

In the future, renewable energy resources fulfill the power
supply for industry and domestic, such as solar and wind,
which say goodbye to the environment polluting power pro-
duction scheme. Inevitably, solar energy plays a significant
role in the forthcoming future. The solar energy system’s
forecasting model that ensures safe grid integration can
resolve the variability problem. The power system engineer
and research scientists give equal importance to accurate
prediction and generalization. The variance present in the
individual forecasting model can reduce by proposing a
cooperative multi-input multilayer perceptron neural net-
work, which improves the forecasting performance in terms

of generalization and accuracy with the least forecasting
error.

The neural network-based forecasting model perfor-
mance is not only decided by the training and testing data-
set. The selection of parameters like hidden neurons also
has a potent influence on the predicted results. Therefore,
this paper carried out a statistical analysis of each proposed
MLPNN model with various numbers of hidden neurons
from one to twenty. The performance analysis noticed that
the neural network stability highly depends on the optimal
hidden neurons. For one neural network model, the associa-
tion of some hidden neurons gets a better result, and the
model cannot address the generalization of other neural net-
works. To address this generalization problem, this paper

Table 9: Comparative analysis of different approach performances of the existing and proposed methods.

S. no Year Methods Authors Performance indicator (MSE)

1 2010 BPN Özgür Solmaz et al. [11] 0.8472

2 2010 RBFN Mohammed Benghamm and Adel Mellit [12] 0.0189

3 2012 ANN Amit Kumar Yadav and S S Chandel [14] 2.8460

4 2012 BP-MLPN H G CHUA et al. [15] 1.1744

5 2016 IBPN Madhiarasan, M. and Deepa, SN [46] 0.0507

6 2016 INN Madhiarasan, M. & Deepa, SN [18] 0.0036

7 2017 K-NN-BPLNN Unit Three Kartini and Chao Rong Chen [24] 5.4827

8 2017 MLPN Madhiarasan, M. and Deepa, SN [47] 0.0012

9 2018 NWP Sowmya Tiwari et al. [33] 8.2628

10 2018 Elman neural network Madhiarasan, M. and Deepa, SN [48] 0.1422

11 2018 ARMA Irene Wanady [29] 1.6140

12 2018 BPN Tanawat Laopaiboon et al. [30] 0.7336

13 2018 MLP Marcello Anderson F. B. Lima et al. [27] 0.0283

14 2018 RELANFIS Shihabudheen K V and G V Pillai [32] 0.6384

15 2018 WVE Luyao et al. [28] 0.0781

16 2019 NARX John Kevin Rogies and Nawaz Mohamudally [37] 0.9568

17 2019 LM based ANN Sempe Leholo et al. [41] 0.2591

18 2019 ANN-NARX Chigbogu Godwin Ozoegwu [38] 0.1918

19 2021 Proposed CMMLPNN Madhiarasan, M et al. 0.000385

Bold implies an optimal result.
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endeavors a novel cooperative multi-input multilayer per-
ceptron neural network to overcome the meteorological,
hidden neuron, and generalization issues.

To prove the validity and effectiveness of the proposed
neural network, a comparative analysis is carried out with
other existing networks (i.e., BPN, ANN, BP-MLPN,
ARMA, K-NN-BPLNN, NARX, NWP, Elman neural net-
work, MLPN, INN, IBPN, LM based ANN, RBFN, WVE,
ANN-NARX, and RELANFIS). The comparative analysis
revealed that the CMMLPNN achieves the best performance
among the other methods in the comparison table.
CMMLPNN is a robust and superior one to other existing
models.

The achieved results infer the proposed model’s superi-
ority in terms of generalization and accurate solar irradiance
forecasting with the least minimal error indicator. The pro-
posed model successfully applied for solar irradiance fore-
casting application in photovoltaic (PV) energy systems
and achieved the aim fruitfully. The proposed model works
well for various applications.

7. Proposed Model Limitation and Future Work

Although the suggested forecasting model overcomes the
uncertainty concerned with the interannual data, meteoro-
logical inputs, hidden neurons, and individual models, the
limitation of the proposed model is the computational cost
is more than the individual model. In future research, the
authors plan to implement the proposed model in real-
time scenarios, develop a hybrid deep learning-based ensem-
ble model, and improve the optimal hyperparameter selec-
tion and fine tuning by novel optimization algorithms.
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