
Research Article
Nonlinear Observation and Control of Series Active Power
Filters in the Presence of Voltage Sags

Younes Abouelmahjoub ,1 Said El Beid ,2 Hassan Abouobaida ,1

and Abdelkhalek Chellakhi 1

1LabSIPE, National School of Applied Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
2CISIEV Team, Cadi Ayyad University, Marrakech 40160, Morocco

Correspondence should be addressed to Younes Abouelmahjoub; abouelmahjoub.y@ucd.ac.ma

Received 2 August 2021; Revised 31 December 2021; Accepted 8 January 2022; Published 8 February 2022

Academic Editor: Mark van Der Auweraer

Copyright © 2022 Younes Abouelmahjoub et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

This study addresses the problem of controlling series active power filters for voltage sag compensation. Indeed, we can control
this kind of filter to generate a voltage series that compensates the grid voltage sag in order to protect the sensitive loads
against this perturbation. This study is aimed at seeking a control strategy that meets the main control objective, which is the
compensation of grid voltage sags and this by considering the following technical constraints: (i) the nonlinearity of the system
dynamics, (ii) the high dimension of the system model, and (iii) the inaccessibility of some system variables to measurements.
To meet the main control objective, we propose a nonlinear controller that is designed based on the system nonlinear model,
using the backstepping technique. This controller involves a nonlinear regulator and a grid observer. The former copes with
the compensation issue. The observer provides online the grid voltage estimations. In addition to a theoretical analysis of the
control system, the performances of the proposed controller are evaluated by simulation using MATLAB/Simulink.

1. Introduction

The voltage wave of the power grid can be affected by voltage
sag, which is a sudden decrease in the magnitude of the elec-
trical voltage below a lower threshold of the nominal range.
It is characterized by its duration which can range from
10ms to 3min and by its depth between 10% and 90% of
the nominal voltage. The consequences of voltage sags can
be extremely costly (including the incorrect operation of
some sensitive loads, disruption or stoppage of production,
loss of computer data, stalling of motors, and extinction of
lamps). Series active power filters represent an appropriate
solution to protect the sensitive loads (such as switching
power supplies, motor drivers, and medical equipment)
against voltage sags [1, 2].

In this study, we are interested in single-phase half-
bridge series active power filters connected between the

power grid and the sensitive loads (e.g., consumer electron-
ics, variable frequency motor drives, computer numerical
control equipment, and automated systems and processes).
Half-bridge topology of the inverter [3, 4] enjoys several fea-
tures compared to full-bridge topology [5–8]. The main fea-
tures are the following: (i) a reduced number of power
electronic components which entails lower cost, (ii) a
reduced number of switches which results in less control
functions increasing system reliability, and (iii) a reduced
switching power loss of the inverter. In the literature, several
control strategies have been proposed for series active power
filters (e.g., [3, 6–14]) to improve the voltage quality at ter-
minals of sensitive loads. Among them, we find the linear
controls [6–9]. With these control approaches in [6–9], the
optimal performances are not guaranteed in a wide variation
range because of the presence of controlled system nonline-
arity. To overcome this handicap, nonlinear controls based
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on accurate nonlinear models of the controlled system have
been proposed, e.g., sliding mode control for the series active
power filter in [3, 10] and backstepping control in [11]; in
[12], a passivity control is applied for the series active power
filter, and reference [13] introduced a modified recursive
least square (RLS) algorithm to cope with the multioutput
systems (MO) and applied this MO-RLS to the symmetrical
component estimation. Consequently, the proposed control
methodology combines the advantages of both the RLS algo-
rithm and the symmetrical component method to come out
with a flexible algorithm for sag compensation. In [14], the
control strategy of the series active power filter is achieved
through the synchronous reference frame theory for the
generation of the reference voltage which is compared
with constant voltage for pulse generation using hysteresis
band PWM.

In light of the precedent description, firstly, we note that
the researchers often use a control strategy based on the
instantaneous power method (e.g. [1, 15]) to cope with the
compensation problem. On the other hand, all previous con-
trollers (e.g. [3, 6–12]) are simple because they are seen to be
based on the assumption that all system variables are acces-
sible to measurements, including the grid voltage. This
assumption is not satisfied in practical applications. More-
over, another limitation in the previous works is that no the-
oretical analysis of the stability in closed-loop system is
established.

Compared to works [2, 10–13], which also presented a
nonlinear controller for series active power filters, the pres-
ent nonlinear controller enjoys several appealing features
as follows:

(1) The present controller is developed for the half-
bridge converter which features fewer switches and
a smaller number of gate drivers, compared to the
full-bridge converter used in [2, 10–13]. As a result,
the present nonlinear controller is simpler to imple-
ment because it involves fewer control signals to gen-
erate and apply

(2) The controller design proposed in [2, 10–13] is based
on the assumption that the grid impedance was sup-
posed to be zero [2, 10–13] which entails an approx-
imate system model used in the control design.
Furthermore, all electrical signals (voltage and cur-
rent), including the grid voltage, were assumed to
be accessible to measurements in [2, 10–12], but
not the case here. Also, the present controller is sim-
pler because it does not necessitate sensors for the
measurement of the grid voltage

In the present paper, we study the problem of controlling
a single-phase half-bridge series active power filter operating
in the presence of sensitive loads. This study consists of con-
trolling the series active power filter to compensate for grid
voltage sags while taking into account the following techni-
cal constraints: (i) the nonlinearity of the system dynamics,
(ii) the high dimension of the system model, and (iii) the
inaccessibility of some system variables to measurements.

To carry out this study, we seek a new control strategy while
meeting the following requirements:

(i) Development of a more accurate model for the
series active power filter by considering the param-
eters of the grid impedance

(ii) Observation of some system variables which are
supposed to be not accessible to measurements

(iii) Satisfactory compensation of the power grid voltage
sags in order to protect the sensitive load

To achieve the above requirements, we build up a new
nonlinear controller based on a more accurate system model
to meet the voltage sag compensation. A major feature of the
new controller is that there is no subject to the precedent
limitations, i.e., the grid internal impedance is not neglected,
and not all system internal states are assumed to be accessi-
ble to measurements. To this end, this controller includes a
nonlinear observer providing online estimates of the grid
voltage based only on the grid current measurements. It also
includes a nonlinear voltage regulator designed using the
backstepping technique to compensate for the voltage sags.
By using various tools such as Lyapunov stability and aver-
aging theory, a rigorous theoretical analysis on the stability
of the control system in a closed loop is developed to show
that the proposed controller achieves the main objective
for which it was designed. Several simulation results in
MATLAB/Simulink completely show additional robustness
features and also show the supremacy of the proposed non-
linear controller, over linear model-based controllers.

A prefatory version of this paper has been presented at
the conference [4]. This journal paper differs from the con-
ference version [4] in which (i) it proposes a nonlinear con-
troller (whereas the conference paper assumed all signals to
be accessible to measurements); accordingly, the present
controller (includes a nonlinear observer) differs from the
one (no observer) in the conference paper; (ii) it includes
all proofs whereas these were incomplete in the conference
paper [4]; and (iii) it contains more simulation results.

The paper is organized as follows: the system modeling is
presented in Section 2, the nonlinear controller design
including the nonlinear observer is described in Section 3,
the stability analysis of the control system is described in
Section 4, and the performances of the nonlinear controller
including the grid observer are checked by simulation in
Section 5.

2. System Modeling

The topology of the series active power filter (SAPF) under
study is shown in Figure 1. It is composed of (i) a half-
bridge converter involving two switches based on an IGBT
diode, (ii) two identical capacitors Cd placed at the DC bus
of the converter, (iii) filtering impedance (Rf , Lf , Cf ), and
(iv) a current transformer.

The active power filter is connected in series with the
perturbed power grid. This grid supplies a sensitive load.
The role of this filter is the compensation of grid voltage
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perturbation in order to protect the sensitive load. The inter-
nal model of the power grid includes a voltage vn in series
with an internal impedance formed by a resistor Rn and an
inductor Ln. Notice that the power grid voltage vn is inacces-
sible to measurements; it is given by

vn tð Þ = En sin ωntð Þ: ð1Þ

The half-bridge converter operates under the technique
of pulse width modulation (PWM) (e.g., [4, 16–18]).

By applying Kirchhoff’s laws to the system of Figure 1,
the instantaneous model of the half-bridge series active
power filter is as follows:

Ln
din
dt

+ Rnin = vn − vPCC, ð2aÞ

Lf

dif
dt

+ Rf if = vAB − vp, ð2bÞ

Cf

dvp
dt

= if − is, ð2cÞ

Cd
dv1
dt

= i1, ð2dÞ

Cd
dv2
dt

= i2: ð2eÞ

The following quantities vAB, i1, i2, vp, is, and vPCC
undergo the following equations:

vAB =
1 + μsð Þv1

2 −
1 − μsð Þv2

2 , ð3aÞ

i1 = −
1 + μsð Þif

2 , ð3bÞ

i2 =
1 + μsð Þif

2 , ð3cÞ

vp =
vs
ms

, ð3dÞ

is = −msin, ð3eÞ

vPCC = vs + vL, ð3fÞ
where the switching function μs is defined as follows:

μs =
+1 if S1 is ON and S2 isOFF
−1 if S1 is OFF and S2 isON

(
ð4Þ

Substituting (3a)–(3f) in (2a)–(2e), we get the following
instantaneous model:

Ln
din
dt

+ Rnin = vn − vs − vL, ð5aÞ

Lf

dif
dt

+ Rf if = μs
vo
2 + vd

2 −
vs
ms

, ð5bÞ

Cf
dvs
dt

=msif +m2
s in, ð5cÞ

Cd
dvo
dt

= −μs if , ð5dÞ

Cd
dvd
dt

= −if , ð5eÞ

with vo = v1 + v2 and vd = v1 − v2.
Equation (5a) is completed by the model of the voltage

vnðtÞ of the electrical grid given by

d2vn
dt2

= −ω2
nvn: ð5fÞ

The above-obtained model (5a)–(5f) cannot be used to
design a controller to pilot the system under study due to
the binary nature of the control input μs. To overcome this
difficulty, the different signals of the instantaneous model
are replaced by their average values over the cutting period
[4, 17, 18]. Doing so, we obtain the following average model,
where the notations are defined in Table 1:

_x1 =
1
Ln

−Rnx1 + x2 − x4 − vLð Þ, ð6aÞ

A

B

Cd

Cd

S1

S2

LfRf

v1

v2

vpcc

i1

i2

Loin

if

Rn
Ln

vAB

vn

is

Sensitive
load

Cf

vp

vs

vL

us

Figure 1: Single-phase half-bridge series active power filter operating with a sensitive load.
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_x2 = x3, ð6bÞ
_x3 = −ω2

n x2, ð6cÞ

_x4 =
1
Cf

m2
s x1 +msx5

� �
, ð6dÞ

_x5 =
1
Lf

−
x4
ms

− Rf x5 + us
x6
2 + x7

2

� �
, ð6eÞ

_x6 = −
us x5
Cd

, ð6fÞ

_x7 = −
x5
Cd

: ð6gÞ

The average models (6a)–(6g) are nonlinear and their
control input is us, which represents the average value of
the binary signal μs, which is continuously varying between
−1 and 1.

3. Control Strategy

We seek the achievement of the following main objective:

(i) Compensation of the grid voltage sags in order to
protect the sensitive load

A significant and outstanding contribution of this pres-
ent study is the design of a nonlinear controller for the
single-phase series active power filter by adopting the half-
bridge topology and taking into account in the present study
that the grid impedance is not supposed to be negligible,
unlike previous works. Indeed, in most previous works
(e.g., [2, 3, 9–11, 13, 14]), the grid internal impedance is sup-
posed to be zero. In others (e.g., [5–8, 15, 19]), the grid inter-
nal impedance is not supposed to be zero but all electrical
quantities are accessible to measurements, including the grid
voltage. Presently, the grid impedance (Rn, Ln) is not zero.
This entails that the grid voltage vn cannot be assumed to

be accessible to measurements. This above difficulty is coped
with by augmenting the nonlinear controller with a nonlin-
ear observer providing online estimates of the grid voltage
based only on the measurements of the grid current in.
The proposed nonlinear controller is described in Figure 2;
it forces the series active power filter to compensate for the
grid voltage sags.

3.1. Grid Observer Design. In practice, only the voltage vPCC
at PCC should be assumed to be accessible to measurements
(see Figure 1). As a result, the power grid voltage vn is inac-
cessible to measurements. To surmount this difficulty, we
will propose a high-gain observer as in [20] to estimate the
state variables not accessible to measurements x2 and x3.
To this end, we use the following state representation
obtained from the model (6a)–(6c) of the power grid:

_xn = Axn + B,
y = C xn,

ð7aÞ

with

xn =
x1

x2

x3

0
BB@

1
CCA,

A =
−
Rn

Ln

1
Ln

0

0 0 1
0 −ω2

n 0

0
BBB@

1
CCCA,

B =
−
x4
Ln

−
vL
Ln

0
0

0
BBB@

1
CCCA,

C =
1
0
0

0
BB@

1
CCA

T

,

ð8Þ

where xn is the state vector, y denotes the system output,
and the matrices A, B, and C are known; notice that the
pair (A, C) is observable.

Based on the measurements of the grid current, the high-
gain observer proposed is as follows:

_̂xn = A x̂n + B + K y − C x̂nð Þ, ð9aÞ

ŷ = C x̂n, ð9bÞ

ðk1 k2 k3ÞT is the gain vector.

Table 1: State variables.

State variables and
parameters

Definition Observation

x1
Averaged

in
Accessible to
measurements

x2
Averaged

vn
Not accessible to
measurements

x3
Averaged

_vn
Not accessible to
measurements

x4
Averaged

vs
Accessible to
measurements

x5
Averaged

if
Accessible to
measurements

x6
Averaged

vo
Accessible to
measurements

x7
Averaged

vd
Accessible to
measurements
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To analyze the convergence of the above observer (9a)
and (9b), we introduce the following observation error:

~xn = xn − x̂n: ð10Þ

It is easily checked, by using expressions (9a) and (9b)
and (10), that the dynamics of observation error (10) is given
as follows:

_~xn = A − KCð Þ~xn, ð11Þ

with

Ao = A − KCð Þ =
−

Rn

Ln
+ k1

� � 1
Ln

0

−k2 0 1
−k3 −ω2

n 0

0
BBBB@

1
CCCCA: ð12Þ

The gain vector K = k1 k2 k3ð ÞT is chosen so that the
matrixAo = A − KC is Hurwitz. It is possible to check by apply-
ing the Routh-Hurwitz that the matrix Ao = A − KC is Hurwitz
if the gain vector components satisfy the following conditions:

Rn

Ln
+ k1 > 0, ð13Þ

Rn

Ln
+ k1 >

k3
k2

, ð14Þ

Rn

Ln
+ k1 > −

k3
Lnω2

n
: ð15Þ

To analyze the convergence properties of the above
observer (9a) and (9b), we consider the following Lyapunov
function candidate associated with the observation error
equation (11):

Vobs =
1
2 ~x

T
n P~xn: ð16Þ

The stability results of observer are summarized in the next
proposition.

Proposition 1. Under condition (13), linear system (11) is
globally exponentially stable with respect to Lyapunov func-
tion (16). Specifically, the following equality holds:

_Vobs = −
1
2
~xTn~xn: ð17Þ

Doing so, observation error (10) converges exponentially
to zero. The estimate x̂n converges exponentially to its true
value xn. The proof of this proposition is accomplished later.

3.2. Voltage Loop Regulator Design. The control objective of
the series active power filter under study is as follows: to pro-
tect the sensitive load from the grid voltage sags, the wave-
form of load voltage vL should be sinusoidal as follows:

v∗L = En sin ωntð Þ: ð18Þ

To achieve the above objective, the control requires that
the voltage x4 generated by the series active power filter
should follow the best as possible its reference x∗4 defined by

x∗4 = x̂2 − v∗L : ð19Þ

To force the voltage x4 generated by the series active
power filter to track its reference x∗4 , a nonlinear regulator
is synthesized by applying the backstepping method (e.g.,
[18, 21]), which is carried in two steps.

Step 1. Stabilization of the subsystem (e1, ~xn).

Power grid 

Active power filter 
vL

+

in

vn

x4
⁎

vL
⁎

+

Voltage loop 

Grid
observer

us

(Rn, Ln)
Sensitive load 

–

–

X4

X2
^

Figure 2: Grid observer and nonlinear controller associated to the series active power filter.
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To cope with the compensation issue, we introduce the
tracking error on the filter voltage x4:

e1 = x4 − x∗4 : ð20Þ

Using (6d), the dynamics of the tracking error e1 is
given by

_e1 =
1
Cf

msx5 +m2
s x1

� �
− _x∗4 : ð21Þ

Also using (19) and (9a), the dynamics of the filter
voltage reference x∗4 is demonstrated as follows:

_x∗4 = x̂3 + k2~x1ð Þ − _v∗L : ð22Þ

The stabilization problem of the error system described
by (11) and (21) is solved by considering the following
Lyapunov function candidate:

V1 = Vsys +Vobs =
1
2 e

2
1 +

1
2 ~x

T
n P~xn: ð23Þ

The time derivative of (23) is given by

_V1 = e1 _e1 +
1
2

_~x
T
nP~xn + ~xTnP _~xn

� �
= e1 _e1 +

1
2 ~x

T
n AT

o P + PAo

� �
~xn,

ð24Þ

where P is a symmetric defined positive matrix; it is cho-
sen to satisfy the Lyapunov equation: AT

o P + PAo = −I; this
choice implies that the dynamics of the Lyapunov function
candidate (24) becomes:

_V1 = e1 _e1 −
1
2 ~x

T
n~xn: ð25Þ

Also, replacing (6d) and (22) in (25), we obtain the
following dynamics of the Lyapunov function candidate:

_V1 = e1
msx5
Cf

+ m2
s x1
Cf

− x̂3 − k2~x1 + _v∗L

 !
−
1
2 ~x

T
n~xn: ð26Þ

If we consider that msx5/Cf is the virtual control, its
desired value σ is defined by

σ = −c1e1 −
m2

s x1
Cf

+ x̂3 + k2~x1 − _v∗L : ð27Þ

σ is namely a suitable stabilizing function and c1 is a
positive design parameter.

In fact, with this choice in (27), equation (26) is
reduced to

_V1 = −c1e
2
1 −

1
2 ~x

T
n~xn: ð28Þ

As msx5/Cf is not the actual control variable, a new

variable error e2 between the virtual control and its desired
value σ is defined as follows:

e2 =
msx5
Cf

− σ: ð29Þ

By deferring (29) in (21), while using (27), it comes

_e1 = −c1e1 + e2: ð30Þ

Also, the derivative of Lyapunov function candidate
(25) becomes

_V1 = −c1e
2
1 + e1e2 −

1
2 ~x

T
n~xn: ð31Þ

End of step 1.

Step 2. Stabilization of the subsystem (e1, ~xn, e2).
To achieve the above objective, the controller forces the

errors (e1, e2) to converge to zero; one needs the dynamics of
e2. Indeed, we derive (29) by using (27) and (6e) and we obtain

_e2 =
ms

Cf Lf
−
x4
ms

− Rf x5 + us
x6
2 + x7

2

� � !

− −c1 _e1 −
m2

s _x1
Cf

+ _̂x3 + k2 _~x1
� �

− €v∗L

 !
:

ð32Þ

Table 2: Parameter system.

Parameters Symbol Values

Power grid

En 220
ffiffiffi
2

p
V/50Hz

Rn 50mΩ

Ln 0:5mH

Single-phase half-bridge series
active power filter

Rf 80mΩ

Lf 3mH
Cf 1200μF

DC bus Cd 9000μF

Sensitive load

R 20Ω
L 500mH
Lo 5mH

Table 3: Parameters of the grid observer and controller.

Parameters Symbol Values

Grid observer

k1 104

k2 105

k3 105

Voltage regulator
c1 3000 s−1

c2 6000 s−1
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The actual control variable, namely, us, appears for the
first time in (32). Let us consider the following Lyapunov
candidate function.

V2 =V1 +
1
2 e

2
2: ð33Þ

Using (31), the dynamics of V2 is given by

_V2 = −c1e
2
1 + e2 e1 + _e2ð Þ − 1

2 ~x
T
n~xn: ð34Þ

This shows that, for the (e1, e2) system to be globally
asymptotically stable, it is sufficient to choose the control input
us so that _V2 = −c1e21 − c2e

2
2 − ð1/2Þ~xTn~xn which, considering

equation (34), amounts to ensuring that

_e2 = −c2e2 − e1, ð35Þ

where c2 is a positive design parameter.
From equations (32) and (35), we deduce the following

backstepping control law us:

us =
2Rf x5
x6

−
x7
x6

+ 2x4
msx6

+
2Cf Lf

msx6

�

� −e1 − c2e2 + −c1 _e1 −
m2

s _x1
Cf

+ _̂x3 + k2 _~x1 − €v∗L

 ! !!
:

ð36Þ

The above results are stated in the following proposition:

Proposition 2. Consider the series active power filter of
Figure 1 described by its average models (6a)–(6g) with the
control law (36); then, the closed-loop system is globally
asymptotically stable. Specifically, its dynamics is described
in the coordinates ðe1, e2, ~xnÞ by equations (37a) and (37b):

_e1

_e2

 !
=

−c1 1

−1 −c2

 !
e1

e2

 !
puttingA1 =

−c1 1

−1 −c2

 !
,

ð37aÞ

_~xn = Ao ~xn: ð37bÞ

Systems (37a) and (37b) are globally asymptotically stable
because matrix Ao is Hurwitz.

Remark 3. Although the backstepping control law (36)
involves a division by the DC bus voltage x6, there is no risk
of singularity because in practice, the DC bus voltage
remains all the time positive. Otherwise, the power converter
cannot work.

0 0.1 0.2 0.3 0.4 0.5 0.6
–600
–500
–400
–300
–200
–100

0
100
200
300
400
500
600

Vn
Vn estimated

Time (s)

(a)

0 0.005 0.01 0.015 0.02
–300
–200
–100

0
100
200
300

Vn
Vn estimated

Time (s)

(b)

Figure 3: (a) Grid voltage x2 and its estimated x̂2. (b) Zoom on these signals.

0 0.1 0.2 0.3 0.4 0.5 0.6
–300
–200
–100

0
100
200
300

Time (s)

Figure 4: A sag in the estimated signal of grid voltage x̂2.
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0
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–300

300

Figure 5: Compensation voltage vs.

7International Journal of Photoenergy



4. Stability Analysis of the Control System

In the following theorem, we need the following notations to
formulate the results of stability analysis.

ε = 1
ωn

,

a0 = 1 + c1c2,
a1 = c1 + c2:

ð38Þ

Theorem 4 (main result). Consider the series active power filter
described in Figure 1, represented by its average models
(6a)–(6g), where the state variables (x2, x3) are inaccessible to
measurements. The closed-loop system formed by the series
active power filter and the control system consist of the following:

(i) Grid observers (9a) and (9b), with the gain vector
K = k1 k2 k3ð ÞT which are selected so that the
matrix Ao = A − KC is Hurwitz

(ii) The control law (36), where (c1, c2) are any positive
design parameters

Then, the closed-loop control system has the following
properties:

(1) The tracking errors (e1, e2) vanish exponentially fast

(2) By associating equations (11), (30), and (35),
we defined the augmented state vector ZðtÞ =
z1 z2 z3 z4 z5ð ÞT = e1 e2 ~x1 ~x2 ~x3ð ÞT ;

this latter obeys the following state equation:

_Z = f t, Zð Þ, ð39aÞ
where

f t, zð Þ =

−c1z1 + z2

−z1 − c2z2

−
Rn

Ln
+ k1

� �
z3 +

z4
Ln

−k2z3 + z5

−k3z3 − ω2
nz4

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð39bÞ

(3) If the design parameters (c1, c2) of control are chosen
so that the following inequalities

a0 = 1 + c1c2 > 0, ð40Þ

a1 = c1 + c2 > 0 ð41Þ
are satisfied, then, there exist positive constants ε∗ and η∗ such
that for all 0 < ε < ε∗, systems (39a) and (39b) have a unique
exponentially stable periodic solution with the property

�Z t, εð Þ − Z∗
0

		 		 ≤ η∗ε, ð42Þ

with Z∗
0 = 0 0 0 0 0ð ÞT

See the proof of Theorem 4 in the appendix.

5. Simulation Results

The controlled system shown in Figure 1 is a single-phase
series active power filter with half-bridge topology; its char-
acteristics are placed in Table 2. The system under study
augmented with the control system consisting of the grid
observers (9a) and (9b) and control law (36) (see Figure 2)
is simulated using MATLAB/SIMPOWER (V.R 2013a).
The sensitive load is a bridge rectifier, supplying a resistor
R in series with an inductor L. The controller implementa-
tion entails a proper choice of its design parameters. First,
the gain vector components K = k1 k2 k3ð ÞT , of the
observer, are selected so that the conditions in equation
(13) are satisfied. Second, the control performances depend
on the numerical values given to the controller parameters,
i.e., c1 and c2. The point is that there is no systematic way,
especially in nonlinear control, to make adequate selection
for these values. Therefore, the usual practice consists in
proceeding with the trial-error approach starting from large
initial values, e.g., in the interval [103, 104] and tuning them,
in one sense or the other, until a satisfactory behaviour is
obtained. Doing so, the obtained values of observer and con-
troller parameters are placed in Table 3.

5.1. Control Performances in the Presence of Grid Voltage
Sags and considering the Constant Load. The objective of this
simulation is to illustrate the behaviour of the proposed
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Figure 6: (a) Voltage vL at the terminals of sensitive load after compensation. (b) Zoom of this signal.
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controller in the presence of the voltage sags in the single-
phase power grid, while the load is kept constant (R = 20Ω,
L = 500mΩ). The resulting controller performances are illus-
trated in Figures 3–6. Indeed, the performance of the grid
observer, which is part of the proposed nonlinear controller,
is illustrated in Figure 3(a), where the estimated signal, of the
grid voltage x̂2, provided by the grid observer converges rap-
idly to its true value vn. A zoom is made in Figure 3(b) show-
ing clearly the convergence of the proposed observer; this
illustrates the efficiency of this grid observer. Figure 4 reveals
a sag in the waveform of the estimated grid voltage x̂2; the
depth of which is 90% of the nominal voltage and of dura-
tion 100ms, which exceeds the values fixed by the standard
EN 50160. The compensation voltage vs injected by the
series active power filter is represented in Figure 5. To vali-
date the performances of the proposed controller, Figure 6,
for its part, shows that the voltage vL, at the terminals of
the sensitive load after compensation, is a sinusoidal signal;
in this case, the voltage sag decreases sharply and its depth
becomes 7% which is less than the value 10% imposed by
the standard EN 50160. This confirms that the compensation
of voltage sags is well achieved by the proposed controller.

5.2. Control Performances in the Presence of Grid Voltage
Sags and considering Load Variations. The robustness of
the proposed nonlinear control system is verified by taking
into account variations in the load. Indeed, the simulation
protocol is described in Figure 7 showing that the load resis-
tance changes according to the following progression:

(i) A decrease of 50% at time 0.25 s

(ii) An increase of 50% at time 0.5 s

(iii) Return to its nominal value at the instant 0.75 s

Figures 8–10 illustrate the behaviour of the proposed
nonlinear control system in the presence of grid voltage
sag and by considering the load variations. In fact, Figure 8
shows the variation in the magnitude of the load current fol-
lowing the changes in the load resistance described in
Figure 7. Figure 9 reveals a sag in the estimated signal of
the grid voltage x̂2; the depth of which is 90% of the nominal
voltage and of duration 100ms, which exceeds the values
fixed by the 50160 standard. Figure 10 shows the compensa-
tion voltage vs injected by the series active power filter. As
for Figure 11, it shows that the voltage vL at the terminals
of the sensitive load after compensation is a sinusoidal sig-
nal; in this case, the voltage sag decreases sharply and its
depth becomes 7% which is less than the value 10% imposed
by the standard EN 50160. This confirms that the compen-
sation of voltage sags is well achieved by the proposed
controller.
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Figure 10: Compensation voltage vs.
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Figure 11: Voltage vL at the terminals of sensitive load after
compensation.
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Figure 7: Load resistor changes.
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Figure 8: Load current iL.
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Figure 9: A sag in the grid voltage estimated x̂2.
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In conclusion, this controller presents, in the pres-
ence of grid voltage sags and by considering the varia-
tions in load resistance, better tracking performance
and greater robustness.

5.3. Control Performance Robustness to Grid Parameter
Uncertainty. The robustness of the proposed nonlinear
control system is now verified by considering parameter
uncertainty on the grid impedance (Rn, Ln). Indeed, the
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Figure 12: (a) Grid resistor changes. (b) A sag in the grid voltage estimated x̂2. (c) Compensation voltage vs. (d) Voltage vL at the terminals
of the sensitive load after compensation.
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Figure 13: (a) Grid inductance changes. (b) A sag in the grid voltage estimated x̂2. (c) Compensation voltage vs. (d) Voltage vL at the
terminals of the sensitive load after compensation.
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simulation protocol is described in Figures 12(a) and 13(a)
showing that Rn and Ln are changed according to the follow-
ing progression:

(i) An increase of 25% at time 0.25 s

(ii) A decrease of 25% at time 0.5 s

(iii) Return to its nominal value at time 0.75 s

It turns out that, vis-à-vis to the controller, the internal
parameters of the grid (Rn and Ln) are subject to uncertainty
on the interval [0.25 s; 0.75 s]. The latter will be referred to as
uncertainty interval. All remaining system characteristics
and controller parameters are kept unchanged with respect
to Tables 2 and 3. The resulting control performances are
illustrated in Figures 12(a)–12(d), in the case of resistor
uncertainty, and Figures 13(a)–13(d), in the case of induc-
tance uncertainty. It is seen that there is no deterioration
of control performances despite the uncertainty of 25% on
grid impedance (Rn, Ln). In particular, Figure 12(d) shows
that the waveform sinusoidal, without sag, of the voltage vL
at the terminals of the sensitive load is always ensuring even
with the uncertainty of the grid resistor.

It is observed in Figures 13(a)–13(d) that the uncertainty
on the grid inductance Ln causes no performance deteriora-
tion of the controller. In particular, Figure 13(d) shows that
the proposed controller ensures a sinusoidal voltage, without
sag, at the terminals of the sensitive load during the interval
of uncertainty.

5.4. Comparison with Linear Control. To highlight the better
performances of the present nonlinear control, over the lin-
ear control strategy, a comparison is done, where a linear
regulator of PID type is applied to the series active power fil-
ter under study. The parameters of the linear PID regulator
are selected so that the regulation is satisfactory when the
system operates in the nominal conditions corresponding
to En = 220

ffiffiffi
2

p
V and f n = 50Hz.

The performances of the linear controller are illustrated
in Figure 14 considering the same simulation scenario as
described in Section 5.1 (see Figure 4).

Keep in mind that all parameters of the system under
study cited in Table 2 are kept unchanged in this simulation.
Figure 14(a) shows that the PID regulator performs well as
long as the system remains operating in the nominal condi-

tions, which is the case in the time interval [0 s, 0.3 s]. After
this interval, the regulation performances deteriorate in the
time interval [0.3 s, 0.4 s]. More specifically, Figure 14(b)
shows that the peak value of load voltage vL is much lower
than its initial reference value of 220

ffiffiffi
2

p
V (the depth of volt-

age sag is 40% and of duration 100ms which exceeds the
values fixed by the standard EN 50160). Consequently, this
voltage sag in the voltage vL causes the nonfunctioning of
the sensitive load. The same Figure 14 shows that the sinu-
soidal shape with reference peak value 220

ffiffiffi
2

p
V is preserved

by the linear controller only in the time interval [0 s, 0.3 s ].
In the time interval [0.4 s, 1 s], the waveform of vL is sinusoi-
dal but not symmetric. This clearly confirms that the perfor-
mances of the linear controller are much less satisfactory,
compared to those of the proposed nonlinear controller in
which its performances are preserved throughout simulation
time interval [0 s, 1 s] (see Figure 6).

In the simulation, some comparisons with the SAPF sys-
tem based on linear control are added to verify the effective-
ness of the proposed SAPF control strategy by considering
the same simulation protocol as described in Figure 7 (see
Section 5.2) and the same simulation protocol as described
in Figures 12(a) and 13(a) (see Section 5.3). Indeed, for the
sake of comparison, Figure 11 shows that the sinusoidal
shape of the load voltage vL after compensation without
sag is preserved throughout simulation time interval [0 s,
1 s] by the proposed nonlinear control, compared to the
waveform observed in Figure 15 where the peak value of
load voltage vL is much lower than its initial reference value
of 220

ffiffiffi
2

p
V when using linear control (the depth of voltage
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Figure 14: (a) Voltage vL at the terminals of sensitive load after compensation; (b) zoom on this signal.
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Figure 15: Voltage vL at the terminals of sensitive load after
compensation.
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sag is 40% and of duration 100ms which exceeds the values
fixed by the standard EN 50160).

Also, Figures 12(d) and Figure 13(d) show that the sinu-
soidal shape of the load voltage vL after compensation with-
out sag is preserved throughout simulation time interval [0 s,
1 s] by the proposed nonlinear control, compared to the
waveform observed in Figures 16 and 17 (the peak value of
load voltage vL is also much lower than its initial reference
value of 220

ffiffiffi
2

p
V when using linear control (the depth of

voltage sag is 40% and of duration 100ms which exceeds
the values fixed by the standard EN 50160).

In Figures 15–17, it is obvious to discover that in the
presence of grid voltage sags, the SAPF based on nonlinear
control features better tracking performance at different
simulation stages than the one based on linear control.

6. Conclusion

In this paper, we seek a control strategy for the single-phase
series active power filter with half-bridge topology shown in
Figure 1 to ensure the compensation of the grid voltage sags
and subsequently protect the sensitive load. The consider-
able constraints of the control system of this filter are (i)
the nonlinearity of the system dynamics, (ii) the high dimen-
sion of the system model, and (iii) the inaccessibility of some
system variables to measurements. A nonlinear controller is
proposed. It consists of the grid observer (10) and the con-
trol law (34) synthesized by using the Backstepping tech-
nique. A theoretical analysis, by using the Lyapunov
stability and averaging theory, proves the achievement of
the control objective. The simulation results show that the

proposed controller meets its main control objective that is
the compensation of voltage sags. The simulation results
emphasize further the controller robustness to load changes
and to grid parameter uncertainty. The simulation results
also demonstrate the supremacy of the proposed nonlinear
controller over a linear controller.

This study can be pursued in various directions, e.g.,
designing an efficient online grid voltage observer (in the
presence of grid voltage harmonics).

Appendix

A. Stability Analysis

Proof. A. Part 1. Proposition 1 shows that the tracking errors
ðe1, e2Þ in (37a) are globally asymptotically stable.

Part 2. Equations (39a) and (39b) are obtained from
expressions (11), (30), and (35).

Part 3. The stability of the time-varying systems (39a) and
(39b) is now analyzed by using the averaging theory [22, 23].
To this end, we introduce the following time-scale change:
τ = ωnt. It is easily checked from (39a) and (39b) that
WðτÞ= def ZðtÞ = Zðτ/ωnÞ obeys the differential equation:

_W τð Þ = εg τ,W, εð Þ, ðA:1Þ

where

g τ,W, εð Þ =

−c1w1 +w2

−w1 − c2w2

−
Rn

Ln
+ k1

� �
w3 +

w4
Ln

−k2w3 +w5

−k3w3 − ω2
nw4

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ðA:2Þ

From (A.2), the expression gðτ,W, εÞ is a function of τ; it
is 2π periodic. Now, let us introduce the averaged function:

g0 W0ð Þ =def lim
ε⟶0

1
2π

ð2π
0
g τ,W0, εð Þ dτ, W0 ∈R

5: ðA:3Þ

It readily follows from (A.2) that

g0 W0ð Þ =

−c1w1,0 +w2,0

−w1,0 − c2w2,0

−
Rn

Ln
+ k1

� �
w3,0 +

w4,0
Ln

−k2w3,0 +w5,0

−k3w3,0 − ω2
nw4,0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, ðA:4Þ

where wi,0 (i = 1,⋯, 5) are the components of W0. To obtain
stability results about the system (A.1), it is enough (thanks to
averaging theory) to analyze the following averaged system:
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Figure 16: Voltage vL at the terminals of sensitive load after
compensation.
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Figure 17: Voltage vL at the terminals of sensitive load after
compensation.
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_W0 = εg0 W0ð Þ: ðA:5Þ

Notice that, by considering equation (A.4), the time-
invariant system (A.5) has a unique equilibrium at

W∗
0 = 0 0 0 0 0ð ÞT : ðA:6Þ

The stability of the equilibrium W0 =W∗
0 of (A.5) will

now be analyzed using the indirect Lyapunov method [22,
23]. As a result, we look if the Jacobian of the function g0ð:Þ,
at W0 =W∗

0 , is Hurwitz. From (A.2), we obtain

Ar =
A1 O

O A0

 !
, ðA:7Þ

where O are null matrices and the matrices A1 and A0 are as
follows:

A1 =
−c1 1
−1 −c2

 !
,

A0 =
−

Rn

Ln
+ k1

� �
1/Ln 0

−k2 0 1
−k3 −ω2

n 0

0
BBBB@

1
CCCCA:

ðA:8Þ

The stability properties of the equilibrium W∗
0 are fully

determined by the state-matrix Ar. More specifically, the equi-
librium W∗

0 will be globally exponentially stable if the state
matrix Ar is Hurwitz. Thus, it will be sufficient to verify that
the state matrix Ar is Hurwitz. We have already noticed that
the matrix A0 is Hurwitz (see equation (11)). So, just check
thatmatrixA1 is also Hurwitz. To this end, note that the eigen-
values of matrix A1 are the zeros of the following polynomial:

det λI − A1ð Þ = λ2 + a1λ + a0: ðA:9Þ

Applying for example the well-known Routh’s algebraic
criteria, it follows that all zeros of the polynomial (A.9) have
negative real parts if the conditions in (40) are satisfied. In
other words, under these conditions, matrix Ar is Hurwitz.
Then, by the indirect Lyapunov method, the equilibrium
W0 =W∗

0 of (A.5) is exponentially stable. Then, Part 3 fol-
lows from the averaging theory (e.g., [22], Theorem 10.4,
and [23]). Theorem 4 is established.
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