
Research Article
Hourly and Day Ahead Power Prediction of Building Integrated
Semitransparent Photovoltaic System

S. Kaliappan ,1 R. Saravanakumar ,2 Alagar Karthick ,3 P. Marish Kumar,4

V. Venkatesh,5 V. Mohanavel ,6 and S. Rajkumar 7

1Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, 641049 Tamilnadu, India
2Department of Wireless Communication, Institute of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and
Technical Sciences, 602105 Chennai, India
3Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology,
Coimbatore, 641407 Tamilnadu, India
4Department of Electrical and Electronics Engineering, Easwari Engineering College, Chennai, 600089 Tamilnadu, India
5Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Thandalam, Chennai,
602105 Tamilnadu, India
6Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai,
600073 Tamilnadu, India
7Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Ethiopia

Correspondence should be addressed to Alagar Karthick; karthick.power@gmail.com and S. Rajkumar; rajkumar@hu.edu.et

Received 11 July 2021; Revised 1 November 2021; Accepted 8 December 2021; Published 26 December 2021

Academic Editor: Francesco Riganti-Fulginei

Copyright © 2021 S. Kaliappan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The building integrated semitransparent photovoltaic (BISTPV) system is an emerging technology which replaces the
conventional building material envelopes and roof. The performance prediction of the BISTPV system places a vital role in the
reduction of the energy consumption in the building. In this work, the artificial neural network (ANN) is used to predict the
performance of this system by optimizing the important parameter of the feature selection. The Elman neural network (EN)
algorithm, feed forward neural network (FN), and generalized regression neural network model (GRN) are investigated in this
study. The performance metrics of the errors are analysed such as the root mean square error (RMSE), mean absolute
percentage error (MAPE), and mean square root (MSE). According to the findings, the model behaves consistently at the
specified time and place in the experiment. Forecasters utilizing neural network models will have better accuracy if they use
techniques like EN, FFN, and GRN having the RMSE of 0.25, 0.37, and 0.45, respectively.

1. Introduction

The performance prediction of the solar photovoltaic system
depends on the geographical location, meteorological condi-
tion, and also quality of data [1]. It plays a vital role in the
best forecasting technique. Subhourly, it forecasts benefit
from the use of satellite imagery. On the other hand, satellite
data may predict PV output on a climatological time scale or
provide projections up to six hours in advance [2]. When
converting PV output, there are various options available,
ranging from deterministic models with three or five param-

eters to parametric models or other machine learning tech-
niques [3]. The prediction of the performance of the solar
photovoltaic system plays a vital role in the energy sector.
The need of the power demand may be compensated with
this type of the power prediction need and its requirement.
The artificial intelligence-based power prediction is an
emerging tool to predict the system performance. The build-
ing integrated semitransparent solar photovoltaic system can
be incorporated into the building structure by replacing the
conventional building elements. The baseline model used
here is a parametric PV output conversion model and often
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used in PV output prediction for day-ahead time horizons
using Numeric Weather Prediction (NWP) forecasts [4].
The deterministic and probabilistic intrahour predictions
of solar irradiance are assessed using machine learning
approaches (k-nearest neighbours and gradient boosting
regression trees (GBRT)) on the other [5]. Regression trees
are used in solar forecasting [6]. As inputs, the model
employs expected climatic factors from a (NWP) model
and real power measurements from photovoltaic (PV) plants
[7] to forecast power production. Short-term forecasting of
PV power production is done with the help of a Quantile
Regression Neural Network (QRNN) [8]. For intrahour
horizons, a real-time hybrid probabilistic model is created
[9]. To summarise, it is critical to enhance weather variable
forecasts by choosing the most informative predictors and
rejecting the uninformative ones via effective model selec-
tion. The best use of available input data is required to
achieve this. This has been done effectively using ensemble
techniques in probabilistic energy forecasting [10]. The PV
system’s solar cell directly transforms the sun’s energy into
an unstable electric current.

To put it another way, the amount of electric power that
can be generated is dependent on the changing weather con-
ditions. In the open, you have the most energy. A daytime
sky that is shady from nearby trees, buildings, and birds.
The authors have studied the degradation of electrical power
caused by the PV module’s hot spot in [11]. And [12] look
into temperature’s effect on current-voltage, while [13]
shows how the PV system’s inverter is unstable. These hic-
cups can affect the grid and alter its state of instability. To
enhance and ensure that PV electricity is effectively distrib-
uted in the grid, power forecasts are crucial for managing
the system’s utility and ensuring that reserve capacity is uti-
lized [14]. Several papers were presented and developed for
forecasting PV power in this context. Available data and
their specific forecast horizon influence the forecast tech-
nique chosen [15]. Sunny, cloudy, and rainy days are possi-
ble, so the forecast is flexible [16]. With this method, only
the PV system’s major design characteristics are taken into
account for calculating the system’s actual power output.
This is an excellent resource for PV plant owners who
already have their facility’s design documents filled with all
the information they need. Physical modelling surpasses
machine learning techniques in both accuracy and efficiency
[17, 18]. In general, hybrid models outperform either solely
physical or statistical approaches, although some researchers
suggest that incorporating physically determined features
[15] or even simple clear sky irradiance [19] enhances per-
formance. Two critical applications rely heavily on physical
PV power forecasting models: (1) the prediction of power
for new PV installations when the historical PV generation
data is not present and (2) the best PV system prediction
model using a combination of physical and data-driven
modelling [20–22]. Using a model chain with numerous
computation stages is critical to forecasting PV power pro-
duction based on projected irradiance data accurately. Solar
energy conversion may be broken down into three steps:
beam separation, diffuse irradiance translation, and PV per-
formance modelling, as described [23]. For the day-ahead,

hourly regional forecast of German PV production based
on the predictions of the global model used a numerical
model with four design phases [24]. There are four steps of
computation in the physical model (ECMWF). Each of the
four processes (transposition of irradiance, temperature of
cells, performance of solar panels, and kind of inverter) has
its [20] section-contrasted support vector regression (SVR)
with numerical modelling for cloud motion vector (CMV)
and near-surface irradiance projections using satellite-
derived CMV and near-surface irradiance estimates. The
physical PV simulation contains all of these. Based on the
irradiance data from the NWP, the researchers found that
physical models were utilizing simple linear regression beat
SVR in terms of accuracy. By combining historical data on
PV output with projections of future solar radiation, Saint-
Drenan and colleagues [25] established a method for com-
puting the fundamental parameters of photovoltaic (PV)
systems.

From the literature review, it is found that the perfor-
mance prediction of the solar photovoltaic system yields
maximum performance of the system. There are few
researches found on the prediction of the building integrated
semitransparent photovoltaic system with respect to the day
and the hourly prediction of the system. In this work, the
artificial neural network tool is used to optimize and predict
the performance the building integrated semitransparent
photovoltaic system. The Elman neural network (EN), feed-
forward neural network (FFN), and generalized regression
neural network model (GRN). Finally, the system perfor-
mance metrics is analysed with respect to the error analysis
of the system such as root mean square error (RMSE), mean
square error (MSE), mean absolute percentage error
(MAPE), and the correlation coefficient presented in the
subsequent section.

2. Materials and Method

Geographical location and climatic conditions affect
BISTPV’s efficiency. According to the findings of this
research, the grid-connected BISTPV system performs well
in the hot and humid region of Kovilpatti, Tamilnadu. The
climate is hot and humid in the southern section of India.
For three years, the system was observed, and its output data
was given. Figure 1 depicts the BISTPV generating set-up.
The gathered data is put to good use in estimating the
BISTPV system’s performance.

The geographical coordinate site latitude and longitude
are 9°10′0″N and 77°52′0″E. The experimental dataset is split
into the three-dataset trained dataset, validated dataset, and
testing dataset using the optimization tool of the
MATLAB2021 version. The artificial neural network machine
learning toolbox is used to predict and optimize the perfor-
mance of the system. The methodology is presented in
Figure 2. As the quality of the data utilized to make the predic-
tions increases, so does forecasting accuracy. Researchers have
used previously reported dataset for PV power production to
replicate the particular system performance and their geo-
graphical locations. However, data sets are sometimes dis-
rupted by sudden fluctuations or static due to intermittent
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meteorological conditions, power system oscillations, and out-
ages, to name a few causes. Events that contradict patterns and
are the result of random occurrences are known as statistical
outliers. They have a substantial impact on forecasting and
decision-making. Sensor failures or incorrect recordings,
which might occur on occasion, could also corrupt or destroy
data. Before further processing the damaged input data, it is
essential to use decomposition, interpolation, and seasonal
adjustments to recreate the distorted input data. Preprocessing
procedures that are detailed and exact should be followed. In
the middle of the day, data may be lost due to a failure of the
solar radiation and temperature sensors connectivity and net-
work of the location. To avoid bias in future studies, it is best
to disregard them entirely.

3. Machine Learning Algorithm

3.1. Elman Neural Network Algorithm (EN). Jeffrey L. EN
proposed the Elman neural network in 1990. It is a potent
neural network with a lot of feedback. The input, hidden,
context, and output all exist as separate layers in EN’s neural
network. The input layer’s job is to transmit signals. Only
linear weighting is used in the output layer. There is an extra
layer called the context layer in EN that varies from regular
BPNN. Detection of the current time frame’s output is done
using input signals from the earlier reported frequency. Due
to the context layer neuron’s output being stored in the hid-
den layer, the hidden layer receives it before any other layer.
Figure 3 shows the study architecture, which incorporates
the EN learning algorithm and the BP learning algorithm.

The following is a flowchart created by EN. The sensitiv-
ity to the source datasets is responsible for the increase in
model processing capacity that arises from using these data-
sets. Prediction is performed using NN EN, a better variant
of BPNN. Simulations use data gleaned from PV power
plants, historical power databases, and multivariate meteo-
rological factors. A data gap may be caused by power plant
maintenance or failure. In this case, the next step is to
remove any abnormal or missing data. Historical datasets
must be standardized for the following reasons:

4. Feedforward Neural Network (FFN)

A single-layer perceptron, a FFN in its simplest form, is a
familiar sight. The inputs into the layer are multiplied by
the weights in this model. The weighted input values are
then joined together to get a final result. A value of 1 is typ-
ically created if the total of the values exceeds a threshold,
often set at zero; a value of -1 generally is produced if the
sum falls below the threshold. The single-layer perceptron
is an essential FFN model often employed in classification
problems. Machine learning may also be included in a
single-layer perceptron. The NN may compare its nodes’
outputs with the intended values using a trait known as the
delta rule, enabling the network to fine tune its weights over
time to provide more accurate output values. Gradient
descent is created throughout the training and learning pro-
cess. The technique of updating weights in multilayered per-
ceptron is roughly the same, although the process is more

Figure 1: BISTPV solar photovoltaic power plant [26].

Dataset

Outlier detection

Feature selection Solar radiation, Ambient
temperature, Wind speed

Optimisation of feature parameter Solar radiation,
Temperature, Wind speed

Prediction of BIPV output power

Performance metrics

R MAE MSE RMSE

Final output

Spliting dataset

ANN Network

Figure 2: Methodology adopted in the study.
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precisely characterized as backpropagation. Such networks
have all hidden layers that are modified following the final
layer’s output values. Although Feed Forward Neural Net-
works have a simple design, this might benefit some
machine learning applications because of the reduced com-
plexity. When using feed-forward neural networks, it is pos-
sible to set them up to operate independently of one another,
but with a minor intermediate to help with the moderating
process. More extensive tasks are handled and processed

by this mechanism using numerous individual neurons,
much as in the human brain. To provide a composite and
coherent output, the findings from the various networks
may be integrated after each job. Figure 4 shows the sche-
matic of feedforward neural network.

5. Generalized Regression Neural Network
Model (GRN)

Donald Specht introduced a probabilistic neural network,
the extended regression neural network. It is possible to
approximate any probability distribution function using
GRNN’s neural network design. GRNN can solve any func-
tion approximation and estimate any continuous variable
issue. Because of its parallel nature, this method only has
to be run once. GRNN is shown schematically in Figure 5.
There are four levels to the GRNN, as depicted in Figure 5:
input, pattern, summation, and output. The two neurons
of the summation layer, the S-summing neuron and the D-
summation neuron, are coupled with the weights from the
pattern layer’s summation layer. The S-summation neuron
adds up the pattern layer’s weighted outputs, while the D
-summation neuron does so unwrapped. An unknown input
vector x is anticipated by dividing the outputs of each S
-summation neuron by the outputs of each D-summation
neuron in the output layer.

6. Energy Performance Metrics

System performance is assessed using the root mean square
error (RMSE), mean square error (MSE), mean absolute per-
centage error (MAPE), and the correlation coefficient. The
root mean square error (RMSE) is defined as the residual
value’s standard deviation (prediction errors). The residuals
quantify the distance between the regression line and the
data points, and the RMSE evaluates how the residuals are
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Figure 3: Schematic of Elman neural network [27].
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distributed. The following equations are taken from [29–32].
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6.1. Input Dataset. The input dataset adopted for the study is
obtained from the work of [29–32]. The obtained dataset are
split into the train data and the test data which is plotted in
Figures 6–8 where the solar radiation wind speed and the
ambient temperatures are presented. The obtained datasets
are then feed in the MATLAB 2020b version otpimisation
tool to obtain the best results. There are a number of features
considered for the study which is considered and optimized
using the correlation plot heat map which is plotted in
Figure 9.

The Pearson plot of the chosen characteristics for the
prediction of the system can be seen in Figure 6. When it
comes to prediction processing, the error ranges for the
other two models are [-0.8] and [0.8], but the error goes
for the EN-FFN-GRN models shift dramatically. The pro-
jected error for the GRN model is about 30% higher. The
EN-FFN-GRN model’s mistakes fall within this range shown
in Figure 9. Artificial neural network EN-FFN-GRN and a
generalized regression neural network model are the
machine learning techniques under consideration. Detailed
model information may be found in the section on machine
learning algorithms. Using the supplied experimental data,
this will be achieved. PV panels’ power output must be
adjusted to take account of site-specific environmental vari-
ables. The numbers are delivered to the audience every five
minutes. Figures 6–8 show the climatic circumstances and
the components that contributed to incoming solar radia-
tion, which are the study’s input parameters taken into
account.

7. Result and Discussion

The effectiveness of solar energy applications is location-
dependent. In the daylight, we have access to solar radiation,
which comes in bursts. The ability to anticipate the solar
photovoltaic system’s output power is critical when building
a large-scale PV power plant. Algorithms for machine learn-
ing assist in the forecast and assessing the system’s perfor-
mance. The hot and humid climatic conditions were used
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to generate the experimental dataset [29–32]. Figures 6–8
depicts the tested feature selection parameters such as inso-
lation, ambient temperature, and wind speed to forecast
STPV output power. The Pearson plot of the chosen charac-
teristics for the BISTPV system power generation prediction
can be seen in Figures 10(a) and 10(b). When it comes to
prediction processing, the error ranges for the other two
models are [-0.8] and [0.8], but the error runs for the EN-
FFN-GRN models shift dramatically. The projected error
for the GRN model is about 30% higher. The EN-FFN-

GRN model’s mistakes fall within this range. We are looking
at artificial neural network EN-FFN-GRN model for
machine learning techniques. Detailed model information
may be found in the section on machine learning algorithms,
using the supplied data.

The experimental data will be achieved. PV panels’
power output must be adjusted to take account of site-
specific environmental variables. The numbers are delivered
to the audience every five minutes. Figure 6 shows the ambi-
ent circumstances, which are the study’s input parameters
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taken into account while calculating incoming solar radia-
tion. Figure 7 shows how the solar photovoltaic system’s
output power for the hourly variation changes using the
ML algorithm of EN-FFN-GRN models shown in
Figures 10(a) and 10(b). Figure 10 shows the hourly varia-
tion of the BISTPV system prediction curves for the output
of sunlight power from the EN-FFN-GRN models on a
sunny day. Furthermore, the ANN model’s estimated
early-observation error is 32%. The EN-FFN-GRN model
has prediction errors in the range of 2, which predicts -1%
and 1%. A typical day’s worth of data is used to evaluate
the EN-FFN-GRN model. Figure 8 shows the predicted daily
PV panel output power variation for EN-FFN-GRN ML
models on a sunny day. In addition, the ANN model’s esti-
mated early-observation error is 30%. Of total, the EN-
FFN-GRN model’s prediction errors are within a two-
standard deviation of the actual value. In 94% and 98% for
the tested samples, the EN-FFN-GRN model has relative
error values of -1.5% and 1.5%. The EN-FFN-GRN model
is evaluated using weather data from typical summer days.
The model is viewed as being tested on the training data,
while the model is considered to be being trained on the test-
ing data. Figure 9 shows the weekly variation in the output
power of the solar photovoltaic module in a similar pattern
(Figures 11(a) and 11(b)). Prediction models are graded
using MAPE and RMSE (RMSE). The MAPE is shown in
Figure 12; in the EN-FFN-GRN models, the average root
mean square error (RMSE) is 0.285 in dry, 0.301 in partly
wet, and 0.426 in wet conditions. The EN-FFN-GRN model
has the best predictive stability in the MSE setting because it
is the smallest. For PV facade and roof installations, the
model’s output varies widely, and the inaccuracy is much
more significant. The MAPE typically falls between a value
of 0.189 and a value of 0.241. The EN-FFN-GRN model
has a lower MAPE value.

8. Conclusion

The predictions regarding the solar photovoltaic system’s
performance are based on the experimental data. A repeat-
able model was created since it only uses environmental data
and ignores the user’s physical location. Data sets for train-
ing, validating, and testing machine learning models are
chosen depending on the nature of the available dataset.
According to the findings, the model behaves consistently
at the specified time and place in the experiment. Forecasters
utilizing neural network models will have better accuracy if
they use techniques like EN, FFN, and GRN. Finally, the
final model made reliable predictions with an RMSE of
0.25 in EN and FFN and 0.42 in GRN. Since the model does
not rely on its simulation location or configuration, these
training method properties show that the model is indepen-
dent of the simulation context. Power grid management sys-
tems are projected to function and operate more reliably
thanks to greater computerization. As a result of the new
rules, renewable energy producers and aggregators will have
a more significant say in the electricity market.

Data Availability

The data used to support the findings of this study are
included in the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1] A. Mellit, A. Massi Pavan, E. Ogliari, S. Leva, and V. Lughi,
“Advanced methods for photovoltaic output power forecast-
ing: a review,” Applied Sciences, vol. 10, no. 2, p. 487, 2020.

[2] V. Kallio-Myers, A. Riihelä, P. Lahtinen, and A. Lindfors,
“Global horizontal irradiance forecast for Finland based on
geostationary weather satellite data,” Solar Energy, vol. 198,
pp. 68–80, 2020.

[3] H. Böök, A. Poikonen, A. Aarva, T. Mielonen, M. R. A. Pitkä-
nen, and A. V. Lindfors, “Photovoltaic system modeling: a val-
idation study at high latitudes with implementation of a novel
DNI quality control method,” Solar Energy, vol. 204, pp. 316–
329, 2020.

[4] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review
and evaluation of the state-of-the-art in PV solar power fore-
casting: techniques and optimization,” Renewable and Sustain-
able Energy Reviews, vol. 124, p. 109792, 2020.

[5] H. T. C. Pedro, C. F. M. Coimbra, M. David, and P. Lauret,
“Assessment of machine learning techniques for deterministic
and probabilistic intra-hour solar forecasts,” Renewable
Energy, vol. 123, pp. 191–203, 2018.

[6] C. Voyant, F. Motte, G. Notton, A. Fouilloy, M. L. Nivet, and
J. L. Duchaud, “Prediction intervals for global solar irradiation
forecasting using regression trees methods,” Renewable
Energy, vol. 126, pp. 332–340, 2018.

[7] L. A. Fernandez-Jimenez, S. Terreros-Olarte, M. Mendoza-Vil-
lena et al., “Day-ahead probabilistic photovoltaic power fore-
casting models based on quantile regression neural

EN
0.0

0.1

0.2

0.3

0.4

0.5

FFN
Algorithm

Er
ro

r

GRN

MAE
MSE
RMSE

Figure 12: Performance metrics of the proposed algorithm for the
BISTPV system.

7International Journal of Photoenergy



networks,” in 2017 European Conference on Electrical Engi-
neering and Computer Science (EECS), pp. 89–294, Bern, Swit-
zerland, November 2017.

[8] Y. Chu, M. Li, H. T. C. Pedro, and C. F. M. Coimbra, “Real-
time prediction intervals for intra-hour DNI forecasts,”
Energy, vol. 83, pp. 234–244, 2015.

[9] Y. Ren, P. N. Suganthan, and N. Srikanth, “Ensemble methods
for wind and solar power forecasting–a state-of-the-art
review,” Renewable and Sustainable Energy Reviews, vol. 50,
pp. 82–91, 2015.

[10] J. le Gal la Salle, J. Badosa, M. David, P. Pinson, and P. Lauret,
“Added-value of ensemble prediction system on the quality of
solar irradiance probabilistic forecasts,” Renewable Energy,
vol. 162, pp. 1321–1339, 2020.

[11] S. Chattopadhyay, R. Dubey, S. Bhaduri et al., “Correlating
infrared thermography with electrical degradation of PVmod-
ules inspected in all-India survey of photovoltaic module reli-
ability 2016,” IEEE Journal of Photovoltaics, vol. 8, no. 6,
pp. 1800–1808, 2018.

[12] Y. Hishikawa, T. Doi, M. Higa et al., “Voltage-dependent tem-
perature coefficient of the I-V curves of crystalline silicon pho-
tovoltaic modules,” IEEE Journal of Photovoltaics, vol. 8, no. 1,
pp. 48–53, 2018.

[13] C. Li, “Unstable operation of photovoltaic inverter from field
experiences,” IEEE Transactions on Power Delivery, vol. 33,
no. 2, pp. 1013–1015, 2018.

[14] A. A. Babatunde and S. Abbasoglu, “Predictive analysis of pho-
tovoltaic plants specific yield with the implementation of mul-
tiple linear regression tool,” Environmental Progress &
Sustainable Energy, vol. 38, no. 4, p. 13098, 2019.

[15] S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar photovol-
taic generation forecasting methods: a review,” Energy Conver-
sion and Management., vol. 156, pp. 459–497, 2018.

[16] J. Kleissl, Solar Energy Forecasting and Resource Assessment,
Academic Press, 2013.

[17] S. Theocharides, G. Makrides, A. Livera, M. Theristis,
P. Kaimakis, and G. E. Georghiou, “Day-ahead photovoltaic
power production forecasting methodology based on machine
learning and statistical post-processing,” Applied Energy,
vol. 268, article 115023, 2020.

[18] J. Antonanzas, D. Pozo-Vázquez, L. A. Fernandez-Jimenez,
and F. J. Martinez-de-Pison, “The value of day-ahead forecast-
ing for photovoltaics in the Spanish electricity market,” Solar
Energy, vol. 158, pp. 140–146, 2017.

[19] M. P. Almeida, M. Muñoz, I. de la Parra, and O. Perpiñán,
“Comparative study of PV power forecast using parametric
and nonparametric PV models,” Solar Energy, vol. 155,
pp. 854–866, 2017.

[20] B. Wolff, J. Kühnert, E. Lorenz, O. Kramer, and
D. Heinemann, “Comparing support vector regression for
PV power forecasting to a physical modeling approach using
measurement, numerical weather prediction, and cloud
motion data,” Solar Energy, vol. 135, pp. 197–208, 2016.

[21] M. Schmelas, T. Feldmann, J. da Costa Fernandes, and
E. Bollin, “Photovoltaics energy prediction under complex
conditions for a predictive energy management system,” Jour-
nal of Solar Energy Engineering, vol. 137, no. 3, pp. 1–10, 2015.

[22] E. Ogliari, A. Dolara, G. Manzolini, and S. Leva, “Physical and
hybrid methods comparison for the day ahead PV output
power forecast,” Renewable Energy, vol. 113, pp. 11–21, 2017.

[23] D. Yang, E. Wu, and J. Kleissl, “Operational solar forecasting
for the real-time market,” International Journal of Forecasting,
vol. 35, no. 4, pp. 1499–1519, 2019.

[24] E. Lorenz, T. Scheidsteger, J. Hurka, D. Heinemann, and
C. Kurz, “Regional PV power prediction for improved grid
integration,” Progress in Photovoltaics: Research and Applica-
tions, vol. 19, no. 7, pp. 757–771, 2011.

[25] Y. M. Saint-Drenan, S. Bofinger, R. Fritz, S. Vogt, G. H. Good,
and J. Dobschinski, “An empirical approach to parameterizing
photovoltaic plants for power forecasting and simulation,”
Solar Energy, vol. 120, pp. 479–493, 2015.

[26] P. Ramanan, K. Kalidasa Murugavel, A. Karthick, and
K. Sudhakar, “Performance evaluation of building-integrated
photovoltaic systems for residential buildings in southern
India,” Building Services Engineering Research and Technology,
vol. 41, no. 4, pp. 492–506, 2020.

[27] E. Krichene, Y. Masmoudi, A. M. Alimi, A. Abraham, and
H. Chabchoub, “Forecasting Using Elman Recurrent Neural
Network,” in International Conference on Intelligent Systems
Design and Applications, pp. 488–497, Springer, Cham, 2016.

[28] R. Barzegar and A. Asghari Moghaddam, “Combining the
advantages of neural networks using the concept of committee
machine in the groundwater salinity prediction,” Modeling
Earth Systems and Environment, vol. 2, no. 1, p. 26, 2016.

[29] R. Kabilan, V. Chandran, J. Yogapriya et al., “Short-term
power prediction of building integrated photovoltaic (BIPV)
system based on machine learning algorithms,” International
Journal of Photoenergy, vol. 2021, Article ID 5582418, 11
pages, 2021.

[30] A. Karthick, K. Kalidasa Murugavel, K. Sudalaiyandi, and
A. Muthu Manokar, “Building integrated photovoltaic mod-
ules and the integration of phase change materials for equato-
rial applications,” Building Services Engineering Research and
Technology, vol. 41, no. 5, pp. 634–652, 2020.

[31] P. M. Kumar, R. Saravanakumar, A. Karthick, and
V. Mohanavel, “Artificial neural network-based output power
prediction of grid-connected semitransparent photovoltaic
system,” Environmental Science and Pollution Research, pp.
1–10, 2021.

[32] A. Karthick, K. Kalidasa Murugavel, A. Ghosh, K. Sudhakar,
and P. Ramanan, “Investigation of a binary eutectic mixture
of phase change material for building integrated photovoltaic
(BIPV) system,” Solar Energy Materials and Solar Cells,
vol. 207, article 110360, 2020.

8 International Journal of Photoenergy


	Hourly and Day Ahead Power Prediction of Building Integrated Semitransparent Photovoltaic System
	1. Introduction
	2. Materials and Method
	3. Machine Learning Algorithm
	3.1. Elman Neural Network Algorithm (EN)

	4. Feedforward Neural Network (FFN)
	5. Generalized Regression Neural Network Model (GRN)
	6. Energy Performance Metrics
	6.1. Input Dataset

	7. Result and Discussion
	8. Conclusion
	Data Availability
	Conflicts of Interest

