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In a grid-connected photovoltaic system, forecasting is a necessary and critical step. Solar Power is very nonlinear; this article
develops and analyses building integrated photovoltaic (BIPV) forecasting algorithms for different timeframes, such as an hour,
a day, and a week ahead, to manage grid operation effectively. However, a model built for a certain time scale may improve
performance at that time scale but cannot be utilized to make predictions at other time scales. Here, we demonstrate how to
use the multitask learning algorithm to create a multitime scale model for solar BIPV forecasting. Effective resource
distribution across several tasks is shown. The suggested multitask learning approach is implemented using LSTM neural
networks and evaluated over a range of horizons. We employed a modified version of the Chicken Swarm Optimizer (CSO)
that takes the best features of the CSO and the GWO algorithms and merges them into one efficient approach to estimate the
hyperparameters of the proposed LSTM model. The proposed approach consistently outperformed state-of-the-art single-

timescale forecasting algorithms across all time scales.

1. Introduction

As the world’s population and economy expand, so does the
world’s need for Power, driving up global energy consump-
tion. Meanwhile, as fossil fuels become scarcer and carbon
emission regulations become more stringent, the develop-
ment of renewable power production methods is critical
[1]. Solar energy may be converted into electricity using
the Photovoltaic Effect (PV), one of the emerging technolo-
gies harnessing solar energy. The performance prediction of
the renewable energy system varies concerning the environ-
mental parameters [2]. There are various methods employed
to predict the output power of the PV system, like numerical
and Artificial intelligence. The ecological parameters are
predicted using the numerical weather prediction (NWP),
sky images, geographical location, solar radiation incidence
angle, and the photovoltaic Power’s conversion efficiency.
The obtaining of NWP is relative and it takes a long time
to gather the data; hence this type of prediction is mainly
used for the ultrashort-term [3-5]. Nowadays the machine

learning (ML) algorithm plays a vital role in the prediction
of the renewable energy system. Regression, exponential
smoothing, physical, artificial neural network (ANN), and
support vector machine (SVM) are some of the methodolo-
gies used for renewable energy forecasts [6-8]. Time series
data is adopted for many studies for short-term power pre-
diction. However, the results of the ML are reported as not
satisfactory. The satellite and sky images can be utilized to
predict the performance of the ultrashort time. It is advan-
tageous to apply ANN’s nonlinear processing abilities,
which have produced excellent results and are extensively
used [9]. The persistence and statistical methods are not
suitable for the nonlinear data. ANN [10] and ANFIS [11]
approaches have local minima, complicated structures, and
overfitting issues. There are limitations on the ML algo-
rithm to overcome that many researchers adopt the deep
learning (DL) algorithm [12].

The DL algorithm has recently been used to estimate the
PV system’s performance. Predicting PV power over many
periods is made possible by a new hybrid technique that
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incorporates both the wavelet transform and deep convolu-
tional neural network models [13, 14]. The proposed method
creates the model using just photovoltaic power data, without
considering other elements influencing the Power as input to
the forecasting model. It is difficult to work with incomplete
data sets when using this method since it depends on the full
PV data series breakdown. An additional example [15] dem-
onstrates how the deep learning strategy, based on long
short-term memory (LSTM) networks, can anticipate the
behavior of solar irradiance using data from weather fore-
casts made one day in advance. Physical theory and direct
forecasting may be used to develop an indirect model con-
necting irradiance and PV power. However, many calculat-
ing formulas and complex methods are needed, and the
accuracy of weather forecast data has a major influence on
the prediction results of PV power. Moreover, problems in
predicting solar irradiance will result directly from errors in
hourly day-ahead weather prediction variables made by
meteorological service organizations.

An LSTM time series prediction model with an evolu-
tionary focus on focus is proposed in reference [16]. Time
series characteristics may be given weights in the attention
mechanism based on discrete time intervals by the tradi-
tional LSTM method’s attention dispersion. LSTM forecast-
ing, which is based only on outcomes, can only recover so
much information. A VAE-based LSTM model has shown
a lower testing RMSE value of 5.471 for short-term PV
power output prediction utilizing multiple data sets than
earlier machine learning techniques [17]. An algorithm
based on an LSTM network is described [18] to anticipate
power production the day ahead using data from local mete-
orological organizations. Outperforming BPNN, LR, and
persistence methods by 18.34%, the testing data spanned
half a year.

The proposed method also boasts a 42.9% RMSE skill
advantage over other approaches on a one-year testing data
set. DL has been used to forecast PV power generation on a
daily and weekly basis by G Narvaez et al. According to the
results, the proposed technique is 38% more effective than
other approaches that rely on local adaption phenomena.

In reference. [19, 20], a deep learning model for PV
power forecasting a day in advance is provided using a recur-
rent neural network (RNN) as the hidden layer. This model
operates within the framework of partial daily pattern predic-
tion (PDPP). One drawback of this method is that its predic-
tion model is based on weather types that are not
comparable, so although it may temporarily validate the
influence of 1-step ahead, it cannot be used to generate fore-
casts for longer horizons. The focus of this method is on the
various external elements that might affect the PV array’s
output, rather than on the relevance of feature selection. If
there is too much redundancy in the data or if the variables
are constrained too tightly, the model will be of limited ben-
efit. A few wrinkles remain in the present methods of predict-
ing. The solar power time series is neither fixed, dynamic, nor
periodic, therefore, traditional artificial intelligence systems
cannot assess it. The second, existing input-output prediction
patterns are only explored from a statistical analysis perspec-
tive, ignoring the influence of other linked components, or
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FIGURE 1: Long short-term memory Architecture [23].

they need very high-quality data from numerous related var-
iables, limiting their practical usefulness [21, 22].

The photovoltaic time series exhibits complicated non-
linearity between univariate time steps and key factors over
a variety of prediction horizons. To overcome these obstacles
and provide precise day-ahead hourly PV power forecasts,
this research proposes the following technique: current stud-
ies have shown that LSTM is proficient at extracting tempo-
ral characteristics, and that attention processes are useful for
avoiding distractions. To enhance the accuracy of our fore-
casts, we created a model based on a combination of long-
and short-term temporal neural network predictions. As a
means to enhance the model’s feature selection, the hybrid
algorithm is used.

2. Theoretical Background

2.1. LSTM Deep Learning Model. Recurrent neural networks
are learning mechanisms that use activation functions
applied to inputs and prior network states to calculate new
states in a recursive manner (RNNs). The RNN stands for
its unique ability to approximate nonlinear dynamics by
making significant mappings from input to output
sequences. It differs from conventional feedforward neural
networks with its feedback memory units where the previous
history of network output is stored to perform effective
decision-making. The RNN is trained with the input data
to create the anticipated result using gradient-based tech-
niques throughout the process of prediction. The algorithm’s
cost function aims to minimize the MSE of the network’s
performance by reducing the error between the original
and predicted samples.

The typical RNN vanishing gradient issue is solved by
the LSTM architecture, a recurrent neural network. There
are switches to coordinate when to read, write, and store
data in the gates throughout the training process, which
helps keep data flowing smoothly. The input, output, and
forget gates work together to preserve signal flow across
the many levels of the deep LSTM architecture shown in
Figure 1.
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(5)
where A, is output of single LSTM shell.

2.2. Chicken Swarm Optimization (CSO) Algorithm. The
hierarchical behaviour of chicks inspires swarm optimiza-
tion, and the result is the Chicken Swarm Optimization
Method. Many chickens and chicks are found in every group
in this algorithm; the rooster is the only one in every group.
The swarm’s fitness value determines that the hierarchy of
the swarms is established. When it comes to learning, the
chickens use their prior experiences rather than experimen-
tation. When communicating with the rest of the flock, the
hens make unique noises, with the dominant hen standing
close to the rooster while the submissive chickens stay
further away. They demand a fight if any other members
of the group cross their territory, and they have been known
to take food from other groups’ boundaries. Chickens’ posi-
tions will be determined by their mother’s place in the flock.

2.3. Grey Wolf Optimizer (GWO) Algorithm. To frame the
algorithm, the Grey Wolf Optimizer was designed based
on wolf hunting behavior, hierarchy, and social hunting.
There are four levels of authority in a wolf pack: pioneer
wolves, alpha wolves, omega wolves, and subordinate
wolves. The alpha wolf is the most powerful wolf in the pack
and controls the rest. The alpha wolf’s next-in-command,
the beta wolf, will assist the alpha in making decisions and
organizing the gathering. To round out this group is a group
of wolves known as omega wolves, considered the group’s
most vulnerable members. They are often not allowed to
feed or be overpowered by the other dominant members.
The only wolves who do not fit into either of the different
hierarchies are the delta wolves, which the omega wolves
mostly rule. For social hunting, the whole community is very
well coordinated. The prey encircling process may be math-
ematically stated as follows [23-25]:

3. Materials and Method

3.1. Dataset Description. The experimental results of the
BIPV system are used for this study is taken from the
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FiGUre 3: Dataset of the tested and trained (a) solar radiation (b) wind speed (c) temperature.

reference [26-28]. The site is located in the semiarid cli-
matic condition of the south Indian part, located in the
Tamilnadu in the geographical coordinates of 9.1727°N,
77.8715°E. The grid-connected BIPV system experimental
results are adopted for the prediction of the output power
of the system. The methodology adopted in the study is
presented in Figure 2. In this, the dataset is preprocessed,
and outliers are removed. The various parameter features are
optimized, such as solar radiation, ambient temperature, and
wind velocity are selected. The datasets are further classified
as the testing data and training data. The entire data is segre-
gated into 75% training and 25% testing data, as presented in
Figure 3. During training, we use five-fold cross-validation to
ensure that our results are reliable. Each of the three data
stores—hourly, daily, and weekly—is divided into five dis-
tinct categories. When training, four folds are used, but
when testing, just one is used. Each training fold is used

to teach a single unit, while the testing folds—hourly, daily,
and weekly—are run independently. During the training
phase, each group is prepared to deal with the absence
of data via the more traditional mechanism of resource
sharing. Model output is a linear combination of all LSTM
components.

3.2. Methodology

3.2.1. Proposed Forecasting Method. It is possible to use
single-stage forecasting for a specific period, but it cannot
be used for multitime-scale prediction. Moreover, sharing
multiple time scale data is valid on an excellent forecasting
resource. These are the main reasons why a new technique
for performing multitime scale anticipating models is
offered. BIPV forecasting models are designed to predict
BIPV Power production across a range of time scales using
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FIGURE 4: Architecture of the multitasking.

the available data. Since data used for short-term forecasting
cannot be used for long-term forecasting, each task’s dura-
tion depends on the availability of irradiance data. It is con-
ceivable to meet several forecasting needs in this chapter
using the hourly irradiance data; however, this cannot be
done in a single-stage model due to the lack of data. The
hourly irradiance data used in this study was used to make
two forecast assignments, one for each hour and one for
each day, as shown in Figure 4.

4. Results and Discussion

The proposed Deep learning LSTM prediction model
receives its input data after being modified using min-max
normalisation. This simulation is performed in MATLAB
R2021b on a 2.27GHz Intel Core 2 Duo with 2GB of

RAM. In order to provide real-time experimental data for
the experimental validation, the output power of the build-
ing’s integrated photovoltaic system is monitored over the
course of a year. Conditions are determined by the sun’s
height, ambient air temperature, and wind speed. Global
irradiance on the inclined plane (array plane) (W/m2) is
used to represent the assumed values. The proposed musi-
cale wind speed forecasting has enhanced resource sharing
capabilities and can predict wind speeds across three differ-
ent time scales (hourly, daily, and weekly). A deep learning
LSTM model is offered as the predictor, and its network
parameters, such as the weight and bias coefficients, are opti-
mised with the help of the proposed hybrid CWO-GWO
optimization procedure. When the MSE between observed
and predicted values in the fitness function converges to
10-5, the model is said to have reached convergence. The
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FIGURE 5: (a) hourly output power prediction of the PV system (b) error analysis.

data set is comprised of hourly, daily, and weekly records.
The model’s output layer is made up of a linear combination
of the projected data from each LSTM unit using a softmax
activation function, after the development of three LSTM
models and the training of three distinct dataset repositories.
Through trial and error guided by the thumb rule, we find
that 4, 3, and 5 hidden layers are optimal for each LSTM
layer after 25 iterations. The model is validated at each stage
of the training and testing processes to ensure accuracy.
There will always be the same amount of hidden levels,
and hence hidden neurons. This model does not suffer from
the difficulties of overfitting or underfitting.

By analyzing the model’s reaction to training on an
hourly dataset and then applying the model to daily and
weekly predictions, we can verify that the suggested model
is effective. In Figures 5-7, we see how the hourly, daily,
and weekly forecasts compare to the actual data set. In addi-
tion, displays the results of contrasting the model’s perfor-
mance when used for predicting on a single time scale with
that when used for multiple time scales. If you want hourly,
daily, or weekly forecasts, for example, you’ll need to train
your model on data acquired at those respective frequencies.

4.1. CSO Algorithm. Optimization of the LSTM’s model
parameters by the CSO method is shown in (Figures 5-7).
The classic LSTM model performs worse on the CSO-
LSTM metric. In multitime scale forecasting, the MSE value
for CSO-hourly LSTM is 3% lower than that for traditional
LSTM. When compared to the standard LSTM, this one per-
forms 13 percentage points higher on MAPE and 4 percent-
age points better on DA. CSO-LSTM outperforms the DA by
12%, MAPE by 19%, and DA by 24% when used to hourly
time scale forecasting. The proposed CSO-LSTM has
improved day-ahead forecasting by 7% in MSE, 8% in
MAPE, and 11% in DA. The MSE, MAPE, and DA for pre-
dicting at the individual time scale are currently 9.75%, 21%,

and 24.2%, respectively. Multitime scale forecasts with
MAPE and DA of 13% and 26%, respectively, improve the
MSE for weekly solar radiation projections. There was a
34% increase in MSE scores, a 22% increase in MAPE scores,
and a 12% increase in DA ratings.

4.2. GWO Algorithm. (Figures 5-7) shows how the GWO
optimization strategy improved the LSTM model’s MSE,
MAPE, and DA from the standard LSTM model for multi-
scale hourly forecasting by 25%, 34%, and 15.5%, respec-
tively. Individual estimates of MSE, MAPE, and DA ranged
from 32% to 9% to 5%. The MSE, MAPE, and DA all
improved by more than 25% each day after including multi-
time scale forecasting. On a specific timeline, it constitutes
20.8% of DA, 21.2% of MAPE, and 29.3% of MSE. Com-
pared to the classic model, the MSE for weekly time scale
forecasting is 14.37 percent better, the MAPE is 30.79 per-
cent, and the DA is 29.89 percent. Specifically, 33.2% of
MSE, 13.2% of MAPE, and 0% of DA may be attributed to
improved performance on the individual time scale.

4.3. Hybrid CSO-GWO Algorithm. (Figures 5-7) shows a
considerable increase in performance metrics when the
CSO and GWO LSTM models are combined. The multiscale
model predicted 22% higher MSE, 33% better MAPE, and
30% better DA for hourly time scale forecasting. Individual
forecasting had similar results, with an improved MSE of
37.7%, improved MAPE of 8%, and an improved DA of
14%. MSE: 40 improved MSE, 33.6% MAPE and 39.4%
DA compared to traditional LSTM for daily forecasting. It
has been shown that weekly forecasting improves metrics
for individual forecasting by 37% better MSE, 26% better
MAPE, and 29% better DAF than monthly forecasting. For
predicting on a weekly time frame, the MSE is 26% better
than typical LSTM, while the MAPE and DA are both higher
by 16% and 47%, respectively. It improves upon the typical
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LSTM model for predicting at specific time scales by 39.71%
in MSE, 26.1% in MAPE, and 23% in DA. After training the
model on an hourly dataset, we verify its performance by
looking at its response for daily and weekly prediction.
Figures 5-7 show the mapping between the actual dataset
and the anticipated results at the hourly, daily, and weekly
levels. Table 1 also contrasts the model’s performance under
the proposed multitime scale forecasting with the model’s

performance under the assessment for individual time scale
forecasting. In tests conducted on the ITSF training dataset,
the suggested multitime scale model proved to be superior to
traditional single-time-scale forecasting methods. It also
demonstrated the potential for a significant improvement
in the accuracy of predictions over many time scales when
a training dataset is used. Compared to the LSTM approach
and the LSTM model altered by the CSO and GWO
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TaBLE 1: Performance metrics of MTSF and ITSF.
Horizon (MTSF) ITSF
MSE MAPE DA MSE MAPE DA

CSO

Hourly 0.18261 0.20808 0.24048 0.23049 0.11943 0.11205

Daily 0.31734 0.27288 0.28404 0.22059 0.11025 0.10215

Weekly 0.29304 0.36198 0.29115 0.09189 0.2115 0.21168
GWO

Hourly 0.00459 0.09378 0.13518 0.05148 0.10467 0.08388

Daily 0.05544 0.22689 0.15237 0.05769 0.09675 0.12132

Weekly 0.18171 0.21978 0.24714 0.08289 0.0927 0.09468

CSO-GWO

Hourly 0.0036 0.08 0.11 0.04148 0.09467 0.07388

Daily 0.05544 0.22689 0.1227 0.045 0.085 0.11

Weekly 0.151 0.19 0.22 0.071 0.08 0.084

TABLE 2: Statistical analysis of the proposed model.

istical
Model under study Statistical score

r R2
GWO-LSTM 0.857 0.82
CSO-LSTM 0.92 0.9
Hybrid CSO-GWO LSTM 0.989 0.96

independently, the performance of the recommended hybrid
CSO-GWO based LSTM model has been better.

R2 and r are both quite close to 1, which indicates high
levels of explainability. After that, we can see whether our
suggested model is statistically enough for predicting solar
irradiance. Based on the statistical score acquired, it is evi-
dent that the presented suggested hybrid CSO-GWO-
LSTM model is not impacted by the stochastic components
of the algorithm, and it is deemed to be statistically fit, as
shown in Table 2.

The suggested model used the existing data set to handle
a number of different time-scale forecasting situations. Cur-
rent traditional models in the body of literature are not
suited for making long-term forecasts using just short-term
data. No attempt at seasonally-aware forecasting has been
done in this model. According to the suggested solar and
wind speed forecasting study, further research is needed to
improve the accuracy of predictions throughout several
seasons.

5. Conclusion

Forecasting is an essential part of any grid-connected solar
system. In this paper, we explore the complex nonlinear
dynamics of solar power and provide a comprehensive anal-
ysis of the underlying mechanisms. For efficient grid man-
agement, it is necessary to develop BIPV forecasting
algorithms for various horizons, such as the next hour, the
next day, and the next week. But a model developed for a
certain time scale can only be used to enhance performance

at that time scale; it cannot be used to generate predictions at
other time scales. In this example, we show how the multi-
task learning algorithm may be used to develop a multitime
scale model for solar BIPV prediction. This demonstrates
efficient resource allocation across several activities. To test
the eflicacy of the proposed multitask learning strategy,
LSTM neural networks are used. To estimate the hyperpara-
meters of the proposed LSTM model, we used an improved
version of the Chicken Swarm Optimizer (CSO) that com-
bines the best parts of the CSO and the GWO algorithms
into a single, powerful method. Across all time scales, the
suggested method beat the best existing single-timescale
forecasting algorithms.
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