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On-grid predictive energy management using machine learning is presented in this paper. A photovoltaic array considered in this
study is one of the kinds of a renewable sources of energy, where the battery bank acts as a technology for energy storage, in order
to optimise energy exchange with the utility grid using logistic regression. The model of prediction can accurately estimate
photovoltaic energy output and load one step ahead using a training technique. The optimization problem is constrained by
the maximum amount of CO, produced and the maximum amount of charge stored in a battery bank. The proposed model is
tested on dynamic electricity costs. Compared with existing energy systems, the proposed strategy and prediction model can

handle more than half of the annual load need.

1. Introduction

Due to the lower installation and operating expenses associated
with them, HES (hybrid energy systems) are becoming increas-
ingly popular among residential consumers. The household
energy system (HES) is made up of renewable sources of energy
including photovoltaic (PV) cells, microturbines, wind tur-
bines, and geothermal. When utilised in combination with
the HES, there are a variety of energy storage systems (ESS)
available, such as the one seen in Figure 1(a), that can be used
to store extra energy.

In the HESS, we are using several types like polycrystal-
line cells, monocrystalline cells, monocrystalline PERF, and
N-Type cells which are described clearly in Figure 1(b) along
with its coverage range values. The PV and battery-based

high-efficiency solar energy systems (HES) are the most com-
monly used renewable energy options because of its simpler
installation, and it requires initial capital expenditure. As long
as the utility grid is connected to the PV-battery HES in grid
mode, the surplus energy generated will be able to be traded
with the utility grid. Hybrid energy grid systems including PV
systems, not only help households decrease their environmental
impact, but they also help them save money on their monthly
energy bills. It is possible to increase the efficiency of these sys-
tems even further by applying energy management strategies.
Model predictive control (MPC) models are a kind of the
most frequently utilised in GCHES energy management sys-
tems, and they are also one of the most complex. It is typical
practice to use MPC for economic optimization in the HES
since it combines feedback mechanisms to account for
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FIGURE 1: (a) ESS. (b) Types of HESS.

model uncertainty and employs forecasting algorithms to
account for future demand and power generation.

The inefhiciency of grid-connected HES energy trading,
as a result of the inefficiency of HES without the need of
EMS and inefficient battery storage in banks, was the impe-
tus for this investigation. Unwanted energy storage can be
reduced through more frequent trading of surplus electricity
with the utility grid, which will lower the cost of energy. This
is an important goal for this research because it will result in
less energy being stored than needed.

2. Related Works

The authors in [1] describe a number of characteristics of
EMS in MPC and microgrids. In a recent study on microgrid
MPC, the topic of economic considerations has been
explored in depth. An MPC strategy with various targets,
such as that described in [2], can be used to enhance solar
grid-connected HES. The study was aimed at managing the

multiobjective criterion through linearization of the problem
and proving real time traffic into the control unit as its real
time input. According to [3], an energy management system
has been designed that takes into consideration grid power
purchases, electricity bills, and the quality of the power.
According to the findings of this study, it is possible to
reduce electricity expenditures by 2-6.5%. [4] describes the
implementation of a new multiobjective EMS system for a
microgrid that makes use of the grasshopper optimization
method. This method reduced fuel consumption and CO,
emissions by 92.4% and 92.3%, respectively, when compared
to baseline levels.

Energy management of high-efficiency solar PV, wind
turbines, diesel generators, microturbines, and fuel cell sys-
tems is presented in [5] in order to achieve optimal PV, die-
sel generator, wind turbine, fuel cell, and microturbine
capacities that consider the major objective fuel costs, energy
costs, charging cost, and discharging cost and greenhouse
gas penalties. When this technique was used instead of a
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normal one, the CO, emissions from a single HES were
reduced by 51.60% compared to the standard technique.

EMS for microgrids has also progressed in recent years
[6-8], with more sophisticated systems now available. The
authors of [9] propose that a solar PV system be used in con-
junction with an autonomous scheduling system to assist in
reducing total electricity use. In addition [7], it has been dem-
onstrated that an energy management technique with supply-
demand is superior to a supply-side management strategy
when used in off-grid HES in residential construction.

In order to deal with the HES energy management that
consists of PV, battery, wind turbine generator, and fuel cell
using a hybrid squirrel-whale, a method is designed in [10].
The authors in [11] investigate a number of different energy
management optimization methodologies. The particle swarm
optimization, genetic algorithm, fuzzy logic, and differential
evolution are just a few examples of algorithms that take their
cues from the world of nature and apply them to computer
programmes. Researchers use genetic algorithms and particle
swarm optimization methodologies to find the best potential
responses to their questions. In order to function successfully
and efficiently, this and other PEMS systems rely on precise
projections of future demand and load [12-15]. In order to
forecast future PV power generation, several PV power fore-
casting systems employ advanced machine learning algo-
rithms. A novel LSTM-RNN model is introduced in [16] for
solving typical machine learning difficulties such as overfitting
and generalisation.

As demonstrated by a study of several experiments
described in [17], artificial neural networks are well-suited
for forecasting solar energy generation data. The forecasting
models developed by [17-19] require a large quantity of prior
data in order to provide good prediction accuracy; however, it
has been demonstrated that causal and dilated forms of neural
network tend to outperform machine learning methods with
limited historical data in a variety of fields [20-24].

3. Proposed Method

A form of logistic regression is used to anticipate energy
generation and load demand one step ahead of time in order
to reduce uncertainty. Because of the intrinsic feature extrac-
tion capabilities of logistic regression, time-series prediction
is an excellent fit for logistic regression. It is possible to learn
about local time series patterns using parallel processing
methodologies, and LR integrates information from nearby
steps to provide a final result. LR allows smaller-size kernel
filters to catch data that exceeds the length of the kernel
specified in the specification. As a result, the number of fil-
ters is reduced, which allows for a reduction in the total
number of trainable parameters. Aside from that, using
residual architecture allows data to flow from one convolu-
tional phase to the next that reduces the problem of vanish-
ing gradients via training process.

Because our data is collected at 1-hour intervals, we adjust
the number of filters used in this study to match the hours
and kernel size used. Because at each residual block, steady rise
in dilation of different local and worldwide trends is learned at
each convolutional phase, resulting in different local and global

trends at each convolutional step. The proposed method of the
predictive model is described and shown clearly in Figure 2.

3.1. Grid-PV-Battery System. A residential building with
photovoltaic (PV) panels and a battery bank (lead-acid) for
energy storage is investigated in this study as a potential
source of renewable energy. This system can be connected
to the utility grid, allowing for the exchange of energy
between the two systems. A predictive EMS (PEMS) control-
ler has been installed in order to connect the battery bank
and PV generation system. An electrical circuit breaker is
used as an intermediary between the controller and the util-
ity grid in order for energy to be exchanged between the cir-
cuit breakers are crucial safety devices because they may be
used to manually switch between the grid and the PEMS
controller, which is an important safety feature. The PEMS
controller regulates the operation of the battery bank, PV
system, and utility grid to meet peak demand requirements.
This chip also regulates the battery bank (charging/dischar-
ging) and maximum limit of SoC in the PV system. The sys-
tem design is depicted in Figure 3.

For the PV-battery HES energy supply and demand
model, the following mathematical equations can be used
to represent the model:

Pbt_r )
pr=t (st(P?ml—ff )), (1)
1000

Prxcl, P<o,
Cf’={f Co (2)

PixC;, P;>0,

where
P/(kW): Residual battery power at time t,
maxS,; Maximum limit of PEMS controller.
CZ ($): Electricity cost from grid,
C/ : Positive electricity cost and,
C,%: Negative electricity cost.

3.2. Logistic Regression Model. Logistic regression, like ordi-
nary least-squares (OLS) regression, is a technique for mak-
ing predictions. When employing logistic regression, it is
only possible to predict a binary outcome. In this case, the
error variance is not normally distributed, which is contrary
to the OLS assumption. Therefore, they have a greater likeli-
hood of being spread in an unplanned manner. In order to
obtain the linear regression equation from the logistic distri-
bution, we must first conduct an algebraic conversion on the
logistic distribution.

Y=a+bX+e. (3)

Because logistic regression does not produce a preprinted
result, it is not commonly used. Furthermore, the unstandard-
ized result does not have the same obvious meaning as the
OLS regression result, which further complicates the picture
even further. A further limitation of OLS and logistic regres-
sion is that there is no R? to assess the overall fit of the model.
An alternative to employing the logistic regression model is to
conduct a chi-square test to see how well the data matches the
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model. A convoluted formula must be used to go back and
forth from the logistic equation to an OLS-type equation in
logistic regression, and this formula must be used in both
directions. In logistic formulas, the probability that Y =1
occurs is denoted by the letter P. The probability that Y is
equal to zero is equal to 1 — P.

In <L> =a+ bX.
1-P

The regression line equation a + bX is derived from the In
sign, which signifies a natural logarithm and is represented by
the letters a + bX.

The regression equation can also be used to get the value
of P. Thus, only the regression quantity is known, and the
study can calculate theoretically the probability that Y =1
for a given number of points in the regression.

(4)

exp (a+bX) M

P= - :
l1+exp (a+bx) 1+ eottx

(5)

where
exp: Exponent function, e.

3.2.1. Multiple Logistic Regression. Logistic regression, like
ordinary least-squares regression, can be used with more
than one predictor in the same way. There are a variety of
alternatives for analysing the data, much like there are for
regression. There are several ways to input variables: sequen-
tially in a stepwise fashion, continuously, or in blocks. The
results are interpreted through the use of OLS regression.
The slopes and odds ratios of the dependent variable repre-
sent the predicted value obtained through a dependent vari-
able. A slope obtained mainly represents the changes made
at unit change in underlying predictor when the effect of
the other variable is held constant. To examine whether or
not the owner previous business ownership has an impact
on the prediction of widget business failure. Using multiple
logistic regression, it is possible to examine whether or not
years of experience and previous business ownership are
predictive of success or failure in a new firm.

4. Results and Discussions

The study presents a description of the simulation findings
obtained for the proposed PV-battery EMS multiobjective
predictive control system. The data that will be used in the
simulation is discussed at the beginning of the simulation.
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FIGURE 4: Autocorrelation output.

Following that is the prediction model performance on the
displayed test dataset. Finally, dynamic electricity pricing is
provided in order to evaluate the success of the proposed
methodology.

In this section, the accuracy of the chained prediction
model consisting of the LR model is evaluated in light of
the hourly statistics and PV energy generation. The 1000
iterations of the prediction model, which is similar to the
model that was used to predict the load and PV output data-
sets, were carried out in the same way. Because the stochastic
optimization approach is utilised to train both the LR
models, both models have dropout layers, as pointed out
by Adam, and the autocorrelation output is given in
Figure 4. It is necessary to run the model through multiple
iterations in order to make accurate predictions. A single
run of LR is performed due to the deterministic nature of
the model output results.

For comparison, the normalised absolute error for each
model on daily prediction is depicted in Figure 4. As a result,
when converting hourly mean absolute errors to one-day
spans, a 24-hour average is taken into consideration.

In Figure 4, the neat forecast models are displayed first
on the residential load dataset. Our LR model, on average,
has the lowest prediction error of all the models tested.
The stochastic behaviour, on the other hand, is easily visible,
as they exhibit some randomness in their prediction errors,
whereas the prediction errors of nave and SVM regression
are more deterministic for the same datasets.

The figure shows the PV energy production dataset,
which is stochastic. Because of the random PV energy gener-
ation dataset, the model is influenced by a range of charac-
teristics, such as solar irradiance and ambient temperature,
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FIGURE 5: Standard deviation of forecasting.

this is the case. Because PV energy generation data contains
a high degree of temporal variability, stochastic prediction
using LR is more effective at learning this information.

For quite some time, researchers have been working on
novel control and optimization approaches for the efficient
management of energy in high-efficiency systems. This sys-
tem, although simple to install, is focused on making the
most of the power provided by the PV array rather than tak-
ing advantage of the full range of GCHES features and capa-
bilities. This results as in Figures 5 and 6 in control
behaviour that is comparable to that of a stand-alone HES.

Even though the control mechanism itself was straight-
forward, it was necessary to collect a historical data and it
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FIGURE 6: Mean and variance of forecasting.

can computationally run demanding the optimization pro-
cedure in order to optimise decision trees. In addition, if
the cost of electricity and/or the pattern of solar irradiation
change, the control model will need to be revised and
updated. When compared with traditional control methods,
such as flowcharts and trees, predictive control systems use
predicted HES variables to update their respective EMS con-
trol parameters, saving time and money.

Because of the sliding window training strategy, our pre-
diction model can adjust the output uncertainties and load
pattern even in the absence of large historical data. As a
result, our proposed prediction model is capable of identify-
ing high-quality solutions to optimise objectives while
requiring no preprocessing or data to be used in its develop-
ment. The implementation complexity is further lowered by
the use of only one control parameter, the maximum SoC
limit, which reduces the number of steps required. The
authors also provide a hierarchical control system for gov-
erning information flows and preventing the prediction
model from being trained at night, thereby reducing the pro-
cessing load.

5. Conclusions

This paper discusses LR-based on-grid predictive energy
management for distributed energy resources. When it
comes to renewable energy sources, a solar array like the
one addressed in this study is one of the types in which the
battery bank serves as a technology for energy storage. It is
necessary to use LR in order to optimise energy exchange
with the utility grid. By employing a training technique,
the prediction model is capable of properly estimating pho-
tovoltaic energy output and load one step ahead of time. The

maximum amount of CO, that can be produced as well as
the maximum amount of charge that can be stored in a bat-
tery bank serve as the constraints on the optimization issue.
The proposed approach is put through its paces on a
dynamic power cost basis. When compared to existing
energy systems, the proposed approach and prediction
model can handle more than half of the total yearly load
requirement, which is a significant improvement. Achieving
the lowest cost of electricity is the economic goal, while low-
ering emissions is the environmental goal and reaching the
greatest possible charge state for battery bank is the technical
goal. Sliding window prediction is used to evaluate the per-
formance of the LR model over a 1000-run period, utilising
data from PV energy generation and load demand. In future
work, the proposed method can improvise the performance,
accuracy, and the other metrics using several deep learning
mechanisms.
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