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The defects of solar cell component (SCC) will affect the service life and power generation efficiency. In this paper, the defect
images of SCC were taken by the photoluminescence (PL) method and processed by an advanced lightweight convolutional
neural network (CNN). Firstly, in order to solve the high pixel SCC image detection, each silicon wafer image was segmented
based on local difference extremum of edge projection (LDEEP). Secondly, in order to detect the defects with small size or
weak edges in the silicon wafer, an improved lightweight CNN model with deep backbone feature extraction network structure
was proposed, as the enhancing feature fusion layer and the three-scale feature prediction layer; the model provided more
feature detail. The final experimental results showed that the improved model achieves a good balance between the detection
accuracy and detection speed, with the mean average precision (mAP) reaching 87.55%, which was 6.78% higher than the
original algorithm. Moreover, the detection speed reached 40 frames per second (fps), which meets requirements of precision
and real-time detection. The detection method can better complete the defect detection task of SCC, which lays the foundation

for automatic detection of SCC defects.

1. Introduction

Among all kinds of renewable energy, solar energy, as a kind
of primary energy of renewable resources, is expected to
become the fastest growing renewable energy with its obvious
advantages such as clean, safe, and inexhaustible [1]. Solar
cell component (SCC) is the key part of photovoltaic power
generation system which converts solar energy into electric
energy. The quality of the SCC directly affects the output
power and service life of photoelectric conversion [2]. In
the SCC production process, due to the influence of mate-
rials, processes, and human factors, the silicon wafers in
SCC will inevitably generate various defects, such as cracks,
scratches, and black spots. These defects not only reduce
the yield of the SCC but also affect the service life and the
efficiency of photoelectric conversion. Therefore, the defect
detection of silicon wafer is critical for quality improvement
of finished SCC.

At present, there are two defect detection methods of
silicon wafers: physical inspection methods and visual
inspection methods. The physical detection method relies
on personal experience and involves more limitations for
efficiency and precision, while the visual inspection method
has advantages in accuracy, effectiveness, and stability and
is widely used in quality detection [3]. For vision-based
solar cell quality detection methods, the imaging schemes
mainly include electroluminescence imaging (EL) and pho-
toluminescence imaging (PL). EL technology needs to con-
tact the solar cell for power-on detection, which may cause
secondary damage to the cell by electric current, and also
has a constrained detection efficiency [4], while the PL
combines light sources with different wavelengths to irradi-
ate, so the silicon ion transitions produce luminescence
imaging without touching the solar cell. The PL method
not only can image the surface and internal defects of the
solar cell at the same time but also can detect the process
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sheet (nonfinished cell), which is more conducive to the qual-
ity control of the product. Therefore, PL technology has
gradually become the main imaging technology for solar cell
detection [5]. Figure 1 shows the processing of PL imaging.

For solar cell defect detection, Chen et al. [6] proposed a
cell crack defect detection scheme based on structure
perception. By designing the structure similarity measure
(SSM) function, using the nonmaximum value suppression
method to extract candidate crack defects, the proposed
SSM function has stronger crack defect protrusion and
suppression of randomly distributed grains. It is for
further extraction of crack defects that provide efficient
preparation. Experimental results showed that this method
has a good effect on the detection of prominent cracks,
but the parameters in SSM cannot be automatically selected,
which results in limitations for other types of defect detec-
tion. Tsai et al. [7] proposed an automatic defect detection
scheme based on haar-like feature extraction and a new
clustering technology. In the training process, only images
without defects are selected as training samples, and a simple
distance threshold is automatically determined for each
cluster. Experimental results showed that this method can
effectively detect various defects in solar cells, but the algo-
rithm has limitations on the size of the image to be detected.
Chen et al. [8] designed a visual defect detection method
based on multispectral deep convolutional neural network
(CNN). By adjusting the depth and width of the model, the
impact of model depth and kernel size on the recognition
results was evaluated. Experimental results showed that the
multispectral deep CNN model can effectively detect surface
defects of solar cells, has higher accuracy and stronger adapt-
ability to large-area defects, but has weak feature extraction
capabilities for small-area defects and linear defects. Liu
et al. [9] proposed a support vector machine algorithm with
radial basis as the kernel function. This method used integral
projection and gray barycentric algorithm to obtain the
geometric characteristic parameters of solar cell defects and
used these parameters as a support vector machine. After
learning, the accuracy of the support vector machine to iden-
tify common defects was over 90%, but the real-time perfor-
mance of the detection method needs to be improved. Wang
et al. [10] proposed a solar cell surface defect detection algo-
rithm based on deep learning (DL), which reconstructed the
image through a built-up deep belief network, and compared
the detection result with the real defect image to realize the
defect detection of the image. Lichun et al. [11] proposed a
solar cell surface quality detection method based on machine
vision and artificial neural network in response to the low
efficiency and accuracy of solar cell surface quality detection.
For the tiny defect of broken grid, the correct recognition rate
can reach 98.57% by training the regularized RBF classifier.
Finally, the classifier was used in the defect detection system;
however, the system cannot identify the internal defects such
as hidden cracks and black spots.

The defects are small and blur in the solar cells, and
general detection methods will cause false detection and
missed detection. In the field of target detection, algorithms
based on CNN have the characteristics of strong feature
extraction ability and high accuracy. In recent years, they
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FiGure 1: The imaging principle of PL technology.

have emerged and been widely used [12]. On the whole, these
algorithms can mainly be divided into two branches: two-
stage algorithms and one-stage algorithms. The two-stage
algorithms generate a series of candidate regions (Region
Proposal) through the feature extraction network firstly
[13] and then classify and regress the candidate regions on
this basis. The R-CNN series of algorithms are typical repre-
sentation of two-stage algorithms, such as R-CNN, Fast R-
CNN, and Faster R-CNN [14-16]. The R-CNN series have
higher detection accuracy, but the detection speed is slower
due to more network levels. The main idea of the one-stage
algorithm is to directly classify and regress the target through
the CNN and remove the candidate region step of the two-
stage algorithm. Representative algorithms are YOLO [17],
SSD [18], and so on. Compared with the two-stage algorithm,
the one-stage algorithm has higher real-time performance
with relatively lower accuracy. However, with the continuous
development in recent years, the one-stage algorithm has a
greater improvement in detection accuracy while taking into
account the real-time performance, making it easier to meet
the industrial application requirements. Therefore, the one-
stage algorithm has gradually become the focus of current
research. Li et al. [19] used a fully convolutional YOLO detec-
tion network to provide an end-to-end solution for strip steel
surface defect detection. The network was used to evaluate six
types of defects, and a 97.55% mapping rate and 95.86%
recall rate were achieved. Qiu et al. [20] developed an auton-
omous visual detection system based on various defects of
wind turbine blades, combined with CNN and YOLO
models. In order to detect small-size defects, a small target
detection method based on YOLO using multiscale feature
pyramid fusion multilayer features is proposed. Experimen-
tal results showed that this method was superior to existing
methods in detection accuracy and reliability with an average
accuracy rate of 91.3%. Compared with other one-stage
detection algorithms, the YOLO series has the characteristics
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F1GURE 2: PL image of SCC and partial enlarged view of defect.

of fast speed, simplicity and efficiency, high accuracy, and
strong generalization ability [21]. As a simplified version of
YOLOvV3, YOLOv3-Tiny has a simple model structure, lower
hardware requirements, and faster detection speed, mean-
while, introduces decreased detection accuracy and increased
missed detection rate as the simplified backbone network
[22]. Yi et al. [23] aimed at the problem that YOLOv3-Tiny
real-time pedestrian detection often loses part of the detec-
tion accuracy. Deepen the YOLOv3-Tiny network, enhance
the feature extraction ability of the target, and use k-means
clustering on the training set to find the best prior box.
Experimental results show that this method has high detec-
tion accuracy under the premise of meeting real-time
performance.

In this paper, defect detection is carried out on the PL
image of the SCC. The defect types include the crack typel,
the crack type2, scratch, and black spot (as shown in
Figure 2). In order to detect tiny defects in high-pixel SCC
image, a local difference extremum of edge projection
(LDEEP) method is proposed to segment and extract solar
cell units in the SCC. As the small size of the defects and
the background interference, common one-stage algorithm
cannot reach production demands. In view of this, an
improved lightweight convolutional neural network model
was established. This model deepened the backbone feature
extraction network structure with enhancing feature fusion
layer, and third-scale prediction layer, thereby strengthening
the model performance of feature extraction and small
defect target detection. The experimental results proved that
the lightweight convolutional neural network model pro-
posed in this paper improves the accuracy of solar cell defect
detection under the requirement of real-time performance.
This method is suitable for the detection of the crack typel,
the crack type2, scratch, and black spot of the solar cells and
can complete the detection tasks of the above-mentioned
defect types in the SCC. Figure 2 shows PL image of SCC
and partial enlarged view of defect.

The rest of this article is as follows: Section 2 intro-
duces the SCC unit segmentation. Section 3 introduces
the defect recognition based on lightweight deep neural
network. Section 4 introduces the experimental results
and analysis. Finally, Section 5 provides the conclusion of
this article.

2. Solar Cell Component Unit Segmentation

As the SCC images have more than 70 million pixels (about
7900 x 4100), whereas defects usually account for small
areas (about 64 x 64) in a single silicon wafer (about 600 x
600) of the SCC image (as shown in Figure 2). If the SCC
image is detected directly, it will cause a large amount of cal-
culation and time-consuming. Meanwhile, the defects
occupy relatively small proportion, which is prone to miss
detection for the common detection methods. A viable solu-
tion under the premise of ensuring efficiency is to extract
each single silicon wafer and then transfer defect position
to the whole coordinate of SCC image. Under this strategy,
it is necessary to perform single silicon wafer segmentation
firstly.

2.1. Local Extremum Neighborhood Difference Based on Edge
Projection. From Figure 2, it can be seen that the SCC image
(with 10 x 6 silicons) has a black background. In order to
obtain each silicon wafer region, the component region
should be extracted firstly and segmented with a priori
knowledge of layout (10 X 6 or 12 x 6). So minimum bound-
ing rectangle (MBR) is adopted for the component region
extraction as shown in Figure 3.

As shown in Figure 3, a whole gray SCC image is chan-
ged to binary image firstly to divide target and background,
and then, the binary image is processed with the MBR to
obtain the target region of the SCC silicon wafer. Hence,
the position coordinates of the four corners A, B, C, and D
of the rectangle are also determined. Assuming that the posi-
tion coordinates of the first corner point A on the upper left
are (x,y), then the coordinates of points B, C, and D are
shown in Table 1.

In Table 1, w, and h, are the width and height of the
image of the silicon wafer region, respectively. Then, seg-
ment and extract the SCC image area [y: y+h,x : x + w
to obtain the silicon wafer.

As the silicon wafer is arranged on the moving board by
a robot arm, there are prominently distributed horizontal
and vertical lines. In order to extract the straight lines in
the image to facilitate subsequent edge projection position-
ing, the Sobel edge detection is used to perform differential
operations to highlight the changes of the boundary. The
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FIGURrk 3: The process of component region extraction with MBR.

TaBLE 1: Description of the corner coordinates of the MBR.
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FIGURE 4: The edge binarization image of the silicon wafer region.

binary Sobel edge image f (x, y) (with x between 0 and 6333
and y between 0 and 3809, as shown in Figure 4) is projected
on horizontal direction and vertical direction, respectively,
and then scanned row by row or column by column to make
the statistics of validating pixel points. By analyzing the peak
value in the projected image, the position information of a
single slice in the silicon wafer area image can be deter-
mined. The result of projection of binarized edge image is
shown in Figure 5.

It can be seen from Figures 5(a) and 5(b) that the vertical
and horizontal projection of the image can clearly reflect the
distribution of the silicon wafer region and the edge position
(as E1 shown in Figures 5(a) and 5(b)). Due to the existence
of the laser hole (as shown in Figure 6) and the unevenness
of the silicon wafer properties, there are also maintained
interference pulses near the actual edges of the silicon wafer
(E2 in Figures 5(a) and 5(b)) that will reduce the detection
stability of the silicon wafer boundary.

Actually, the interference projection values have cer-
tain neighborhood approximation, and the boundary often

appears sudden value. Many methods use adjacent difference
to obtain the edge of the target [24, 25]. However, the fixed
difference distance is difficult to determine and could weaken
the value of the edge itself, especially with gradient. Hence, a
local difference extremum of edge projection (LDEEP) is pro-
posed. The main idea is to find the maximum contrast in a
neighborhood range for difference, as shown in

{C'(i):C(i)—min {Ck)|i-A<k<i}|, W

C'(j) = C(j) - min {C(k)|j - A <k < j}|,

where C' is the difference between the current projection
position and the maximum contrast in the local minimum
range, k is the edge index in the neighborhood range, and
A represents the local search range.

Figures 5(c) and 5(d) are the LDEEP results obtained by
A of 12. It can be seen that most of the interference peaks
have been reduced, effectively retaining the edge value of
the silicon wafer arrangement. Although the neighborhood
difference reduces the absolute peak value of the edge at
the E1 silicon wafer, the interference peaks decrease more
significantly. That is the contrast between real edge and
interference is more obvious and is conducive to obtain the
edge position of each column and row of silicon wafers.

2.2. Single Silicon Wafer Segmentation Based on Selective
Peak Quick Sort. With the LDEEP results, the first k (one
more than the number of silicon wafer in horizontal or ver-
tical direction) positions with maximum values can be
looked at as the edge position of the silicon wafer. The bub-
ble sorting algorithm is most commonly used algorithm but
needs to search whole projection values, and the time com-
plexity is O(n?). That is, for a silicon image area with a size
of 6333 x 3809, it needs 6333 search times at horizontal
direction and 3809° search times at vertical direction for
bubble sorting algorithm. Actually, for the specific silicon
wafer area image (10 x 6) projection peak order, it is only
necessary to obtain the first k;(k; <11) boundary values in
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the horizontal direction, and the first k; (k; <7) boundary
values in the vertical direction, without all of them to be
sorted. So a selective peak quick sorting (SPQS) algorithm
was presented in this paper. The main idea is to set the dis-
tance between two adjacent extreme values. When the dis-
tance is less than a threshold, the two extreme values are
integrated and the larger one maintained. Figure 7 uses the
horizontal projection (from up to bottom in silicon wafer
region) as an example for the edge search process of SPQS.

In Figure 7, Dis(i, pos(E(k))) is the distance between the
ith position in the neighborhood difference projection vector

C' and the corresponding position of E(k), and End(-) rep-
resents the length of the vector. In a traversal process, only
finite peak values need to be compared and bubbling, so that
the prior conditions (the arrangement of the silicon wafers)
can be fully utilized to speed up the search. On the other
hand, the value of C' at the edge of the silicon wafer is often
much larger than that at the nonedge position. On the basis
of setting the condition T, (such as T, =max (C')/2), the
search frequency can be greatly reduced. Table 2 shows the
ranking results.

Table 2 shows the search results of edge positions of
silicon wafer in a SCC image. According to the results, the
boundary location of each silicon wafer is shown in
Figure 8. Meanwhile, the single silicon wafer is segmented.

3. Defect Recognition Based on Lightweight
Deep Neural Network

When imaging with PL pattern, the laser hole and the sur-
rounding grid lines cannot be excited by ions, so there are
black dots and crosses appearance with corner features (as
shown in Figure 6). Due to the fragility and stress concentra-
tion of the silicon wafer substrate, a kind of internal micro-
cracks (called hidden crack) are prone to occur around the
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TaBLE 2: Positioning results of silicon wafer edge sorting.

Peak number from

left to right Peak coordinates

C'(j) values

Peak number from

Peak coordinates
up to bottom

c' (i) values

1 (10.29, 0) 1249.91
2 (639.03, 0) 2735.72
3 (1261.22, 0) 3619.89
4 (1896.51, 0) 3063.19
5 (2525.25, 0) 2958.40
6 (3167.09, 0) 2683.32
7 (3802.38, 0) 3122.13
8 (4437.67, 0) 3036.99
9 (5066.41, 0) 2879.81
10 (5714.81, 0) 2945.30
11 (6326.64, 0) 2080.78

1 (0, 12.34) 1372.56
2 (0, 647.63) 4791.34
3 (0, 1289.41) 4601.41
4 (0, 1931.31) 4621.05
5 (0, 2573.15) 5079.51
6 (0, 3221.53) 3560.05
7 (0, 3783.73) 1601.79

laser hole (as shown in Figures 9(a) and 9(b)). In the PL
image, hidden crack usually presents a darker direction line
with 45° diagonals (crack typel) or an “X” shape cross (crack
type2) with a size of 0.5 mm~5mm. Due to the improper
detection method in the process of manual inspection, the
friction force between the sharp object and the cell is differ-
ent, resulting in scratches on the surface of the cell, as shown
in Figure 9(c). Due to the partial shadow heating in the SCC,
a hot spot effect is generated, causing black spots on the cell,
as shown in Figure 9(d). These defects are easy to cause
damage to the solar cell and seriously affect the life and
translate efficiency of the solar cell. Therefore, the detection
of cracks, scratches, and black spots is an important content
of solar cell detection, and it is also the key and difficult
point to realize automatic defect recognition of the SCC.

In order to improve the accuracy of cell detection, this
paper provided an improved deep network with the light-
weight backbone of YOIOv3-Tiny to detect and recognize

the defects. In the traditional YOLOv3-Tiny network struc-
ture, the backbone network uses a 3 x 3 size convolution
kernel for feature extraction, and a pooling operation is per-
formed after each feature extraction. Although the network
structure is lightweight and has real-time performance, there
are still some shortcomings: first, the backbone network con-
volutional layer has only seven layers, relatively insufficient
for detecting hidden cracks with weak and small size. Second,
the detection scale information of a network model is less.
Only two scales of 13 x 13 and 26 x 26 are used to detect
single-chip defects, which can easily lead to missed detection
of small defects and low detection accuracy.

3.1. Improvement Network Model with Shallow Features. The
network structure is deepened with 39 layers and more 1 x
1 and 3 x 3 convolutions. The 1x 1 convolution kernel is
used to adjust the number of channels, 3 x 3 is used to
extract high-dimensional spatial features. Meanwhile, an
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upsampling layer on the basis of the original network’s
13x 13 and 26 x 26 defects predictions to form 13 x 13,
26 x26, and 52x52 three-scale predictions to further
improve the accuracy of defect detection. The improved
network structure is shown in Figure 10.

The backbone network consists of 13 convolutional
layers and 6 maximum pooling layers. The convolutional
layer (Conv) in the network consists of a two-dimensional
convolutional layer (Conv2d), a normalized operation layer
(BN), and an activation function layer (Leak ReLU) in
sequence. The BN layer makes the input of each batch in
the effective area of Leak ReLU present a normal distribu-
tion, and Leak ReLU can reduce the disappearance of gradi-
ents during the training process.

The input image is first converted to 416 x 416 and
becomes the size of 13 x 13 in the output layer. The output
layer has a deeper number of network layers and a larger
receptive field, which is suitable for predicting large targets.
In the first prediction Predictionl on this feature map, the
13 x 13 feature layer uses a 1 x 1 convolution kernel to adjust
the number of channels, and the output is upsampled. The
upsampled feature is stacked with the thirteenth feature
layer of the backbone network in the channel dimension,
and the output layer with a size of 26 x 26 is obtained
after convolution operation. The output layer has a rela-
tively shallow number of network layers and a small
receptive field, which is suitable for small target prediction.
Prediction2 is used for the second prediction on this fea-
ture map.

In order to make the proposed model suitable for variant
size of defects, the third prediction layer Prediction3 with
shallow information is constructed. In the second prediction
path, the 26 x 26 feature layer uses a 1 x 1 convolution ker-
nel to adjust the number of channels, and the output is
upsampled once, and the upsampled feature is stacked with
the ninth feature layer of the backbone network in the chan-
nel dimension. After convolution feature fusion, a new out-
put layer with a size of 52 x 52 is constructed, as shown
added prediction scale module in Figure 10. The feature
information of the output layer comes from the fusion of
the shallow information and the second predicted feature
map, which contains more low-dimensional feature infor-
mation and smaller receptive field, and is suitable for
predicting smaller targets. Upon this, the third prediction
branch Prediction3 is designed for different scales fused,

and a certain degree of deep semantic understanding ability
can also be provided in the shallow features, so as to give
better recognition results of small target objects.

3.2. Prediction of Bounding Box. In the YOLOV3-Tiny
algorithm, the picture input into the network is divided
into sxs cells according to the scale of the feature map,
and the scale of the feature map is 13 x 13 and 26 x 26,
respectively. The first prediction layer generates 13 x 13
grids; the prediction box is larger. The second prediction
layer generates 26 x 26 grids, which is smaller than the
prediction box of the first prediction layer.

The crack typel, the crack type2, and black spot are
small in the solar cell, and smaller prediction frame is
needed. The scale of the third prediction layer constructed
is 52 x 52 in this paper. The input image is finally divided
into 52 x 52 grids. Each grid corresponds to the channel
information of the prediction layer. Each prediction layer
channel contains the final prediction parameters of the grid.

Taking the first prediction layer as an example, each
channel is composed of the offset £, and #, of the grid where

the center point of the prediction box is located relative to
the upper left corner of the grid. {t,,, t;, p,p,;} are the width,

height, and the prediction confidence of the prediction box,
{55,855, } represent the score of the crack typel, the crack
type2, the scratch, and black spot, respectively. Each grid in
the prediction layer generates three preset bounding boxes
according to the corresponding channel information. Each
prediction box contains the above 9 parameters, so the
dimension of the output channels of the three prediction
layers is 27. When training, the bounding box constantly
adjusts in size, the predicted box in the grid is matched with
the target box in the label, and the bounding box with the
largest IOU (Intersection Over Union) value is selected as
the output result [26]. The schematic diagram of bounding
box prediction is shown in Figure 11.

The formula for obtaining the actual coordinates of the
bounding box is as follows:

by=o(t,) +cp (2)
b,=0(t,) +c, (3)
by =pye, (4)
b, =p,e™, (5)

where b, and b, are the coordinates of the center point of the
bounding box, b,, and b, are the width and height of the
bounding box, ¢, and c, are the coordinates of the upper left
corner of the grid where the center of the target box belongs,
o(t,) and o(t,) are the offset distance of the center coordi-
nates relative to the upper left corner of the grid, and p,,
and p,, are the width and height of the preset bounding box.

4. Experimental Results and Analysis

4.1. Sorting Out Single Silicon Wafer Defect Data Set. In this
paper, a total of 3200 SCC images with different
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specifications (10 x 6 and 12 x 6) have been collected in a
large-scale solar cell factory in Jiangsu province of China.
Each silicon wafer in the SCC was segmented and extracted,
and 182,400 images of solar cells were obtained. After sam-
ple screening, 6100 representative defect samples were
selected and maintained. In order to increase the diversity
of the data, some defective samples with brightness transfor-
mation, flipping, and other operations were added to aug-
ment the data set. Finally, 18,000 sample data sets were
formed with 4 types of defects: the crack typel, the crack
type2, scratch, and black spot. The size of each image is
between 630 x 635 and 665 x 695 pixels. The defect size in
the image is between 64 x 64 and 85 x 200 pixels. Part of
the data set after data augment is shown in Figure 12.

The defect sample data set was divided into training set,
validation set, and test set according to a certain proportion.
In order to facilitate the detection of defects, the data set
format was converted to the VOC data set format, and the

images containing the defects were marked. The number of
various data sets after sorting is shown in Table 3.

4.2. Evaluation Index. In order to examine the performance
of the improved model, we involved some evaluation indica-
tors including precision (P), recall (R), and mean average
precision (mAP). For the VOC data set, if the IOU (the
intersection ratio of the predicted box and the real box) is
greater than 0.5, the predicted object and the actual object
are considered to be the same object; otherwise, it is consid-
ered to be not the same object. Under this definition, the cal-
culation formulas for accuracy and recall are

TP
P= _— ., 6
TP + FP ©)

TP
= — 7
R TP + FN’ @)
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TABLE 3: Sorting out the image data set.

Crack Crack Black The total
Data set Scratch

typel type2 spot amount
E;ammg 2800 3800 2400 4000 12000
:];:hdat‘on 750 800 630 820 3000
Test set 680 820 660 840 3000

where TP represents that a positive sample is predicted to be
a positive sample, FP represents that a negative sample is
predicted to be a positive sample, and FN represents that a
positive sample is predicted to be a negative sample.

With the calculation formulas for precision and recall, a
PR curve can be drawn with recall rate as abscissa and pre-
cision rate as ordinate for a certain type of target. The area
enclosed by the curve is defined as AP. The mAP value can
be calculated by the average of the AP values of each class.
The calculation formula is as follows:

P(k)AR(K)

»
=

mAP = (8)

n

In formula (8), P(k) represents the accuracy rate when k
pictures can be recognized, AR(k) represents the change in
recall rate when the number of recognized pictures changes
from k-1 to k, and #n is the number of target categories.
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4.3. Experimental Results and Analysis. The experiment was
carried out under Windows operating system, using the
Darknet deep learning framework [27], with NVIDIA GTX
1050, Intel (R) core i5-7300HQ, 8 G memory, install
CUDA10.0, cudnn7.4.1 to achieve GPU acceleration, using
Python language to achieve the improved algorithm. Set
the maximum number of iterations for model training to
20,000, the initial learning rate is 0.001, after 10,000 itera-

TaBLE 4: Performance comparison of different network models.

Network model mAP (%) Speed (fps)
SSD 97.52 12
YOLOv3 94.31 25
YOLOV3-Tiny 80.77 47
Improved network 87.55 40

tions, the learning rate is 0.0001, the batch is 64, and the sub-
batch is 8.

The PR curves of YOLOvV3-Tiny and improved algo-
rithm for different types of defects are shown in Figure 13.
The areas under the PR curve in the figures are the AP value
of the corresponding class. The larger the area under the
curve, the higher the corresponding AP value and the better
detection performance.

The comparison of AP values between YOLOv3-Tiny
and the improved network algorithm on the crack typel,
the crack type2, scratch, and black spot is shown in
Figure 14.

From Figures 13 and 14, it can be seen from the figures
that the overall AP value of scratch is the lowest among all
types. That is because the training data set of scratches is
thin and small, it is prone to overfitting, and the generaliza-
tion ability on the test set is poor. On the other hand, as the
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diversified shapes of scratch defects, false detections are
prone to occur during the testing process.

Furthermore, the scratch AP value reaches the most
absolute increase with 0.17, which indicates the detection
accuracy of defect target improved by multiscale feature
fusion layers. The AP value of the crack type2 is the least
increase with only 0.03. This is mainly because images of
crack type2 have more training data sets, single defect shape,
and better detection effect. From the overall effect, the
improved algorithm has better detection performance and
better generalization ability.

Generally, the experiment proved that increasing the
depth of the network and the number of convolution kernels
could improve the feature extraction capability; meanwhile,
it may take more time consuming. In order to inspect the
real-time performance of the improved algorithm, the
mAP value and speed are analyzed. Under the same experi-
mental conditions, SSD, YOLOv3, YOLOv3-Tiny, and the
improved network model are tested on the test data set.
The test results are shown in Table 4.

As shown in Table 4, the mAP values of SSD and
YOLOV3 are 97.52% and 94.31%, respectively, which are
much higher than those of YOLOv3-Tiny and the improved
algorithm. However, due to the large network model, many
parameters bringing large amount of calculation, the detec-
tion speed is slow [28], which is difficult to adapt the real-
time detection of solar cell on the production line. The
mAP value of the improved network model is 87.55% with

6.78% higher than that of the YOLOv3-Tiny network model,
indicating that the detection performance of the improved
network model has improved. Because the improved
algorithm deepens the network structure and increases the
computation of the network model to a certain extent, the
detection speed of the improved network model is slightly
lower than that of YOLOv3-Tiny. Generally, the detection
speed above 25 fps can meet the real-time requirements of
target detection, and the improved algorithm can still meet
the real-time requirements. It can be seen that the improved
network model can take into account both the detection
speed and accuracy, which can better complete the task of
solar cell defect detection.

In order to show the detection effect of the improved
network model more intuitively, Figure 15 shows the com-
parison of the detection results before and after the model
improvement.

In order to verify the feasibility of the improved model in
this paper, various types of component images have been
collected on the SCC production line. These images are
randomly collected at different times, locations, and under
different lighting conditions. Take the 10 x 6 specification
module as an example; the SCC is composed of 60 cell sili-
con wafers arranged. The improved model detection speed
is 40 fps, and the average time per cell is 0.025s. Therefore,
the average time to complete a SCC detection is 1.5 s, which
meets the real-time detection requirements. The effect of
using the improved network model to detect different types
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FiGURE 16: The effect of improved defect detection.

FIGURE 17: Solar cell component detection site.

of solar cell defects is shown in Figure 16. It can be seen that
the improved network model can more accurately detect the
crack typel, the crack type2, scratch, and black spot.

Now, the detection model was successfully applied in the
field and worked well (as shown in Figure 17). On-site oper-
ation shows that the defect detection method can ensure the
speed and accuracy of SCC defect detection and lay the
foundation for automatic identification of defects in SCC
products.

5. Conclusion

In the SCC PL image, the defect area accounts for less than
one ten thousandth, which brings difficulties to the efficient
detection and recognition of defects. On the premise of
ensuring the efficiency, in order to improve the detection
accuracy, the SCC units are segmented and extracted, which
lays the foundation for the next step of defect detection and
recognition. In order to recognize the weak and small
defects, an improved network model based on YOLOv3-
Tiny is proposed. We deepened the structure of the main
feature extraction network, added a feature pyramid layer
to realize three-scale prediction, and strengthened the
semantic information of the shallow feature map. On the
solar cell defect test data set, the recognition rate of mAP
is 87.55%, which is 6.78% higher than the original algorithm,
and the detect speed is 40 fps, which meets the requirements
of real-time detection. The experimental results show that
the improved model improves the detection accuracy,
reduces the missed detection rate, and achieves a good bal-
ance between detection accuracy and detection speed.
Whereas, due to the limited model parameters, when the
environment is more complicated (such as occlusion and
dark light), the detection accuracy of the model still needs
to be improved. On the premise of both speed and accuracy,
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improving the generalization ability of the model will be the
main research direction in the future.

Data Availability

The [DATA TYPE] data used to support the findings of this
study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key Research and
Development Plan of China (Grant No. 2018YFC1902400).

References

(1]

(2]

(10]

(11]

E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim,
“Solar energy: potential and future prospects,” Renewable &
Sustainable Energy Reviews, vol. 82, pp. 894-900, 2018.

M. Dhimish, V. Holmes, B. Mehrdadi, and M. Dales, “The
impact of cracks on photovoltaic power performance,” Journal
of Science: Advanced Materials and Devices, vol. 2, no. 2,
pp. 199-209, 2017.

X. L. Qian, H. Q. Zhang, Y. X. Chen et al., “Research develop-
ment and prospect of solar cells surface defects detection based
on machine vision,” Journal of Beijing University of Technol-
ogy, vol. 43, no. 1, pp. 76-85, 2017.

S. Deitsch, V. Christlein, S. Berger et al., “Automatic classifica-
tion of defective photovoltaic module cells in electrolumines-
cence images,” Solar Energy, vol. 185, pp. 455-468, 2019.

L. Zhang, P. Liang, H. S. Zhu, and P. D. Han, “Detection of fin-
ger interruptions in silicon solar cells using photolumines-
cence imaging,” Chinese Physics B, vol. 27, no. 6, article
068801, 2018.

H. Chen, H. Zhao, D. Han, W. Liu, P. Chen, and K. Liu, “Struc-
ture-aware-based crack defect detection for multicrystalline
solar cells,” Measurement, vol. 151, article 107170, 2020.

D. M. Tsai, G. N. Li, W. C. Li, and W. Y. Chiu, “Defect detec-
tion in multi-crystal solar cells using clustering with unifor-
mity measures,” Advanced Engineering Informatics, vol. 29,
no. 3, pp. 419-430, 2015.

H. Chen, Y. Pang, Q. Hu, and K. Liu, “Solar cell surface defect
inspection based on multispectral convolutional neural net-
work,” Journal of Intelligent Manufacturing, vol. 31, no. 2,
pp. 453-468, 2020.

L. Liu, C. Wang, and S. W. Zhao, “Research on solar cells
defect detection technology based on machine vision,” Journal
of Electronic Measurement and Instrumentation, vol. 32,
no. 10, pp. 47-52, 2018.

X. B. Wang, J. Li, M. H. Yao, W. X. He, and Y. T. Qian, “Solar
cells surface defects detection based on deep learning,” Pattern
Recognition and Artificial Intelligence, vol. 27, no. 6, pp. 517-
523, 2014.

L. Wu, M. Liu, Q. Jiang, M. Ge, and L. Ling, “Solar cell surface
quality detection system based on artificial neural network,”
Journal of Hefei University of Technology (Natural Science),
vol. 9, 2017.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

13

C. Chen and Q. I. Feng, “Review on development of convolu-
tional neural network and its application in computer vision,”
Computer Science, vol. 46, no. 3, pp. 63-73, 2019.

C. L. Zitnick and P. Dollar, “Edge boxes: locating object pro-
posals from edges,” in European Conference on Computer
Vision, pp. 391-405, Zurich, 2014.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580-587, Columbus,
OH, USA, 2014.

R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1440-1448, Santiago,
Chile, 2015.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis & Machine Intelligence,
vol. 39, no. 6, pp. 1137-1149, 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6517-6525, Las Vegas, NV, USA. New York,
2016.

W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot multi-
box detector,” Champions, vol. 9905, pp. 21-37, 2016.

J. Li, Z. Su, J. Geng, and Y. Yin, “Real-time detection of steel
strip surface defects based on improved YOLO detection net-
work,” IFAC-PapersOnLine, vol. 51, no. 21, pp. 76-81, 2018.

Z.Qiu, S. Wang, Z. Zeng, and D. Yu, “Automatic visual defects
inspection of wind turbine blades via YOLO-based small
object detection approach,” Journal of electronic imaging,
vol. 28, no. 4, pp. 43023.1-43023.11, 2019.

J. Redmon and A. Farhadi, “YOLO9000: better, faster, stron-
ger,” in IEEE Conference on Computer Vision & Pattern Recog-
nition, pp. 6517-6525, Honolulu, HI, USA, 2017.

H. Gong, H. Li, K. Xu, and Y. Zhang, “Object detection based
on improved YOLOv3-tiny,” in 2019 Chinese Automation
Congress (CAC), pp. 3240-3245, Hangzhou, China, China,
2019.

Z.Yi, S. Yongliang, and Z. Jun, “An improved tiny-yolov3
pedestrian detection algorithm,” Optik, vol. 183, pp. 17-23,
2019.

Q. C. Sun, Y. Q. Hou, and Q. C. Tan, “A subpixel edge detec-
tion method based on an arctangent edge model,” Optik,
vol. 127, no. 14, pp. 57025710, 2016.

X. Liu and F. Xue, “Moving object detection based on edge
contrast difference algorithm,” Computer Engineering,
vol. 44, no. 10, pp. 246-251, 2018.

B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, “Acquisition of
localization confidence for accurate object detection,” in Pro-
ceedings of the European conference on computer vision
(ECCV), pp. 784-799, Munich, Germany, 2018.

R. Guo, S. Li, and K. Wang, “Research on YOLOv3 algorithm
based on darknet framework,” Journal of Physics: Conference
Series, vol. 1629, article 012062, 2020.

J. H. Park, H. W. Hwang, J. H. Moon et al., “Automated iden-
tification of cephalometric landmarks: part 1—comparisons
between the latest deep-learning methods YOLOV3 and
SSD,” The Angle Orthodontist, vol. 89, no. 6, pp. 903-909,
2019.



	Research on Online Defect Detection Method of Solar Cell Component Based on Lightweight Convolutional Neural Network
	1. Introduction
	2. Solar Cell Component Unit Segmentation
	2.1. Local Extremum Neighborhood Difference Based on Edge Projection
	2.2. Single Silicon Wafer Segmentation Based on Selective Peak Quick Sort

	3. Defect Recognition Based on Lightweight Deep Neural Network
	3.1. Improvement Network Model with Shallow Features
	3.2. Prediction of Bounding Box

	4. Experimental Results and Analysis
	4.1. Sorting Out Single Silicon Wafer Defect Data Set
	4.2. Evaluation Index
	4.3. Experimental Results and Analysis

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

