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Power generation through solar photovoltaics has shown significant growth in recent years. However, high penetration of solar PV
creates power system operational issues as a result of solar PV variability and uncertainty. Short-term PV variability mainly occurs
due to the intermittency of cloud cover. Therefore, to mitigate the effects of PV variability, a sky-image-based, localized, global
horizontal irradiance forecasting model was introduced considering the individual cloud motion, cloud thicknesses, and the
elevations of clouds above the ground level. The proposed forecasting model works independently of any historical irradiance
measurements. Two inexpensive sky camera systems were developed and placed in two different locations to obtain sky images
for cloud tracking and cloud-based heights. Then, irradiance values for onsite and for a PV site located with a distance of 2 km
from the main camera were forecasted for 1 minute, 5 minutes, and 15 minutes ahead of real-time. Results show that the three-
level cloud categorization and the individual cloud movement tracking method introduced in this paper increase the forecasting
accuracy. For partially cloudy and sunny days, the forecasting model for 15min forecasting time interval achieved a positive
skill factor concerning the persistent model. The accuracy of determining the correct irradiance state for a 1min forecasting
time interval using the proposed model is 81%. The average measures of RMSE, MAE, and SF obtained using the proposed
method for 15min forecasting time horizon are 101Wm-2, 64Wm-2, and 0.26, respectively. These forecasting accuracy levels are
much higher than the other benchmarks considered in this paper.

1. Introduction

With the declining prices and promotion of green energy,
power generation using solar photovoltaic (PV) progresses
to be an alternative variable power generation option in
many countries [1, 2]. For example, as of 30th September
2020, there are over 2.56 million PV installations in Austra-
lia, with a cumulative capacity of more than 18.5GW [3].
Furthermore, solar PV was accounted for 5.6% of the total
generation in 2019, and it is the fastest-growing generation
type in the years 2018 and 2019 [4].

However, due to solar PV variability and intermittency,
the increased penetration of solar PV into the power system
can cause operational and management issues. The solar irra-
diance on PV panels varies with date, time, location, and

panel orientation relative to the sun [5]. It is well known that
the diurnal and annual solar irradiance patterns are highly
predictable, and solar variability in longer time intervals
can be easily estimated. But, the amount of solar irradiance
that reaches the surface of the earth varies by the intermit-
tency of cloud cover, impacting short-term solar energy pro-
duction. As these variations create significant fluctuations in
solar power feed into the grid, the methods that can be used
to predict solar irradiance at ground level and thus the corre-
sponding PV power generation are necessary to ensure the
effective management of electrical grids [6–8].

Reference [9] categorized solar PV forecasting methods
based on forecast time horizon (short-term, medium-term,
and long-term), historical data, and forecasting methods.
Historical data-based PV forecasting models use PV power
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output and related meteorological variables as the inputs. Per-
sistence model, physical models [10], support vector machine-
based models [11, 12], and artificial neural network-based
models [13] are some of the forecasting methods used to fore-
cast PV power in different forecasting time intervals

Solar power/irradiance forecasting is a powerful tool that
can be used to mitigate problems associated with the short-
term variations of the generated solar power. Intrahour
(from few seconds to few minutes) forecasting is used to
identify local ramp up/down events few minutes in advance
[14] and can identify pending energy shortfalls, which are
helpful for managing PV inverters and energy storage sys-
tems effectively. PV fluctuations create issues in maintaining
steady-state voltages at the distribution grid within the statu-
tory limits [15]. If a large number of PV plants are connected
to the distribution grid, voltages at the PV connection points
will rise when the PV generation is high and the captive load
is low [16]. Therefore, the voltage rise is considered as one of
the dominant issues that limit the ability of the distribution
grid to host high PV penetration. As a remedy, or to maintain
the voltage within statutory limits, On-Load Tap Changers
(OLTC) with smart distribution management systems (S-
DMS) [17] are used. Short-term solar forecasting is one of
the main building blocks in S-DMS as it is required to predict
the network status to control and manage the smart inverters
and smart transformers.

Furthermore, short-term forecasting will be beneficial to
overcome the partial shading condition that occurred due to
passing clouds, which is another major problem in PV sys-
tems [18]. In partial shading conditions, reconfigurations
of shaded and nonshaded modules in PV arrays enhance
the power output by distributing the shading effects evenly
[19] without changing the physical location. The short-
term cloud shadow forecasts at the location of the PV plant
are used as a control signal to the array reconfiguration pro-
cess to minimize the effect due to the partial shading espe-
cially on large-scale PV plants. Further, solar forecasting is
used as an input to smart battery management systems to
compensate for the PV shortages [20]. Furthermore, short-
term solar PV forecasts are used in energy market activities.
For example, in Australia, 5-minute PV forecasts are used in
the operations in the Australian National Electricity Market
(NEM) [21].

Short-term fluctuations in a PV plant mainly occur due
to the shadows of clouds and shadows created by fixed
objects like buildings, trees, and mountains. The power out-
put of a PV plant due to the shadows created by fixed objects
is deterministic as shadows can be mapped onto the PV plant
according to the zenith and azimuth angle of the sun at a
given time. However, the effects created by the shadows of
the clouds vary from time to time depending on cloud veloc-
ity, cloud size, cloud position on the sky, cloud thickness, and
the texture of the cloud. Hence, it is a random behaviour that
requires stochastic prediction as opposed to the deterministic
part, which requires extrapolation. Therefore, this paper is
focused on a physical forecasting model developed based on
cloud shading on PV plant generation.

For short-term power forecasting or real-time power pre-
diction, cloud information from ground-based sky images

and time series models based on historical data is widely used
[11, 22, 23]. Sky image-based PV forecasting approaches
reported in the literature are summarised in Table 1 with
the methodology used.

There are some limitations in the existing sky image-based
forecasting methods and equipment used to get the data for
the forecast. For example, the camera used in [10, 24–26] are
expensive to install on a large scale, and some camera systems
have proprietary software. Further, the local cloud base height
(CBH) information used in [10, 25, 27] is obtained from ceil-
ometers located around 10km away from the sky imager. This
will potentially introduce significant shadow position errors
when mapping the cloud shadow onto the ground. Further-
more, the methods presented in [28, 29] need previous irradi-
ance measurements to obtain the forecasts.

The deficiency of the technique introduced in [10, 27] is
that the entire cloud area is assumed to be moving at a uni-
form velocity throughout the image without considering
individual cloud movement. Furthermore, in [10], GHI
drops due to the shadow of the clouds are assumed to be
equal to a constant percentage drop. The use of a single
GHI dropping percentage is not robust since the decline of
the GHI level may be different according to the thicknesses
of the cloud.

The cloud tracking using the Lucas-Kanade optical flow
algorithm in [30] needs a higher image capturing frequency
to obtain smooth cloud movement. Furthermore, the major
weakness of the model presented in [31] is that this model
is an onsite forecasting model. Moreover, Reference [32] used
the tracking details to find the changes in the features in the
sun-blocking window and it did not use cloud motion track-
ing and shadow casting directly to the forecasting model.

By considering the limitation of the state-of-the-art
methods, this paper introduces a multiple-site irradiance fore-
casting model improved based on the CBH calculation using
two cameras located in two different locations. A new cloud
pixel identification method was introduced to identify cloud
areas in the sky image. Furthermore, a novel approach was
introduced to classify the cloudy pixels, where the cloudy
pixels were divided into three groups based on the color prop-
erties of each cloud pixel. The irradiance dropping factor was
defined using the cloud pixel category. Instead of assuming a
single dropping factor in [10, 14], an irradiance dropping fac-
tor based on image cloud color property was introduced.

Furthermore, individual clouds were tracked separately
without assuming the entire cloud area is moving at a uniform
velocity throughout the image. A normalized cross-correlation
algorithm was utilized to estimate the cloud motion vectors,
which is more convenient than the other optical flow tech-
niques. Here, the CCM [34] was applied to each cloud sepa-
rately, without taking the total cloud area as one segment.
This method enables the determination of multiple layer cloud
movements. Finally, irradiance forecasts were obtained for
onsite PV system (e.g., location 1 in Figure 1) and as well as
for PV systems located away from the main camera (e.g., loca-
tion 3 in Figure 1), by utilizing clear day irradiance profile gen-
erated using the ASHRAE clear-sky model [35] together with
irradiance drop percentage corresponding to the cloud cate-
gory and drop occurrence time.
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Table 1: Details of the sky image-based forecasting models.

Ref. Data Method used Outcomes

[10]

(i) Sky images
Camera: total sky imager 440A
Resolution: 640 × 480 pixels
Frequency: every 30 s
Image format: jpg

(ii) CBH

Cloud segmentation: RBR of each image
pixel was taken with the help of both clear
sky image data and sunshine parameter (SP)
Tracking method: cross-correlation method
(CCM). The sky images were partitioned into

subsets of pixels of equal size of squares
Forecasting method: by mapping the cloud
shadow onto the ground and considering

the average cloud moving velocity (assuming
spatial homogeneity of cloud velocity), occlusion
time was obtained. The drop occurred in the
GHI due to clouds was assumed to be equal to

40% of the clear sky GHI value

Irradiance is forecasted
5 minutes ahead of time

[30]

(i) Sky images
Camera: has roughly 60° FOV
Resolution: 640 × 480 pixels
Frequency: 1 frame/second
Image format: jpeg

Cloud segmentation: the difference between
the blue color channel and the red color

channel of each image pixel was compared
with a threshold

Tracking method: Lucas-Kanade optical
flow algorithm

Forecasting method: using linear regression,
the pixel moving velocity was obtained

According to the velocity, feature point trajectories
were developed, and time taken by the feature
points to pass a specific location on the image

was obtained

Occlusion signals were
generated 30 seconds

ahead of time

[28]

(i) Sky images
Camera: the total sky imager (TSI)
Frequency: every 30 s

(ii) Pyranometer irradiance measurements

Tracking method: fast cross-correlation algorithm
Forecasting method: a linear prediction model
was introduced for irradiance forecast based
on cloud motion estimations and the previous

solar irradiance monitoring data
From the motion vectors, the future cloud motion
over the location where solar panels reside was
estimated. The time series model was defined

employing radiation data and the TSI image RBR
value change readings concerning the previous

step on the selected window (20 × 20)

1min and 2min ahead
irradiance forecasts were

obtained

[27]

(i) Sky images
Camera: UCSD sky imager
Resolution: 2048 × 2048 pixels
Frequency: captured every 30 s

(ii) CBH

Cloud segmentation: sky was segmented into
three categories: applying the threshold to
the RBR channel and comparing the images

with a clear sky model
Tracking method: CCM to the RBR of two consecutive

images as in [10]
Forecasting method: the velocity of all clouds

was assumed to be homogeneous. Three different
values for the clearness index were obtained for

three sky conditions to generate irradiance forecasts

5min, 10min, and 15min
ahead forecasts were obtained

[24]

(i) Sky images
Camera: IP security camera
which has a 180°

Resolution: 1024 × 1024 pixels
Frequency: every 10 s
Image format: jpeg

Cloud segmentation: machine learning model
developed using pixel color components such
as hue, saturation, R, G, and B values of each
pixel, RBR, RBD, pixel distance from the sun,
and the zenith and azimuth angles of the sun
Tracking method: dense optical flow algorithm

Forecasting method: according to motion vectors,
future sun-occluding paths were constructed.
Then, the timing and extent of sun shading

events were predicted

The timing and extent of
sun shading events were

predicted
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This paper is structured as follows: Section 2 describes the
methodology, which provides a detailed description of the
new forecasting model covering the cloud segmentation,
motion tracking algorithm, and the cross-correlation-based
cloud base height calculation method. Section 3 is a case
study developed based on the methodology, and it provides
the details of the developed hardware setup and the results.
The conclusions are presented in Section 4.

2. Methodology

2.1. Data. Visual measurements of the full sky area with a
high spatial and temporal resolution are needed to obtain

accurate irradiance forecasts from cloud motion tracking.
Therefore, the sky images were captured by a camera with a
large FOV, which enables to get most of the clouds that make
a shadow on the location of the plant and to track the cloud
for a longer time duration. Thus, it increases the forecasting
time horizon. Obtaining images at a higher spatial and tem-
poral resolution enables us to accurately track the cloud
movement. Figure 1 illustrates how two different FOVs cap-
ture clouds. Low FOV (FOV 1) lenses capture a small area of
the sky. Thus, it might not capture enough details to forecast
the irradiance.

In addition to sky images, to forecast the solar irradiance
using the movement of the cloud shadows, (a) the direction

Table 1: Continued.

Ref. Data Method used Outcomes

[29]

(i) Sky images
Camera: wide-angle C-mount camera
Resolution: 2592 × 1944 pixels
Frequency: every 5 s

(ii) Irradiance measurements

Cloud segmentation: RBR method was used
Tracking method: Thirion’s Demons algorithm

Forecasting method: motion velocity was extracted
using a dense vector field of cloud displacement

vectors. Occlusions were determined using
cloud velocities, and the clear sky index was used
to improve short-term forecasts, below 3min

with a Kalman filter

Forecasted continuous
irradiance for time intervals

of up to 10min

[31]

(i) Sky images
Camera: UCSD sky imager
Resolution: 1748 × 1748
Frequency: every 30 s

Cloud segmentation: red–blue-ratio (RBR) method
Tracking method: variational optical flow

(VOF) technique
Forecasting method: the VOF forecasts of the

binary sky images were transformed to Cartesian
coordinates and generated the VOF-based forecast

Cloud trajectory lengths
were forecasted for 1min

to 15min ahead

[32]

(i) Sky images from 3 cameras
Camera: the total sky imager
Resolution: 640 × 480 pixels
Frequency: every 10 s

Cloud segmentation: a supervised classifier was
developed to detect clouds at pixel level

Tracking method: cloud block-matching method
Forecasting method: using three cameras, onsite
CBH was obtained. Regression-based forecasting
was done using image features of the clouds with

cloud block motion vectors and CBHs

15min ahead irradiance
was predicted

[25]

(i) Sky images
Camera: UTSA sky imager
Resolution: 1024 × 768 pixels

(ii) CBH

Cloud segmentation: RBR method
Tracking method: optical flow algorithm to the
feature points in two consecutive binary images
Forecasting method: using CBH measurements
and zenith angles of the sun, the cloud shadow
was mapped onto the ground. According to the
shadow movement and plant location, irradiance

drop was forecasted

5min ahead, irradiance
drops were predicted

[33]

(i) Sky images
Camera: the total sky imager
Resolution: 640 × 480 pixels
Frequency: every 30 s

(ii) CBH

Cloud segmentation and cloud type classification:
RBR method

Tracking method: improved Fourier phase correlation
method based on affine transform which is

corresponding to image-phase-shift-invariance
property was utilized

Forecasting method: initially, images were undistorted
according to the cloud-based height. Then, the
blue-sky area was separated, and the clouds were
classified. After classifying the clouds, the sky

image-irradiance mapping model was developed.
Backpropagation neural network (BPNN) and support
vector machine (SVM) are adopted for model training

to present sky image-irradiance mapping

1min to 10min ahead
irradiance was predicted
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of the sky camera with respect to the true north, (b) zenith
and azimuth angle of the sun, (c) clear day irradiance profile,
and (d) CBH (height above the ground level) are needed.
Therefore, the zenith and azimuth angles of the sun and the
clear day irradiance profile were calculated based on the
information in [19]. For the calculation, the details of time,
date, longitude, and latitude of the PV system locations were
required.

Typically, the clouds are placed at different layers of the
sky. Therefore, the CBH of each cloud is different. The
CBH of the clouds above a specific area can be obtained from
a ceilometer, but generally, it is expensive. The average CBH
values can be obtained from the nearest aviation centers or
weather monitoring centers. However, they can introduce
significant forecasting errors. Therefore, to forecast the
power generation at PV plants located in the neighborhood
of the camera location accurately, a local CBH estimation
method based on two cameras was introduced. To obtain
CBH using the proposed method (to get CBH, clouds cap-
tured from camera 1 need to be captured from another loca-
tion), sky images obtained simultaneously from the second
sky camera were considered (camera placed at location 2 as
in Figure 1). The irradiance forecasts for several locations
were obtained by extracting the image pixels that correspond
to the shadow cast on specific PV locations using local CBHs
(e.g., location 1 and location 3 in Figure 1).

2.2. Forecasting Methodology. This section provides details of
the forecasting methodology developed to forecast irradiance
at multiple PV sites. In this method, for one iteration, images
taken during one-minute time interval were considered for
all 1min, 5min, and 15min irradiance forecasting. Figure 2
shows the flow diagram of the forecasting model. It is divided
into nine main sections and is described in detail in this
section.

2.2.1. Blue-Sky Area Separation. The correct identification of
cloud regions from the sky image is critical as irradiance is
forecasted based on the movement of those clouds. A cloud

having a large vertical development has a color of a grey
shade and creates a substantial drop in the ground level irra-
diance. Therefore, if a grey cloud is incorrectly identified as a
blue-sky area, the result will be significantly erroneous. A
blue-sky area separation method was developed to obtain
correct cloud regions from the sky images to alleviate this.

In this process, white cloud pixels and pixels of the blue
color sky area were separated based on their red and blue
component values. However, as discussed in [27], it is not
possible to separate pixels related to grey clouds and blue-
sky areas only using R, G, or B values. Therefore, to separate
only blue-colored pixels from the sky image, YCbCr color
space was introduced. The YCbCr color space enables to sep-
arate bluish or reddish color components [36] in which Y is
the luminance in the YCbCr color plane, Cb is the chromi-
nance dominated by the blue color, and Cr is the chromi-
nance dominated by the red color. Since Cb is strong in
places of bluish colors (blue-sky area), it was used with a
threshold value to separate the blue-sky area from the sky
image. Y , Cb, and Cr components were obtained from RGB
pixel values using

Yi = 16 +
65:738
256

Ri +
129:057
256

Gi +
25:064
256

Bi, ð1Þ

Cbi = 128 −
37:495
256

Ri −
74:494
256

Gi +
112:439
256

Bi, ð2Þ

Cri = 128 +
112:439
256

Ri −
94:154
256

Gi −
18:285
256

Bi, ð3Þ

where Yi, Cbi, and Cri are Y , Cb, and Cr components of ith

pixel and Ri,Gi, Bi are R,G, and B components of the ith pixel.
As the initial step of the blue-sky area separation process,

the images captured on sunny, overcast, and partially cloudy
sky conditions were manually chosen. From the selected
images, pixel indexes related to blue-sky area, white cloud
area, and grey cloud areas were extracted manually (equal
number of pixels was selected for three categories), and they
were labeled. Then, three arrays for three-pixel classes were

FOV 1
FOV 2

CBH 1

CBH 2

Sky image

Camera 2
(Location 2)

PV plant 1, Camera 1
(Location 1)

PV plant 2
(Location 3)

Figure 1: Camera locations, different FOVs of a camera, and how it captures clouds with two CBHs.
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created from the labeled pixels, and the selected images were
converted into YCbCr plane images using (1)–(3). After that,
Y , Cb, and Cr components of the selected pixel indexes were
extracted and placed in the corresponding pixel arrays. Then,
each data array was split into two datasets as training dataset
and testing dataset. After that, using Y , Cb, and Cr compo-
nents, a 3D scatter plot was generated from the training data-
set. In the scatter plot, three different colors were used to
represent the three-pixel categories to understand different
clusters. The most dominant property for the classification
of pixels related to clouds and the blue area was identified
from the scatter plot.

Further, the properties that cannot be used for separation
were omitted. Then, considering pixels related to clouds
(grey pixels and white pixels) and pixels related to blue-sky

area, a histogram was generated for the dominant property
(Y or Cb or Cr). After that, the threshold value for the dom-
inant component was found so that the erroneous pixel
counts related to both clouds and blue-sky areas are cancelled
out. Then, considering the generated scatter plot and the
selected threshold value of the dominant pixel separation
property, the threshold values for the other parameters were
found. Finally, the method was validated using the testing
dataset. This cloud pixel identification method was applied
to the raw image to generate a binary cloud image where
white blobs represent the clouds or the sun and the black area
represents the blue-sky region.

The boundaries of the binary image obtained from the
thresholding method consist of jagged edges. To smooth
out the image boundaries and to remove image noises, image

Binary sky image
with white blobs

Sunny

(h) Time for occlusion

(b) Individual cloud
identification

Sky category

No

Yes

Number of white blobs
and total white pixel count

Cloud moving velocity

Camera mapping
function 

Distance between
two cameras 

CBH

Sky images taken within a period of 1 minute
at location 1 at time ‘t’, (Im1, Im2,…, Imn)

First sky image in
the image setImages (Im2,

Im3,… Imn)

Image (Im1)
Cb sky image and
binary sky image

(a) Blue sky area separation
Separately
identified

clouds and
Image (Im1)

(d) Cloud pixel
categorization

(c) Sky categorization

Partially cloudy /
Overcast

(e) Cloud pixel tracking and
velocity extraction

Mean and minimum
time for occlusion

Irradiance
dropping
factor (DF) 

(i) Irradiance forecast at t+Δt
Clear day irradiance at

time t+Δt = I(t+Δt)

(g) Area of the sky image
obtained at location 1
that creates a shadow

on the PV plant

Camera orientation,
longitude, latitude,
camera mapping

function, date, and
time (t)

(f) Cloud Base Height
(CBH) calculation

Sky images
at location
2 at time ‘t’

Sky images
at location 1

at time ‘t’

To forecast irradiance
other than the Location 1

Figure 2: Irradiance forecasting model.
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filters such as median filter, Wiener filter, and statistic filter-
ing functions inMatlab® are widely used [37]. To find out the
best filter (less edge distortion filter) for cloud boundary
smoothing, three filters were applied to the binary image.
The correlation coefficients between the filtered images and
the original binary sky image were obtained. Then, the filter
corresponding to the highest correlation was chosen for the
cloud boundary smoothing.

2.2.2. Individual Cloud Identification. In the blue-sky area
separation process, cloud (this may include the sun as well,
but it will not be an issue as it does not show any movement)
and blue-sky areas were separately identified. In this section,
individual clouds were identified separately from the binary
sky image generated in the previous section using the con-
nected component algorithm. This is essential to track the
individual cloud movement to obtain the cloud moving veloc-
ity. Further, using the connected component algorithm, the
number of white blobs and the total number of pixel counts
in each blob were obtained as they are required under the
sky categorization process (explained under Section 2.2.3).

2.2.3. Sky Categorization. The first image in each image group
(1min image set) was categorized into one of the categories:
sunny, partially cloudy, or overcast depending on the num-
ber of white blobs and on the percentage of white pixels in
the binary image. The white pixel percentage was calculated
using (4). Then, if the image was classified into partially
cloudy or overcast sky conditions, the cloud tracking algo-
rithm was applied to the image set.

White Pixel Ratio WPRð Þ
= Total number of white pixels
Total number of pixels inside the sky area

× 100%:

ð4Þ

2.2.4. Cloud Pixel Categorization. In the cloud pixel categori-
zation process, pixels in the cloud area were categorized into
pixels related to thick clouds, white clouds, and bright white
clouds by considering the different grey levels of the cloud
pixels in the Cb image. For the three cloud pixel categories,
irradiance dropping factors were found by comparing the
onsite irradiance measurements corresponding to each pixel
category with the clear day irradiance measurement. Since
the irradiance was forecasted considering the whole cloud, a
single irradiance dropping factor was obtained for each
cloud. For that, the clouds were categorized as thick clouds,
white clouds, and bright white clouds and the irradiance
dropping factors of the clouds were assigned based on the
pixel category of which the highest number of pixels available
in the cloud (mode of the pixel category in the cloud).

2.2.5. Cloud Pixel Tracking and Velocity Extraction. Clouds
can be found at different heights in the sky, and depending
on the height, they may have different velocities. The cloud
velocity provided by weather forecasts usually provides
global velocity information. As the accurate prediction of
PV drops and shading effects require locally extracted veloc-

ities, this section describes a cloud velocity estimation
method for individual clouds.

The identified individual clouds (in the first image, Im1)
and the other images in the image set were used as the input
data to this process. If the first image was classified into par-
tially cloudy or overcast sky condition, a set of pixel coordi-
nates inside the separately identified cloud regions were
selected for tracking using an iterative process such a way
that the distances between pixel coordinates in the direction
of X or Y have the same pixel difference.

To track the points from one image to the next image,
Matlab® normalized cross-correlation function was used
[34]. To apply cross-correlation, a template image and a
search window were selected. To track a point from the first
image to the second image, an n × n pixel area around the
coordinates ½X1, Y1� on the first image frame was selected
as the template image. Following this, an m ×m pixel area
(m > n) around the coordinates ½X1, Y1� on the second image
frame was selected as the search window. The red component
(of the RGB image plane) of the template image and search
window image segment were considered in the cross-
correlation function.

In this process, it was assumed that the image with coor-
dinates ½X1, Y1� does not move beyondm ×m pixel area over
the time interval Δt (time between two images). The maxi-
mum correlation points ½X2, Y2� were selected as the corre-
sponding points for the next image. Since the images were
captured at a high rate, the shape of the cloud change is
negligible.

The cross-correlation method was applied again to track
the points ½X2, Y2� from the second image frame to the third
image frame. Likewise, these steps were repeated for all
images and for all clouds. If the image set has six image
frames, there are five movement vectors for each selected
cloud point from the first image frame to the sixth image
frame and they were calculated using the difference between
the X and Y coordinates of each point and Δt. Then, the
point moving velocity throughout the image set was assigned
as the average of the frame-to-frame velocities of that point.
After that, histograms of pixel velocity magnitudes and
angles were created. Then, the magnitude of the velocity that
related to the highest point count in the velocity magnitude
histogram and the angle of the velocity that related to the
highest point count in the angle histogram were assigned as
the velocity vector of the cloud.

After that, the cloud moving velocity was obtained as the
median speed and the median direction of the selected points
in the cloud.

The above-mentioned cloud motion tracking step is not
required if the sky image was categorized as a sunny sky cat-
egory as in that situation, there will be only one white blob
related to the sun.

2.2.6. Cloud Base Height (CBH). Accurate cloud base height
(CBH) details are required to forecast irradiance for multiple
PV sites located within few kilometers away from the camera
location (location 1) because CBH is used to find out the
image area that creates a shadow on the PV plant location.
When considering the cost and accuracy, the calculation of
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the local CBH using sky images [38–40] is the best option;
hence, a sky image-based CBH calculation method was used
in this paper.

In the sky image-based CBH calculation method, at least
two wide-angle cameras are required. The clouds that belong
to the overlapping image area (common area as marked in
Figure 3) of the two cameras were used to calculate the
CBH. The overlapping area of the two images and the mini-
mum value for the CBH (hm) vary with the FOV and the dis-
tance between the two cameras. The clouds which are below
hm cannot be seen in both the images. In other words, the
clouds located below hm cannot be captured by both cameras
at the same time. Therefore, it is important to calculate the dis-
tance between two cameras considering the average minimum
CBH (“hm”) at the PV location and place them accordingly.

The following assumptions were made about the two-
camera system when calculating CBH:

(i) Both cameras were placed in a horizontal plane

(ii) The camera height from the base was assumed as
zero, and no height difference was considered in
the two cameras

(iii) No vertical development of the cloud (the effect of
vertical development of the cloud is considered
when calculating the irradiance drop percentage)

(iv) Since two identical cameras were used, the equidis-
tant mapping functions of both the cameras were
the same

Figure 3 shows the placement of two cameras for CBH
calculation and how a sample point in the cloud is repre-
sented in the sky image.

To calculate CBH, initially, both images were aligned to
the north. Figure 4 shows the flowchart detailing the CBH cal-
culation. Mainly, few cloud boundary points on the binary sky
image 1 (from location 1) were selected ½ðx1, y1Þ, ðx2, y2Þ,
⋯, ðxn, ynÞ�. Here, the boundary points of the clouds were

found by applying Matlab® “bwboundaries” function to the
binary cloud image. Considering possible distortions at the
boundary of the image obtained from the fisheye lens camera,
the cloud boundary points closer to the center of the image
were selected (by checking the distance of the boundary point
relative to the center point of the image). From the selected
points, a number of points were randomly selected via a ran-
dom function for the calculation of CBH. Then, by assuming
different CBH values, the positions of the randomly selected
cloud boundary points ½ðx1, y1Þ, ðx2, y2Þ,⋯, ðxn, ynÞ� were
mapped onto the other sky image captured by the second
camera placed at location 2 ½xh,n′ , yh,n′ � using the mapping func-
tion of the camera lens. Equations (5)–(9) provide the mathe-
matical equations used to map the cloud boundary points of
sky camera 1 to sky camera 2 for different cloud-based heights.

Following the above, image segments around cloud
boundary points ½ðx1, y1Þ, ðx2, y2Þ,⋯, ðxn, ynÞ� were selected
as the template images and the image segments around the
points ½ðxh,1′ , yh,1′ Þ, ðx2,h′ , yh,2′ Þ,⋯, ðxh,n′ , yh,n′ Þ� were selected as
the search window in CCM. Since the vertical height of the
cloud above the base of the cloud was assumed to be rela-
tively small compared to CBH, the appearance of the clouds
is assumed to be similar in both images.

r1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n + y2n

q
, ð5Þ

α1 =
FOV1/2ð Þ

R1
× r1, ð6Þ

α2 = tan−1
D
h
− tan α1ð Þ

� �
, ð7Þ

r2 =
R2

FOV2/2ð Þ × α2, ð8Þ

xh,n′ , yh,n′
h i

= r2 × cos θ2ð Þ, r2 × sin θ2ð Þ½ �, ð9Þ

Common
sky area

Location 2 (Camera 2)Location 1 (Camera 1)
D - Distance between two cameras
hm - Minimum CBH

[x, y]

[0, 0]

N

r

R

CBH

Sky image

𝛼2

D

𝛼1
hm

Sky image at
location 1

Sky image at
location 2

𝜃

Figure 3: Placement of two cameras for CBH calculation and representation of a sample point in the cloud to the sky image.
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where “h” is the cloud base heights, h = ½hm, 400, 600, 800,
⋯, 10000�; “FOV” is the field of view of the camera; ½x, y�
are the image coordinates; and “R” is the maximum image
radius.

Some boundary points ½x, y� have similar maximum
cross-correlation values for adjacent CBH values. Due to
the fisheye lens distortion, the points corresponding to higher
CBHs were mapped closer to each other. Therefore, the cor-

responding point ½x, y� lays inside few searching windows
(since the searching windows in the high CBHs overlap)
and gives a similar maximum cross-correlation value. The
distance between the center points of the search window ½ð
xhm′ , yhm′ Þ, ðx400′ , y400′ Þ, ðx600′ , y600′ Þ,⋯, ðx10000′ , y10000′ Þ� and the
corresponding maximum cross-correlation points ðchm, c400,
c600, c800,⋯, c10000Þ were compared to obtain an accurate
value for CBH. Thus, the CBH corresponding to the correla-
tion point which was located near the center of the search
window was selected as the CBH. This method was applied
to all other cloud boundary points, and the average value
was taken as the CBH.

2.2.7. Area of the Image That Generates a Shadow on the
PV Plant. In the onsite irradiance forecasting method,
the camera is placed at the PV site. Therefore, if a cloud
comes in between the sun and the PV plant, it was iden-
tified from the sky image (when the location of the sun
on the image was covered by the cloud). The location of
the sun on the image was found by using camera orienta-
tion, longitude, latitude, camera mapping function, date,
and time [41].

In the multiple-site irradiance forecasting, since the PV
plants are located few kilometers away from the camera loca-
tion, the sky image locations which create shadows on the PV

Sky image 1 at time t, (Camera 1)

Select a cloud boundary point

Cloud Base Height (CBH)Camera mapping
function 

Distance between two
cameras

Convert to a binary sky image

Get cloud boundary point coordinates
using

Matlab® “bwboundaries” function

Sky image 2 at time t, (Camera 2)

For different CBH values, calculate the
corresponding point coordinates on

sky image 2

Select an area of 20 × 20 pixels’ area
around each point as a template image

Select an area of 40 × 40 pixels around
each point as a search window

Normalized cross-correlation of the template image with
search windows relevant to different CBH

Maximum cross-correlation for each search window

Distance from the center of the search window to the
maximum CC point (d)

Select the point correspondent to minimum (d)

Figure 4: Flow diagram of the CBH calculation method (relevant to Figure 2(f)).

Point of the image that
generates a shadow on the
PV plant (‘P’)

Velocity direction
of the cloud

15°

15°

Select the points laid
inside this area

Figure 5: Cloud motion vector.
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plants were found according to the calculated CBH, camera
orientation, longitude, latitude, camera mapping function,
date, and time.

2.2.8. Time for Occlusion. The irradiance drop occurrence
time is defined by the speed of the clouds that are directed

towards the PV plant. For the onsite irradiance forecasting,
it is the time taken by the cloud to reach the point of the
sun whereas, in the multiple-site irradiance forecasting, it is
the time taken by the cloud to reach the point that makes a
shadow on the PV plant. The irradiance drop occurrence
time was calculated using the following steps:

Yes

No

Yes

No

If – Irradiance forecasts
t – Image captured time
Δt – Forecasting time horizon
I – Clear day irradiance

Sunny

T ≤ Δt

Mean time
for occlusion

Tm

Irradiance
dropping

factor (DF) 

Minimum time
for occlusion
(T) = (t + T)

Is there a value for
If at t + Δt
 (If(t+Δt))?

If (t + Δt)
= I (t + Δt)

If (t + Δt)
= If (t + Δt)

If (t + Δt : t + Δt + Tm) =
DF × I(t + Δt : t + Δt + Tm)Clear day

irradiance at time
t+Δt = I(t+Δt)

Figure 6: Irradiance forecasting method.

Location 1
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Location 2

(c) Main Campus, Building 35
University of Wollongong, Location 2

(a)

Location 1 - SBRC at the Innovation Campus (Rooftop PV system and Camera 1)
Location 2 - Main Campus, Building 35, University of Wollongong (Camera 2)
Location 3 - Main Campus, Building 28, University of Wollongong (Rooftop PV system)

(b) SBRC at the Innovation
Campus,

University of Wollongong,
Location 1

Figure 7: (a) Locations of two cameras and locations of rooftop PV plants, (b) camera 1 at location 1, and (c) camera 2 at location 2.
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Figure 8: (a) Y , Cb, and Cr scattered plot, (b) Y and Cr scattered plot, (c) Cb and Cr scattered plot for blue-sky pixels and white and grey
cloud pixels, and (d) normalized histogram of Cb component of blue-sky pixels and cloud pixels.
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Figure 9: (a) RGB raw image with calculated position of the sun. (b) Identified white patches including both the sun and clouds in the sky
image are marked on the RGB image. (c) Separately identified cloud regions (area without sun).
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(i) The point (in the last image of the image set) that
creates a shadow on the PV plant was found (point
“P” shown in Figure 5)

(ii) A number of points inside each white blob of the last
image frame were selected in such a way that the dis-
tances between points in the direction of X or Y are
the same

(iii) After that, the backward mapping function of the
camera was applied for the points

(iv) Then, the points with a possibility of resulting in a
shadow on the PV plant in the expected forecasting
time period were found via the motion vector of
the cloud and point “P.” It is done by identifying
the points inside an area covered by two lines drawn
with an angle of +15° and -15° relative to the motion
vector starting from the point “P” as indicated in
Figure 5

(v) According to the calculated velocity of the cloud
under Section 2.2.5, the time taken by the selected
points to pass the location “P” was calculated

(vi) Then, according to the calculated time for each point
to pass the location “P,” the minimum (T) and mean
(Tm) occlusion values were obtained

If the location “P” is not covered by a cloud at the begin-
ning of the forecasting, the minimum occlusion time is the

starting time for occlusion of the cloud. If it is already cov-
ered by a cloud at the beginning of the forecasting, the min-
imum occlusion time is the time taken by the nearest selected
point to the point “P.”

2.2.9. Irradiance Forecasting. According to the minimum and
mean occlusion times (T and Tm) obtained under Section
2.2.8, the irradiance drop was predicted for 1 minute, 5
minutes, and 15 minutes ahead of real-time, as in the flow
diagram shown in Figure 6. For the sunny sky condition,
since there is no occlusion time, the irradiance is the same
as of clear day irradiance (obtained from the ASHRAEmodel
[35]). If the minimum time for occlusion is less than or equal
to the forecasting time horizon, there is an irradiance drop,
and it was calculated by multiplying the clear day irradiance
profile with the corresponding irradiance drop percentage
factor obtained for different cloud types (thick grey clouds,
white clouds, and bright white clouds). Furthermore, if the
minimum time is greater than the considered forecasting
time horizon, there will not be an irradiance drop. Hence,
the irradiance forecast is equal to the clear day irradiance
value. As an example, if the forecasting time horizon is 5
min and the minimum time for occlusion is less than or equal
to 5min, irradiance drop will occur, and if it is greater than 5
min, irradiance drop will not occur.

2.3. Error Metrics and Forecast Performance. Root mean
square error (RMSE), mean absolute error (MAE), and true

Table 2: Sky categorization.

Sunny Partially cloudy Overcast

WPR < 15% and only one blob is detected 15% <WPR < 80% and more than one blob are detected WPR > 80%
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Figure 10: (a) White pixel percentage of the first image in each image set captured on 2018/09/20 and (b) measured irradiance.
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drop identified percentage were calculated to evaluate the
results [29, 42].

The RMSE and MAE were calculated using the predicted
irradiance (I f ðtÞ) and measured irradiance (ImðtÞ) as given
by

RMSEo =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
〠
t

Im tð Þ − I f tð Þ� �2,
s

MAE =mean Im − I f
�� ��� �

:

ð10Þ

The percentage of the accurately identified irradiance
state (drop or not/1 or 0) from the forecasting model was cal-
culated using (11). The “true state” in (11) is the total number
of correctly identified irradiance states, and the “false state” is
the total number of incorrectly identified irradiance states
(incorrect drops and missed drops) [43].

TS =
True states

True states + Fales states
× 100%: ð11Þ

The skill factor indicates the performance of the short-
term forecasting models with respect to the persistent model.
The forecast accuracy depends on weather conditions and

forecasts temporal and spatial resolution. Therefore, forecast
accuracies are not comparable site-by-site or hour-by-hour
unless normalized by a benchmark. The forecast skill is a
way to normalize forecast accuracy [42]. Therefore, the skill
factor was calculated for the forecasting results.

The persistence method was defined as the measured
irradiance at a time “t − δ” equals to the irradiance at a time
“t” (where δ is the forecasting time horizon). The skill factor
was calculated using (12), where RMSEp is the root mean
square error of the persistence method and RMSEc is the root
mean square error of the proposed method. SF was calculated
for each forecasting time horizon.

SF = 1 − RMSEo

RMSEp
: ð12Þ

3. Case Study

3.1. Experimental Setup. Two inexpensive cameras were
developed to evaluate the forecasting methodology. To form
the sky camera system, a Raspberry Pi single-board computer
(3rd Generation, Model B) (US$35), a micro-SD card with a
capacity of 32GB (US$15), and a programmable high-

(a) (b)

C1 – Bright clouds

C2 – White clouds
C3 – Dark clouds

(c)

Figure 11: (a) Raw RGB image, (b) identified white and grey areas are marked on the raw RGB image, and (c) classified cloud pixels from the
cloud categorization method.
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resolution Pi camera (US$20) with a fisheye lens (US$20)
were used.

The installed sky camera systems are shown in Figure 7.
The encapsulated Raspberry Pi (RPI) board, together with a
programmable high-resolution Raspberry Pi camera module
with a wide-angle lens, enables to grab a vast area of the sky
onto the image. The Raspberry Pi camera and the RPI board
were placed inside a weatherproof enclosure. Both sky cam-
era systems were operated remotely and were programmed
to automatically capture images from 8.00 am to 4.45 pm at
a rate of 10 seconds. The resolution of the captured images
was 1024 × 768 pixels, and they were stored in jpeg format.

One camera was installed closer to a rooftop PV plant (at
location 1), and the second camera was placed 1.9 km away

from the first camera (location 2), as shown in Figure 7(a),
to collect data. Location 1 is at the Sustainable Buildings
Research Centre (SBRC) at the Innovation Campus, Univer-
sity of Wollongong, Australia, while location 2 camera is at
the roof of Building 35 at the Main Campus of the University
of Wollongong, Australia.

The irradiance levels were forecasted for location 1 and
location 3 using the images captured from camera 1 at loca-
tion 1. The camera fixed at location 2 is only used to obtain
the images for CBH. PV data were collected from location 1
to test the onsite forecasting model. To test the multiple-
site forecasting model, location 3 (Building 28 rooftop PV
system at the main campus, University of Wollongong),
which is located with a distance of 2 km from camera 1

(a)

Frame 1
Frame 2
Frame 3

Frame 4
Frame 5
Frame 6

(b)

0

0.2

0.4

0.6

0.8

1

(c)

Figure 12: (a) Selected points inside a cloud, (b) tracked points over a 1minute, and (c) mean of the motion vectors of the selected points.
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Figure 13: (a) Velocity magnitude histogram and (b) velocity angle histogram.
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Figure 14: (a) Raw image, (b) location of the sun, (c) separately identified cloud blob related to the sun, (d) selected cloud points inside the
selected cloud blob, (e) tracked cloud points over a 1-minute time interval, (f) mean value of the motion vectors of the selected cloud points,
(g) velocity angle histogram, and (h) velocity magnitude histogram.
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(location 1), was selected as shown in Figure 7(a) (location 1
(34.40°N, 150.90°E) and location 3 (34.41°N, 150.88°E)).
Power measurements were acquired from both locations 1
and 3 with a 1-minute resolution to evaluate the forecasting
accuracy.

3.2. Irradiance Forecasting Methodology Implementation.
This section describes how the irradiance forecasting results
were obtained via the experimental setup described in Sec-
tion 3.1 and the methodology described in Section 2.2.

3.2.1. Blue-Sky Area Separation. As the initial step of irradi-
ance forecasting, the blue-sky area separation process was car-
ried out. The separation of blue pixels (noncloudy pixels) from
the sky image was considered in this step and was done using
the YCbCr threshold method. The training and testing pro-
cesses were carried out using 50 sky images selected related

to the three sky conditions (sunny, overcast, and partially
cloudy). For that, a set of six-hundred-pixel indexes related
to the blue area, white clouds, and grey clouds were selected
from the above-selected sky image set. Then, the correspond-
ing Y , Cb, and Cr components of the selected pixel indexes
were extracted, and a scatter plot was generated. Figure 8(a)
shows the scatter plot generated via the corresponding Y , Cb
, and Cr components of the selected pixel indexes.

As in Figure 8(c), two main clusters were identified, and
it is seen that a threshold of Cb component separates the
pixels related to clouds and pixels related to the blue area
of the sky image. Therefore, the Cb component was selected
as the dominant component that was used to separate bluish
pixels from the image. As shown in Figure 8(b), Y compo-
nent cannot be used for separation; therefore, it was omitted.
The normalized histogram was generated to determine the
Cb threshold value for cloud separation, as shown in
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Figure 15: (a) Cloud boundary points extracted from “bwboundaries” function, (b) selected 10 points closer to the center, (c) selected
boundary locations on the image captured from the camera placed at location 1, (d) a selected point ½x, y�, (e) mapped points for the
selected point ½x, y� for different CBHs on the image taken from the camera placed at location 2, and (f) the maximum CC received for
different CBHs (blue) and the pixel difference between the center point of the search window to the maximum CC point for CBHs (brown).
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Figure 8(d) (as in Figure 8(c), since Cb and Cr components
related to grey and white cloud pixels are in the same range,
both grey and white cloud pixels were considered as the total
cloud pixels). The classification decision boundary was
adjusted to minimize the classification error, and the optimal
location as per histograms illustrated was found to be 0.58.
Hence, the thresholding was done based on the actual prob-
abilistic model generated via a manual labeling process.
Then, using Figure 8(c) and the selected Cb threshold value
(0.58), a threshold value for Cr was obtained as 0.46 in such
a way that all pixels related to the blue area in the sky image
are filtered out. For example, if the Cb value of a pixel is
greater than 0.58 and the Cr value is less than 0.46, it was
taken as a pixel related to the blue area in the sky image (non-
cloud pixel). Then, using threshold values obtained for both
Cb and Cr components, binary cloud images were generated.

A dataset of 100 pixels (25 white cloud pixels, 25 grey
cloud pixels, and 50 pixels related to the blue-sky area) was
tested to validate the method. The accuracy of identification
of the correct pixel category was around 96%.

As discussed in Section 2.2.1, three image filters, median
filter, Wiener filter, and statistic filter, were used as image
noise filters and as boundary smoothing techniques. After
applying three filters to the binary image, the correlation
between the filtered image and the binary image was found.
The correlation coefficients obtained from the median fil-
tered image, Wiener filtered image, and statistic filtered
image were 0.996, 0.882, and 0.993, respectively. Therefore,

the median filter was selected as the cloud boundary smooth-
ing technique since it smooths the cloud boundary and main-
tains the shape of the clouds than the other two filters.

3.2.2. Individual Cloud Identification. The next step of the
method is to identify the individual cloud areas on the sky
image. Figure 9(a) shows the RGB raw image with the calcu-
lated position of the sun, Figure 9(b) shows the identified
white patches including both the sun and clouds in the sky
image, and Figure 9(c) shows the separately identified cloud
regions (area without the sun).

3.2.3. Sky Categorization. Then, the sky image was catego-
rized into three sky categories as defined in Table 2 according
to the white pixel percentage (WPR) of the binary image.

Figure 10 shows the white pixel percentage of the first
image in each image set from 8.30 am to 4.45 pm (1min
samples).

3.2.4. Cloud Pixel Categorization. Figures 11(a) and 11(b)
show the RGB image and the identified cloud areas. By con-
sidering the different grey levels of the cloud pixels in the C
b image, the cloud pixels were categorized into three catego-
ries, as shown in Figure 11(c).

Three irradiance drop levels (C1, C2, and C3) were estab-
lished for the three cloud groups. For thick clouds (C3), the
irradiance was assumed to be 30% of clear day irradiance
value, and for white clouds (C2), it was assumed to be 40%.

(a)

Point of the sky image which creates a
shadow on the PV plant (‘P’)

(b)

Motion
vector

Selected cloud area according to the
direction of the cloud motion vector

‘p’

(c)

‘p’

(d)

Figure 16: (a) Selected cloud pixels, (b) the image location (P) which creates a shadow on PV plant at location 1, (c) selected cloud area
according to the direction of the cloud motion vector, and (d) the selected distortion removed points (yellow).
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Figure 17: Continued.
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Figure 17: (a) 1 minute, (b) 5 minutes, and (c) 15 minutes forecasts at location 1 on 9th April 2019 and (d) 1 minute, (e) 5 minutes, and (f) 15
minutes forecasts at location 3 on 29th July.
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On the other hand, for the bright white clouds (C1), the irra-
diance was assumed as 50% of clear day irradiance.

3.2.5. Cloud Pixel Tracking and Velocity Extraction. After the
categorization of the sky condition, the cloud tracking pro-
cess was performed on each cloud to obtain the cloud veloc-
ity. As the first step, few points were selected inside the
identified blobs in such a way that the distance between
selected points’ coordinates is 50 pixels (as in Figure 12(a)).
Then, to apply the CCM for each point, the sizes of the tem-
plate image and the search window were found as follows.

The template image size (n × n) was selected to a lower value
(n is set to 40 pixels) than that of 50 pixels so that only one
point coordinate will lay in the image template. To find the
search window size, the below process was considered.
According to Reference [44], the average wind speed in the
Wollongong area is taken as 19 km/h. The minimum cloud
base height considered in our model was 500m, and the time
difference between the captured two image frames is (Δt =)
10 s. Therefore, the maximum movement of the cloud
between two image frames is around 31 pixels. Therefore,
the search window size m was set to 70 pixels (n + 30).

Table 3: RMSE, MAE, and TS for irradiance forecasts and irradiance forecasts at location 1 (onsite forecasting) with three-level irradiance
drop percentages and with 40% irradiance drop assumption (Sn: sunny; Oc: overcast; Pc: partially cloudy).

Date
Sky condition

Time horizon
Forecast with three-level
cloud categorization

Forecast with 40% drop
assumption [10, 14] TS/(%)

RMSE/(Wm-2) MAE/(Wm-2) SF RMSE/(Wm-2) MAE/(Wm-2) SF

07/09/2019 (Sn)

1min 37 29 -0.63 37 29 -0.63 98

5min 37 28 -0.02 37 28 -0.02 99

15min 36 28 0.41 36 28 0.41 99

08/09/2019 (Sn)

1min 20 16 -8.6 20 16 -8.6 99

5min 20 16 -0.16 20 16 -0.16 100

15min 19 15 0.62 19 15 0.62 100

11/09/2019 (Sn)

1min 13 10 -3.5 13 11 -3.5 98

5min 12 10 0.28 12 10 0.28 93

15min 12 10 0.76 15 10 0.76 98

13/04/2019 (Pc)

1min 157 92 -0.20 164 96 -0.25 70

5min 213 143 -0.12 229 157 -0.21 62

15min 199 120 0.00 202 123 -0.01 61

08/05/2019 (Pc)

1min 142 92 -0.13 144 92 -0.15 88

5min 142 94 0.10 142 94 0.09 87

15min 151 101 0.24 151 101 0.23 84

28/07/2019 (Pc)

1min 136 86 -0.89 144 90 -0.99 79

5min 137 88 0.02 148 95 -0.06 78

15min 144 89 0.13 146 89 0.12 75

29/07/2019 (Pc)

1min 113 69 -1.20 118 79 -1.29 80

5min 122 73 -0.04 126 81 -0.07 81

15min 157 99 0.13 158 104 0.13 62

30/07/2019 (Pc)

1min 106 51 -1.71 111 50 -1.85 76

5min 107 55 -0.53 114 54 -0.63 65

15min 80 42 0.19 76 36 0.23 68

10/09/2019 (Pc)

1min 162 100 -0.87 162 100 0.87 79

5min 167 53 -0.27 167 102 -0.27 63

15min 130 75 0.11 129 75 0.12 72

09/04/2019 (Oc)

1min 230 143 -0.64 240 163 -0.71 72

5min 224 141 -0.02 228 155 -0.04 74

15min 307 230 -0.20 314 243 -0.23 65

05/05/2019 (Oc)

1min 160 118 -1.01 160 119 -1.01 81

5min 206 153 -0.25 206 152 -0.25 66

15min 265 220 -0.11 263 218 -0.10 42

12/09/2019 (Oc)

1min 168 121 -3.6 166 126 -3.55 61

5min 188 136 -1.17 183 138 -1.10 63

15min 173 119 -0.26 167 122 -0.23 42
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Figure 12(b) shows the tracked cloud points over six itera-
tions, and Figure 12(c) shows the average motion vectors of
the selected points.

Figures 13(a) and 13(b) show the histograms of pixel
velocity magnitudes and angles of the selected cloud. The
magnitude of the velocity that related to the highest point
count (bin count) in the velocity magnitude histogram and
the angle of the velocity that related to the highest point
count in the angle histogram was assigned as the cloud mov-
ing velocity vector.

Figure 14(a) shows the RGB raw image corresponding to
the overcast sky condition, and Figure 14(b) shows the iden-
tified location of the sun (marked in red marker). Separately
identified blobs, selected cloud points inside the cloud blob,
and tracked cloud points are shown in Figures 14(c)–14(e).
Motion vectors of the selected cloud points and the histo-
grams for velocity angles and velocity magnitudes are shown
in Figures 14(f)–14(h), respectively.

3.2.6. Cloud Base Height (CBH) Calculation. Then, the cloud
base height calculation process was implemented using the
images captured from camera 1 and camera 2. According to
the FOV (=140/2) of the cameras and the distance (=1.92
km), the minimum CBH (“hm”) was calculated as 350m.

To get CBHs, initially, the cloud boundary points on
images obtained from camera 1 were found using Matlab®
“bwboundaries” as shown in Figure 15(a). Then, cloud
boundary points closer to the center of the image were
selected in such a way that the distance of the cloud boundary
to the center of the image is less than 250 pixels (the radius of
the full image is 366 pixels). Out of those points, 10 points
were randomly selected as shown in Figures 15(b) and
15(c) for the calculation of CBH. Figure 15(d) shows a single
point that was selected for the illustration. By changing the
CBH from 400m to 10 km with 200m steps, the coordinates
of the selected boundary point ½x, y� were mapped on to sky
image 2 ½ðx400′ , y400′ Þ, ðx600′ , y600′ Þ,⋯, ðx10000′ , y10000′ Þ� as in
Figure 15(e). As seen in Figure 15(f), for the selected point,

there are similar maximum cross-correlation outputs for dif-
ferent CBH values. Then, the distance between the center
points of the search windows and the corresponding maxi-
mum cross-correlation points were mapped in the same plot
of Figure 15(f) (brown color) and the minimum distance was
assigned as the CBH.

3.2.7. Area of the Sky Image Obtained at Location 1 That
Creates a Shadow on the PV Plant, Time for Occlusion, and
Irradiance Forecast. The selected points inside the cloud are
shown in Figure 16(a), and the image location (“P”) that cre-
ates a shadow on the PV plant at location 1 is shown in
Figure 16(b). Then, the cloud area required for the irradiance
forecasting was selected according to the direction of the
cloud motion vector and the image location (“P”) as shown
in Figure 16(c). Since the images were obtained via a wide-
angle lens, to get the corresponding area in the image, the
backward mapping function of the camera was applied for
the points and obtained as shown in Figure 16(d).

The time for occlusion was obtained according to the
cloud moving velocity. Then, the irradiance profile was fore-
casted by multiplying the clear day irradiance value with the
irradiance dropping factor of the cloud category as shown in
Figure 17. Figures 17(a)–17(c) show the irradiance profile
obtained from the onsite (for location 1) forecasting model
for the three forecasting time horizons (1min, 5min, and
15min), and Figures 17(d)–17(f) show the irradiance profile
obtained from the multiple-site forecasting model (for PV
system at location 3) for the three forecasting time horizons.
The irradiance is forecasted from 8.15 am to 3.40 pm with 1
min granularity.

3.3. Performances of the Forecasting Model. Sunny days, over-
cast days, and partially cloudy days that are randomly
selected from 09/04/2019 to 12/09/2019 were used to illus-
trate the performance of 1 minute, 5 minutes, and 15 minutes
ahead irradiance forecasts of two forecasting models: onsite
model and multiple-site model.
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The images captured between 8.30 am and 4.30 pm (local
time) (with timestamps) were used for irradiance forecasts.
For a single day, the experimental dataset contains 2880 × 2
images from two sky cameras (which were time-synchro-
nized) and PV power measurements obtained from the two
locations. The irradiance is forecasted from 8.30 am to 4.30
pm with 1min granularity. Therefore, for each day, 8 hours
× 60 min forecasts will be generated (a total of 480 data
points were forecasted).

Only the data obtained from camera 1 was used for the
onsite forecasting model, and forecasts were generated for
the PV system at location 1. For the multiple-site forecasting
model, data obtained from both cameras were used, and
camera 2 was used to calculate the CBH only. From this
model, the irradiance forecasts were obtained for location 3,
which is 2 km away from camera 1.

The measured PV power values obtained from the roof-
top solar PV plants were transformed into the irradiance
using the capacities of both rooftop PV plants to compare
the forecasted irradiance with the measured irradiance.

3.3.1. Onsite Forecasting. RMSE, MAE, skill factor, and the
percentage of true irradiance state identification of onsite
irradiance forecasting results are given in Table 3.

Further, to compare the effectiveness of applying three
different irradiance dropping levels (found according to the

cloud color properties) with a constant irradiance dropping
factor, irradiance forecasts for 40% drop assumption (as used
in [10, 14]), RMSE, MAE, and SF were calculated. As shown
in Table 3, errors in the single irradiance drop assumption
are higher than that of the forecasts obtained from three-
level cloud categorization for partially cloudy days and over-
cast days. Figure 18 compares the average of the MAE
obtained from three-level cloud categorization with the sin-
gle drop level assumption method for a sunny day, partially
cloudy day, and overcast day and shows that it is lower in
the three-level cloud categorization.

3.3.2. Multiple-Site Irradiance Forecasting. Table 4 shows
RMSE, MAE, SF, and TS of the forecasting results obtained
for a location (location 3) 2 km away from camera 1. It com-
pares the individual cloud movement-based tracking model
introduced in this paper with the tracking method used in
[10], where the entire cloud area is assumed to be moving
at a uniform velocity throughout the image (without consid-
ering the individual cloud movement).

Figure 19 compares the average percentage of correctly
identified true irradiance state (TS) for sunny, partially
cloudy, and overcast days from the forecasting model intro-
duced in this paper and from the method in [10] for the three
forecasting time horizons. As in Table 4 and Figure 19, when
considering the percentage of correctly identification of
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irradiance state (TS), the individual cloud movement
tracking-based forecasting model introduced in this paper
performed better than the method in [10] (which assumed
that all clouds move in the same velocity).

Figure 20 shows the average MAEs obtained from the
three-level cloud categorization introduced in this paper, sin-
gle drop level assumption (40% drop), and MAEs for the
results obtained from the forecasting model introduced in
[10] for three forecasting time horizons. Highest MAE was
received from the forecasting model introduced in [10].

When considering the skill factor, the SF remains positive
for 15min forecasting time horizon for location 3 for sunny
and partially cloudy days, and this implies the model intro-
duced in this paper outperforms the persistent model.

Reference [33] introduces a solar irradiance forecasting
model based on surface irradiance mapping. In that model,
initially, the mapping relationship between the information
of the cloud pixels and irradiance was established, and then
a sky image-irradiance mapping model is developed. When

establishing the mapping model, RGB values of the circular
sky region, which will cover the location of the sun on the
image in the next 10min, were extracted as model input,
while the corresponding irradiance was selected as the out-
put. With the sky image—irradiance mapping methods
trained using BPNN and SVM, average RMSE values of
117Wm-2 and 116Wm-2 were achieved. In comparison, the
method introduced in this paper achieved an average RMSE
of 108Wm-2, as shown in Table 5. Therefore, the forecasting
model introduced in this paper performs better than [33].

4. Conclusion

According to the current trend, the percentage share of solar
PV in electricity generation will be drastically increased in
the coming years. Hence, impacts on power systems due to
variations of solar PV power generation need to be
addressed. As a solution, in this paper, a novel short-term
irradiance forecasting algorithm is presented. The forecasting
model presented here makes use of an inexpensive ground-
based sky imaging system. The inexpensive camera with a
wide-angle lens captures a broad area of the sky; thus, it
increases the forecasting time duration. As the shape of the
clouds changes with time, a cloud segment tracking method
using a cross-correlation algorithm was introduced instead
of the optical flow algorithm based on cloud feature point
tracking.

Furthermore, the cloud in the different layers in the sky
has different moving velocities. Therefore, the proposed indi-
vidual cloud tracking method allows finding the moving
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Table 5: Comparison of average RMSE.

Method
Average RMSE

(Wm-2)

Irradiance mapping methods trained
using BPNN [33]

117

Irradiance mapping methods trained
using SVM [33]

116

Our cloud motion-based forecasting model 108
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velocity of each cloud in different layers. Further, the results
obtained from the proposed method were compared with a
method that assumes all clouds move at an average velocity
and proved that the method introduced in this paper per-
forms better.

Irradiance forecasts were obtained for 1 minute, 5
minutes, and 15 minutes using the proposed method. The
method has the capability of forecasting the onsite irradiance
changes 1 minute in advance with 80% of accuracy and 5
minutes in advance with 78% of accuracy. For the results
obtained for 15 minutes, the forecasting time horizon has a
positive skill factor indicating that the method introduced
in this paper is better than the persistent model.

Since the PV power generation can be directly obtained
from the irradiance forecasts, the short-term irradiance fore-
casts are helpful to overcome the problems caused due to the
intermittency of solar PV generation. For example, the fore-
casting of pending energy shortfalls is useful for the manage-
ment of PV inverters and energy storage systems. Further,
PV forecasts can be used to predict the network status to con-
trol and manage the smart inverters and smart transformers.
Furthermore, accurate solar irradiance forecasts derived
from the proposed method helps to schedule solar PV gener-
ation in large interconnected networks. The proposed image-
based method shown to perform best for the highly volatile
condition in the partially cloudy situation is promising. Fur-
ther, a hybrid method based on the type of day predicted
beforehand may be even more useful. Therefore, the forecast-
ing method proposed in this paper should be further devel-
oped considering the above applications while integrating
with network models, market models, and intelligent control
models.
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