
Research Article
Daily Prediction Model of Photovoltaic Power Generation Using a
Hybrid Architecture of Recurrent Neural Networks and Shallow
Neural Networks

Wilson Castillo-Rojas ,1 Juan Bekios-Calfa ,2 and César Hernández 1

1Department of Informatics Engineering and Computer Science, University of Atacama, Av. Copayapu 485, 1530000, Chile
2School of Engineering, Catholic University of the North, Larrondo 1281, 1781421, Chile

Correspondence should be addressed to Wilson Castillo-Rojas; wilson.castillo@uda.cl

Received 7 June 2022; Revised 20 March 2023; Accepted 31 March 2023; Published 18 April 2023

Academic Editor: Kok Keong Chong

Copyright © 2023 Wilson Castillo-Rojas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In recent years, photovoltaic energy has become one of the most implemented electricity generation options to help reduce
environmental pollution suffered by the planet. Accuracy in this photovoltaic energy forecasting is essential to increase the
amount of renewable energy that can be introduced to existing electrical grid systems. The objective of this work is based on
developing various computational models capable of making short-term forecasting about the generation of photovoltaic
energy that is generated in a solar plant. For the implementation of these models, a hybrid architecture based on recurrent
neural networks (RNN) with long short-term memory (LSTM) or gated recurrent units (GRU) structure, combined with
shallow artificial neural networks (ANN) with multilayer perceptron (MLP) structure, is established. RNN models have a
particular configuration that makes them efficient for processing ordered data in time series. The results of this work have been
obtained through controlled experiments with different configurations of its hyperparameters for hybrid RNN-ANN models.
From these, the three models with the best performance are selected, and after a comparative analysis between them, the
forecasting of photovoltaic energy production for the next few hours can be determined with a determination coefficient of
0.97 and root mean square error (RMSE) of 0.17. It is concluded that the proposed and implemented models are functional
and capable of predicting with a high level of accuracy the photovoltaic energy production of the solar plant, based on
historical data on photovoltaic energy production.

1. Introduction

At present, the consequences of environmental pollution on our
planet, generated by the different productive activities, show a
scenery that affects various ecosystems, including human being.
This is mainly due to the use of mineral coal and diesel for the
generation of electricity, with the energy sector being the main
emitter of carbon dioxide (CO2) into the atmosphere [1]. To
address this situation, optimization in the use of nonrenewable
energy sources and greater use of natural resources in the elec-
tricity generation process are required. Photovoltaic technology
has been one of the most used renewable energy solutions,
which seeks to meet the demand for electricity while reducing
the amount of CO2 emissions into the atmosphere [2].

With the growing development of information technolo-
gies and the digital transformation of companies and organi-
zations, large volumes of data are generated through the
various activities carried out by humans. This brings with
it a high demand for processing such data. Solar plants are
not exempt from this situation: however, many of these solar
plants do not reuse the data they generate, for example, in
the implementation of a short-term forecasting system for
electricity production or another application. A forecasting
tool can support electricity operators in balancing electricity
consumption and generation, and thus conserve or avoid
wasting the electrical energy produced by the solar plant.
This type of tool can also be used to anticipate and forecast
cases of shortage, which in turn allows for ensuring that
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there is sufficient energy capacity to cover the requirements
of electricity consumption.

Forecasting the production of photovoltaic energy is not
an easy task since this production is largely dependent on
weather factors, depending on where the solar plant installa-
tions are located. It has been shown that the climate as an
external factor has a great influence on the behavior and
operation of systems in the energy sector, specifically in
the area of photovoltaic technology, so the use of environ-
mental data has become a complement important for the
analysis of electrical data. However, in addition to weather
factors, it is necessary to consider internal factors of the ele-
ments that make up the photovoltaic modules, such as the
battery panel and its own temperature and installation angle,
among other factors [3].

There are several research works oriented to the task of
photovoltaic energy forecasting; each of these investigations
has its own particularities, which vary between its input var-
iables, models used, and data set, among others. From the
study of the research papers reviewed, it follows that the
most used and promising techniques in photovoltaic energy
forecasting are ANN, specifically those that constitute a
RNN configuration. The RNNs have positioned themselves
as the most used techniques in problems dealing with time
series, where weather data are integrated [4].

Additionally, it was found in the research papers
reviewed that even when hybrid models are used for the
forecasting of photovoltaic energy, these are not sufficient
and generally use a combination of a statistical approach
with time series techniques such as regression along with
machine learning techniques such as RNNs. In other cases,
the combination of physical models with RNN models has
been found directly. The gap that this work tries to cover
is the predictive efficiency of RNN models with a hybrid
structure of layers with deep neurons together with layers
with superficial neurons, in addition, to test various metrics
at the same time for the evaluation of the performance of
these models.

In this context, the objective of this work is focused on
obtaining ANN-based models for the forecasting of photo-
voltaic energy generation of a solar plant with a good level
of accuracy. Several configurations of predictive models are
implemented using historical records of photovoltaic energy
production as input. For this, a base hybrid architecture is
designed, which combines a first hidden layer with an LSTM
or GRU structure and a second hidden layer with an MLP
structure. Subsequently, these models are validated and sub-
jected to various adjustments and controlled experiments to
find those with greater forecast capacity.

The innovation and main contribution of the solution
proposed in this work lies in the design and implementation
of a hybrid architecture of deep RNNs, combined with
superficial ANNs for the generation of forecast models.
Given their generality, both for the configuration of their
hyperparameters and of the models in general, they can be
reused for various use cases, not only for the forecast of
photovoltaic energy but for all types of predictive require-
ments, where they are used with ordered data in time series
and the RNN technique.

Important differentiation factors of this work in relation
to the existing ones are, on the one hand, the generation of
different models considering only one variable as input to
the model, which corresponds to the amount of energy
active exported (EAE) generated by the solar plant, as well
as the use of various configurations for hyperparameters of
the model hybrid RNN-ANN, and a robust number of eval-
uation metrics to measure the performance of these models.
And on the other hand, the volume of real data used for the
generation, training, and validation of these models, which
covers a full year with more than 100,000 EAE production
records at one-hour intervals, was clearly one of the factors
that contributed to the achievement of good forecast perfor-
mance in the models obtained.

Another differentiating contribution is the flexible and
simple computational tool, built to generate these forecast
models based on the proposed hybrid architecture. In the
implementation of this tool, the Python language, the Ten-
sorFlow framework, and the Keras application programming
interfaces (API) were used. The encapsulation and generali-
zation of the hyperparameters required in the generation of
the forecast models, as well as the data set that is used as
input, allow the tool, for each model, to generate and store
in separate files the graphs of the forecast, loss, and spread
functions. In addition, it delivers the results obtained in all
the metrics applied to measure the performance of the
model.

The results obtained through the three models finally
selected achieve the forecast of the weekly production of
photovoltaic energy with good accuracy, of which the model
with the best overall performance in all metrics is selected
since it presents a RMSE of 0.1747, mean square error
(MSE) of 0.0305, mean absolute error (MAE) of 0.0780,
the correlation coefficient of 0.9867, and coefficient of deter-
mination of 0.9708. Even so, the three models have positive
behavior and performance to make the forecasts.

2. Conceptual Framework

One of the main concepts considered in this research work
corresponds to photovoltaic energy. This energy is the result
of transforming solar radiation into electricity. The transfor-
mation process has a physical principle based on the photo-
electric effect, also known as the photovoltaic effect. Solar
energy seeks to take advantage of sunlight through a set of
electrical, electronic, and mechanical components that are
part of a photovoltaic system or installation to produce elec-
trical energy [5].

Specifically, the photovoltaic effect occurs when a photo-
voltaic cell converts sunlight into electricity. Light is a type of
electromagnetic radiation that is made up of particles called
photons. When photons from sunlight hit the photovoltaic
cell, they can be reflected, absorbed, or passed through. Only
the absorbed photons are the ones that contribute to gener-
ating electricity since they transfer energy to the atoms. This
energy causes the external electrons of the atoms to detach
and become part of an orderly movement of these particles,
which corresponds to the electric current [6].
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Another important concept in this work is ANN, which
are computational models inspired by the operation of a
neural network in the human brain, where neurons are the
basic unit of these models. Each neuron performs a specific
function depending on the inputs it receives and the weights
assigned to each one of them. These algorithms respond to a
hierarchy, in which each layer of higher neurons learns and
becomes more complex than the previous one. ANN models
become more complex as the number of layers in their
implementation increases.

Highly complex ANNs give way to what is currently
known as deep learning. These types of models are qualified
as supervised since they seek to forecast the behavior of an
attribute according to prior learning based on a set of known
data and are applied to both classification and regression
problems [7]. Commonly, variable behavior forecasts in a
given period are treated and represented by time series. It
should be noted that a time series is defined as a collection
of observations of a variable collected sequentially in
time [8].

The RNN is among the most used ANN architectures to
address the analysis of data arranged in time series. Unlike
classic ANNs, RNNs process sequential data efficiently, tak-
ing previous outputs as inputs that allow them to process
long sequences of data, element by element. An RNN has
activation feedback that incorporates short-term memory.
A state layer is updated not only with external input from
the network but also with the activation of previous propa-
gation [9].

The structure of an RNN is made up of repetitive loops
that are found in the hidden layers, which give the network
the memory capacity. Each hidden layer feeds back into itself
a number of times before moving on to the next layer. The
feedback obtained at each stage is modified by a set of
weights to allow automatic adaptation of learning as a func-
tion of time [10].

A simple RNN (simple recurrent neural network, SRNN)
is one of the architectures that are basically made up of a set
of common ANNs connected in a recurrent manner. The
output of one ANN is the input of the next, so each unit
has two inputs and two outputs. Inputs are the current data
and the state of the previous unit, while outputs are the fore-
casting and the current state that pass to the next unit [11].
These networks have the limitation of having a short-term
memory because as the sequence becomes longer, the first
elements of the said sequence have less weight. For this rea-
son, different modifications have been made to this type of
network in the search for long-term memory [10].

Due to the fact that SRNNs do not present a good treat-
ment of long-term memory, new structures such as LSTM
arise. This structure was developed in [12], and today it is
one of the most popular in the RNN context. Each LSTM
unit is made up of a combination of hidden units. SRNNs
allow the implementation of gates that control a memory
cell. Such cell provides the ability to retain information with-
out modification for long periods, allowing it to build a long-
term dependency.

Another remarkable architecture among RNNs corre-
sponds to the GRU, which is inspired by the LSTM and

was developed in 2014 [13]. Its purpose is to make each unit
adaptively capture dependencies on different time scales. In
the case of GRU, its cell is also based on gates that function
as control units; however, it does not require a memory cell
like LSTM. According to the GRU configuration, its output
is based on a linear interpolation between the hidden state
of the previous neuron and the current state. The results
offered by the GRU architectures are similar to those pro-
duced by the LSTM, but with less memory requirement [14].

There is another architecture variant called bidirectional
RNN (bidirectional recurrent neural networks, BiRNN),
proposed in [15]. BiRNNs consist of adding hidden layers
that process the information in the opposite direction to
the conventional layer to treat the information in a more
flexible way in which two layers of the network and their dif-
ferent directions stand out. Each input value targets two
ANN units, one belonging to the layer moving forward
and one belonging to the layer moving backward. With both
outputs of each unit, the output of an instant is formed.

When implementing an RNN model, parameters that
comprise the configuration of the model and on which its
performance and accuracy depend must be considered.
These parameters include the division of the data set for
training and/or testing, the number of hidden layers and
neurons, the activation function (linear or non-linear), the
loss function, the optimizers, the batch size, and the number
of epochs, among others. In addition, in order to measure
the performance of techniques that use regression algo-
rithms such as RNN, it is common to use statistical metrics
such as RMSE, MSE, MAE, Mean Absolute Percentage Error
(MAPE), and others somewhat more complex such as the
Bayesian and Akaike information criteria [16].

The selection of the metrics to use is closely related to the
type of problem being addressed. That is, the way to evaluate
a model depends on whether its objective is oriented to a
classification or forecasting task. The MSE is simple and use-
ful when there are unexpected values since it is sensitive to
these values, whereas the MAE is more convenient when
outliers are expected. Furthermore, the MAPE is used when
a weighted analysis of the MAE is desired, and when it is
desired to work with a lower error rate, the RMSE, which
corresponds to the square root of the MSE, is used. These
metrics are calculated at each epoch of the model training
stage; in this way, the learning behavior can be determined,
and its level of accuracy can be evaluated when faced with
new input values.

Another effective method to evaluate a model is to com-
pare its output with the expected value, for data not used in
training. For this, the Pearson correlation coefficient is used
in the first instance. With this coefficient, the degree of the
linear relationship between two quantitative and continuous
variables can be measured. The correlation coefficient r is
basically a dichotomous function, and in its equation, the
numerator is represented by the covariance that exists
between the outputs of the model and the real value of the
variable, and the denominator is the product of the standard
deviation of actual values and estimated values. The value of
r can be in a range between -1 and 1, and the closer the value
of r is to the extreme values, the greater the existing
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correlation. For cases where r < 0, the relationship between
the variables is inverse.

The metric that is also used in this type of case is the
coefficient of determination, which corresponds to the
square of the correlation coefficient, so its values are in the
interval between 0 and 1, and it is represented as r2. It should
be noted that while the correlation coefficient measures the
degree of association between variables, the determination
coefficient measures the proportion of variation between
these variables [16].

3. Related Works

There are several works related to the application of ANN
models in the forecasting of photovoltaic energy, which
present different variants of implementation. The work of
AlKandari and Ahmad [3] raises the problem of making a
forecast of photovoltaic energy generation from a set of
weather variables such as solar radiation, temperature, and
precipitation, along with wind speed and direction. They
expose different algorithms and techniques to define the
most suitable one for the forecast of solar energy. As a solu-
tion, the authors provide a way to assemble different algo-
rithms based on ANN models and the results of designed
experiments.

Sharma [17] describes a data analysis work for the pur-
pose of forecasting energy values. It highlights the need for
correct data preprocessing with different tasks in the first
stage of the methodology that is developed. It proposes the
delivery of long-, medium-, and short-term forecasts. Differ-
ent types of ANN model implementations are presented as
previous solutions to similar problems.

Yesilbudak et al. [18] describe an extensive bibliographic
review of methodologies for data analysis processes in the
generation of electricity for solar plants. They present the
process of extracting knowledge from databases in a general
way. This article shows a table with different investigations,
which are referenced and indicate the input data used in
each work as well as the model used in the forecasting stage;
many of these researches are based on the ANN technique.

In the research of Harrou et al. [19], a model to forecast
photovoltaic energy generation based on RNN is presented,
specifically with LSTM. For this, they use previous records
of photovoltaic energy production arranged in 24-hour seg-
ments. The authors expose the configuration of the model
used as well as the performance during the training, where
they obtained good results. In future work, they point out
the incorporation of weather variables into the model in
order to obtain better results.

In the work of De et al. [20], several models based on
RNN with LSTM configuration are presented to forecast
photovoltaic energy production with limited data sets, since
they only have one month of data records taken at a fre-
quency of 15 minutes. The authors justify each of the config-
urations of the models based on the different parameters of
the ANNs. As a result, they present models that are capable
of predicting the production of photovoltaic energy, which
include meteorological and electrical variables as input.

Chen et al. [21] analyze the effects of different weather
factors that affect the generation of photovoltaic energy as
well as the degree of impact in different periods. In addition,
and according to the characteristics of the radiation records,
a simple method of radiation classification coordinates is
proposed to select similar time series. Based on the charac-
teristics of the time series in the photovoltaic power records,
the data set of a similar period, including power output data
and multivariate meteorological factors, is reconstructed as
the training data set. Then, an RNN model with LSTM is
applied as the proposed learning network, which is tested
on two independent photovoltaic systems and achieves bet-
ter results than four other comparison models.

Sharadga et al. [22] compare different forecasting models
on time series for the forecasting of photovoltaic output
power. Both statistical and artificial intelligence-based
methods are included. The statistical models used belong
to the category of persistence models, which include autore-
gressive moving average (ARMA), autoregressive integrated
moving average (ARIMA), and seasonal autoregressive inte-
grated moving average (SARIMA). In addition, they con-
sider six different types of RNN models: bidirectional long-
short-term memory (BiLSTM), LSTM, c-median fuzzy clus-
tering, layer RNN, MLP, and forward RNN.

The work of Seera et al. [23] presents a methodology to
analyze the performance of photovoltaic modules based on
spectral irradiances using a genetic algorithm (GA). This is
done considering that, despite having the same solar irradi-
ation, the variation in the energy conversion efficiency of
each photovoltaic module can be meaningful in different
locations. As a case study, they selected twelve types of com-
mercial photovoltaic modules and three locations in Malay-
sia. The proposed methodology simulates in-situ energy
conversion efficiencies and annual energy yields for com-
mercial photovoltaic modules, providing local spectral radi-
ations and photovoltaic specifications.

Chong et al. [24] propose a methodology to calculate the
energy conversion efficiency of organic photovoltaic cells
based on indoor measurement with a solar simulator, the
measured local solar spectrum, and using both optical and
electrical factors. For this purpose, as a case study, they cap-
ture local solar spectra through the collection and accumula-
tion of random data throughout the year from 08 : 00 a.m. to
18 : 00 p.m. in Malaysia. This analysis can provide guidance
on the selection of appropriate organic materials for solar
cells that may perform best in a particular location to opti-
mize investment.

Zhao and Kok [25] combine a metaheuristic technique
called the electrostatic discharge algorithm (ESDA) with an
ANN to forecast the electrical energy output of a combined
cycle energy plant using historical electrical production
records. The performance of this hybrid ESDA-ANN model
is compared with several conventionally trained ANNs to
investigate its effect. By considering the influence of ambient
temperature, exhaust vacuum, atmospheric pressure, and
relative humidity, electrical energy is forecasted through a
4 × 9 × 1 network. Among conventional trainers,
Levenberg-Marquardt emerged as the more promising.
However, the proposed ESDA-ANN hybrid model
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outperformed this algorithm in both the training and testing
phases.

The article by An et al. [26] describes a probabilistic
ensemble forecast model to improve the range of predictive
accuracy during nonsteady periods of photovoltaic energy
in a solar plant. This model combines the modules of data
preprocessing, discrimination of nonstationary periods, fea-
ture extraction, deterministic forecasting, uncertainty fore-
casting, and optimization. In the deterministic point
forecast module, a stacking LSTM-ANN model is used for
point forecasts. In the uncertainty interval forecast module,
a Bayesian neural network for probabilistic forecasts is intro-
duced. In the optimization integration module, an optimiza-
tion algorithm called nondominated classification genetic
algorithm II is applied to integrate and optimize the results
of the point and the probabilistic forecast. The proposed
model is tested using two photovoltaic outputs and mea-
sured meteorological data from a grid-connected photovol-
taic system. The results show that the proposed model
outperforms conventional forecasting methods for predict-
ing short-term photovoltaic energy production and associ-
ated uncertainties.

Mallal et al. in [27], explore an approach based on a tem-
perature forecast for the realistic analysis of the performance
of a photovoltaic system. Unlike the general methods, the
change in module temperature due to the change in solar
radiation has been considered to obtain realistic and accu-
rate performance evaluation results under mismatch condi-
tions. Module temperature is forecasted by a linear
equation that accounts for the effects of ambient tempera-
ture, wind speed, and irradiance. An optimized technique
for modeling photovoltaic panels has been implemented.
This technique is applied to different configurations of pho-
tovoltaic panels for performance analysis, achieving better
results with comparative works.

In the work of Jaber et al. [28], a forecast model is
described to compare the performance of six different pho-
tovoltaic modules using ANNs, which corresponds to a gen-
eralized regression neural network (GRNN). As inputs to the
model, the following were used: cell temperature, irradiance,
fill factor, maximum power, short-circuit current (ISC),
open-circuit voltage (VOC), and the product of these last
two variables (VOC and ISC). 37144 records were collected
for 247 curves, four of the six photovoltaic modules under
different environmental test conditions in Malaysia (solar
radiation and ambient temperature). Their results demon-
strated a high accuracy of the model in forecasting the per-
formance of the six photovoltaic modules.

Diouf et al. [29] analyze the operating temperature of
photovoltaic modules as a critical factor that affects their
performance. They propose relevant models for the forecast
of this operating temperature using ambient temperature
and solar irradiance data based on real measurements taken
in a tropical region. For each climatic condition, categorized
according to irradiance and temperature levels, the tempera-
tures of the photovoltaic modules were obtained using the
proposed approach that is compared with the corresponding
value measured experimentally. The results show that the
models they propose have better performance through the

mean square error metric, being lower than other models
developed by other authors for all weather conditions.

The work of Bevilacqua et al. [30] analyzes the effect
caused by solar radiation on the temperature of photovoltaic
panels because only a part is converted directly into electric-
ity and the rest is converted into heat that increases the tem-
perature of the layers in the photovoltaic module. They
propose a one-dimensional transient thermal model of pho-
tovoltaic modules, which calculates the temperature distri-
bution throughout the thickness of the panel, for which a
finite difference method was used, and with this, it is possible
to forecast the production of electricity in operational cli-
matic conditions. The results obtained highlighted that the
temperature and forecast energy were not perfectly aligned,
where a good accuracy in the temperature values did not
necessarily correspond to the same level of accuracy in the
output energy. The model was seasonally validated by com-
parison with one-year experimental data at the University of
Calabria in Italy, and excellent agreement between fore-
casted and measured temperatures and energy outputs was
demonstrated by statistical parameters.

Zhang et al. [31] investigate the influence of different
factors that affect the forecast of photovoltaic energy. For
this, they establish a conventional ANN forecast model and
a small-wave ANN forecast model. They analyze the effects
and correlations of atmospheric temperature, relative
humidity, and wind speed on the energy generation forecast
of polysilicon cells and amorphous silicon cells. The results
of experiments show that atmospheric temperature has the
strongest correlation with the energy output of polysilicon
cells, followed by wind speed and finally relative humidity.
Relative humidity has the strongest correlation with the
power output of amorphous silicon batteries, followed by
atmospheric temperature, and finally wind speed. They
manage to determine that when the most relevant data is
used as input for the forecast, the training error of the net-
work is smaller and the execution time is faster.

A very novel and current work is proposed by Yan et. al
[32], using advances in photovoltaic energy generation and
fifth generation (5G) technologies, seek to reduce energy
consumption based on accurate forecasts of photovoltaic
energy requirements from connected 5G base stations. They
claim that multiple 5G base stations can be connected to
form a network based on the use of power routers, laying
the basis for an internet of energy. In order to provide an
effective strategy to reduce the power consumption and car-
bon emissions of 5G base stations, they propose a photovol-
taic energy forecast model that combines an improved
search algorithm with an extreme machine learning tech-
nique called ISSA-ELM for a 5G power routing base station.
The advantage of this model is that it can access and manage
various distributed power sources from 5G base stations
through an energy router, which can adapt to varied weather
conditions to improve their performance and provide
administrators with more accurate reference data than other
similar forecast models.

He et al. [33] propose a forecast model for photovoltaic
energy generation based on an RNN model with a BiLSTM
structure. Environmental factors that affect energy
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generation are selected through the Pearson coefficient and
then the design and implementation of the proposed model
are detailed. The model is then evaluated through a set of
real data collected from a photovoltaic energy plant in
China. The experimental results showed that the forecast
error of the proposed model was low and its fit accuracy
was better than models based on support vector regression
(SVR), decision tree, random forest, and LSTM.

The research carried out by Zhang et al. in [34] addresses
accurately predicting a load of wind energy and photovoltaic
production for which they propose a hybrid method that
combines the empirical wave transform to decompose wind
energy and its load, together with the iForest technique and
the C-mean fuzzy clustering algorithm for processing photo-
voltaic data. Each component of wind energy is forecasted
by the enhanced random forest technique, which is also used
to forecast photovoltaic energy. The experimental results of
this work show that the proposed wind load and energy
method has higher forecast accuracy and effectiveness. On
the other hand, the volatility and randomness of photovol-
taics are more apparent than those of charging. They use
three different levels of evaluation indicators to evaluate
the level of the forecast, from more aspects to accurately pre-
dicting load, wind, and photovoltaic. At the same time, the
results of long-term indicators and key period indicators
provide guidance for the safe operation and dispatch of the
electrical network.

In the paper by Chen and Chang [35], a photovoltaic
energy forecast method based on Pearson’s coefficient is pro-
posed to remove irrelevant features. They use an RNN with
an LSTM structure to fit the photovoltaic energy forecast
curve. The method uses Pearson’s coefficients to analyze
the influence of external conditions on the variation of pho-
tovoltaic energy, and the model is validated through test
cases. Their results show that the intensity of solar radiation,
temperature, and humidity influence factors play a decisive
role in the variation of photovoltaic power. LSTM is com-
pared with the algorithms of conventional ANN, a radial
basis function, and time series ANN, showing the proposed
method better performances.

Konstantinou et al. [36] evaluate a deep RNN for the
forecast of photovoltaic energy production for 1.5 hours
ahead, using historical production records of a Cyprus pho-
tovoltaic plant as input. Once the model was defined and
trained, the performance of the model was evaluated qualita-
tively using graphical tools and quantitatively by calculating
the root mean square error (RMSE) and applying the cross-
validation method. Their results showed that the proposed
model can forecast well with a fairly good RMSE, but when
applying cross-validation, the mean of the resulting RMSE
values drops considerably.

Son and Jung in [37] explain multivariate numerical
models that were generated by combining the weather vari-
ables of solar radiation, sunlight, humidity, temperature,
cloud cover, and wind speed to develop an efficient energy
management system. The performance of the models was
compared by applying a modified version of the traditional
RNN approach with an LSTM structure. His experimental
results indicate six meteorological factors that influence the

forecast of solar energy regardless of the season, and these
are from greater to lesser importance: solar radiation, sun-
light, wind speed, temperature, cloudiness, and humidity.
Humidity. Models are scored on their adequacy to provide
medium- and long-term solar energy forecasts, with the pro-
posed modified LSTM demonstrating better performance
than the traditional LSTM.

Cervera et al. [38] present a model that allows forecast-
ing the energy generated in the photovoltaic installations of
a solar plant up to 3 hours in advance using deep RNN in
a Bayesian structure optimized by a genetic algorithm. It
must be considered that each input of the forecast model is
a time series, so it is necessary to analyze the seasonality
and trend of each input variable. This model can be applied
in different types of systems powered by photovoltaic
energy; however, for the case study, it was applied to photo-
voltaic pumping systems where the high variability of solar
irradiation and the high irrigation requirements of crops
for food production require a precise calculation for the
management of the system.

The work of Mukilan et al. [39] develop a forecast of the
solar potential through photovoltaic panels from the roofs
using the restricted Boltzmann machine as a machine learn-
ing method. The simulation results show that the proposed
method achieves a higher rate of forecast accuracy than
other compared methods.

The article by Niccolai et al. [40] analyzes the forecast
accuracy of three hybrid models that integrate physical ele-
ments of the system with ANNs. The first model combines
ANNs with the output of the five-parameter physical model
of a photovoltaic module where the parameters are obtained
from a data file. In the second model, the parameters are
obtained from a matching procedure with historical data
and an evolutionary algorithm called social network optimi-
zation. The third model uses clear-sky irradiance as input for
the ANN. These three hybrid models are compared with two
physical approaches and a simple forecast based on basic
ANN. The results show that the application of hybrid
models is very effective in achieving good forecast results.

The work of Hu et al. [41] proposes a model based on
the adversary generative grid for point and probabilistic
forecasts, which apply to the aging calendar of useful batte-
ries in applications where energy is stored. The ability of this
model to learn arbitrarily complex distributions has allowed
it to approximate all possible joint distributions in an arbi-
trary way. The interesting thing about this proposal is that
it combines physical aspects with the predictive treatment
for a case study such as the aging of the battery calendar,
since by considering the electrochemical knowledge as the
guidelines to design the model, a satisfactory consistency is
maintained between the knowledge and data, which signifi-
cantly improves its forecast capacity.

Tianyu et al. in [42] propose the use of the indicator of
gradient descent (IGD) to efficiently train the RNNs, which
allows for differentiating the metrics and loss functions used.
In addition, the BiLSTM structure is adopted to capture the
periodicity of renewable energy generation (diurnal and sea-
sonal patterns) and the residual technique to improve the
training efficiency of this BiLSTM model. Finally, they
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develop a deep quantile forecast network based on IGD and
deep residual BiLSTM for wind and solar quantile forecast-
ing. Practical experiments in four cases demonstrate its
effectiveness and efficiency, where this hybrid model has
achieved the lowest average ratio deviations (below 1.7%)
and the highest skill scores.

Research by Liu et al. [43] proposes an interpretable
machine learning framework that can effectively forecast the
manufacturing properties of a product. The case study they
use is batteries, and they explain the dynamic effects as well
as the interactions of manufacturing parameters. This could
also be considered when generating hybrid forecast models,
which include physical elements of batteries such as photovol-
taic energy storage capacity, which can be forecast in relation
to the generation of this energy. This interpretable machine-
learning framework is easy for analysts to adopt without the
need for specific knowledge of the battery manufacturing
mechanism. The proposal considers a set of manufacturing
data, particularly for coating, collected from a real battery
manufacturing chain to evaluate this framework. The results
demonstrate that three types of battery characteristics, includ-
ing cell capacity, gravimetric capacity, and volumetric capac-
ity, can be accurately predicted with r2 over 0.98 at the early
stage of manufacturing. The framework developed makes the
data-driven model more interpretable and opens a promising
avenue to quantify the interactions of physical parameters
such as those for battery manufacturing and to explain how
variations in these parameters affect their final properties for
battery storage for photovoltaic energy.

Finally, Liu et al. [44] propose a classification framework
based on the random forest technique to effectively quantify
the importance of and correlations between battery
manufacturing characteristics and their effects on the elec-
trode property classification. For this, they use out-of-the-
bag forecasts, Gini changes, and a forecast measure of asso-
ciation. The manufacturing data contains three intermediate
characteristics in the mixing stage and one parameter from
the battery coating stage, which is analyzed by the classifica-
tion framework. The experimental results of this work dem-
onstrate that the proposed classification framework not only
achieves a reliable classification of electrode properties but
also leads to effective quantification of both the importance
of manufacturing characteristics and correlations.

The literature review presented in this section allowed us
to observe several aspects related to forecast models of pho-
tovoltaic energy production, the existing research gap in this
area, determine the potential contribution of our study, and
also establish the differentiation of the work. This study
began by analyzing the literature review given in [18], which
describes current trends in the use of methodologies and
techniques used to generate predictive models.

From the previous research analyzed, it can be deduced that
there is a large number of works that have developed forecasts
of photovoltaic energy production ([3, 17, 19]), many of which
use RNN techniques with LSTM structure ([20, 21, 33, 36, 37,
38, 42]). Although there are works that combine RNN tech-
niques with statistical methods, such as ARMA, ARIMA, SAR-
IMA, and Pearson’s coefficients, among others ([22, 26, 35]), in

most cases, they do not use a large volume of data for model
training and validation. In addition, few works were found that
address this type of prediction through hybrid methods ([34,
40]).

All these predictive models are always applied accompanied
by metrics to evaluate their performance. The most used met-
rics are MSE, MAE, MAPE, RMSE, Akaike information crite-
rion (AIC), and Bayesian information criterion (BIC).

From the above, it is concluded that the research works
found can be classified into three groups. First, those that
use statistical approaches (regressions, Bayesian networks,
time series with ARIMA, or ARMA). Second, those works
that use machine learning techniques (ANN, RNN, SVM,
and GA). Thirdly, those works that propose the use of
hybrid approaches (statistical methods+machine learning
+physical models).

Some investigations propose methodologies to analyze
the performance of photovoltaic modules and the efficiency
of energy conversion with organic photovoltaic cells ([23,
24]). In addition, works were found that combine metaheur-
istic techniques with machine learning techniques [25], seek
to reduce energy consumption based on accurate forecasts of
photovoltaic energy requirements using 5G technology [32],
and develop forecasts of solar potential through rooftop
photovoltaic panels using the constrained Boltzmann
machine [39].

Additionally, research works dedicated to studying the
effects of meteorological conditions on the internal compo-
nents of photovoltaic modules were found, which can also
affect the performance of forecast models of photovoltaic
energy production ([27–31]). In this same direction, other
works point to physical aspects of the manufacture of batte-
ries for photovoltaic energy storage, pointing out its impor-
tance to be considered in hybrid models and thus improving
forecasting capabilities. A new topic with great potential is
the use of interpretable machine learning tools that can ben-
efit renewable energy generation forecasting ([41, 43, 44]).

It follows that there are many factors that affect the gen-
eration of photovoltaic energy, which can be classified into
two groups: external factors generally associated with the
environment (environment and weather), and internal fac-
tors that are related to the composition of the photovoltaic
modules and the solar plant.

Among the meteorological or external factors that fun-
damentally affect the generation of photovoltaic energy, the
following can be considered: the intensity of solar radiation,
ambient temperature, and relative humidity.

In the case of internal factors, specifically the photovol-
taic modules or panels and the elements that compose them
(silicon cells), they can be directly affected by the solar radi-
ation they absorb, increasing the temperature inside the
layers of these panels. Since not all radiation is converted
into photovoltaic energy, it is important to take into account
the quality of its components. Another internal factor to take
into account is the type of batteries, the area they occupy,
and the installation angle of the battery panel.

Both external and internal factors are strongly coupled to
form a multivariate and nonlinear relationship that affects
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the power output of the photovoltaic cells and, therefore, can
impact the forecast of photovoltaic energy production.

As a conclusion of this literature review, some weak-
nesses in the reviewed works and research gaps have been
identified, which in turn become research gaps that this
work can address, such as

(i) In general, previous research uses RNN techniques
that are trends or recommended by other authors,
and few works explore the possibility of generating
predictive models with hybrid methods. This clearly
creates an interesting research gap to address

(ii) Most of the works analyzed do not use a large vol-
ume of data in the process of generating predictive
models

(iii) Another research gap identified is related to the
possibility of incorporating into the predictive
models of photovoltaic energy production not only
variables from historical records of EAE production
and weather variables but also considering variables
associated with physical aspects of the component’s
internals of photovoltaic panels, both due to their
type and quality (silicon or organic), as well as the
radiation that can affect these components. Another

physical component to consider may be the state of
the batteries, among other components

(iv) If all the elements that affect photovoltaic energy
generation are considered as inputs for the forecast
models, the complexity of the model can increase
and would allow to improve its forecast capacity

From the weaknesses and research gaps detected in this
literature review, the problem of generating accurate forecast
models that use alternative and innovative models is
identified.

This work mainly addresses the development and valida-
tion of a base hybrid architecture to generate predictive
models of photovoltaic energy production by combining
RNN of recurrent structures with ANN of shallow struc-
tures. In addition, it uses only one input variable (EAE) of
historical records of one year of production at a solar plant,
which represents a large volume of data which, in turn,
allows to guarantee a good level of training and testing of
the models. The latter is also a differentiating element com-
pared to most of the research analyzed.

4. Materials and Methods

4.1. Origin of the Data. The sample data set for this research
work is provided by the company Solar Brothers SPA and
corresponds to the Valle Solar Oeste photovoltaic plant,
located 12 kilometers from the center of the city of Copiapó
in the Atacama region of Chile. The data contains records
for one year, from 2019 to 2020, approximately equivalent
to more than 100,000 records.

The dimensions of the data are made up of the electrical
variable EAE in KWh and the weather variables:
temperature-compensated irradiation in W/m2, ambient
temperature in °C, wind speed in km/h, and wind angle in
degrees. These data are accompanied by a timeline made

Figure 1: Valle Solar Oeste photovoltaic plant.
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Figure 2: Sample of negative values in the EAE variable.
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up of date and time, which are stored in comma-separated
values (CSV) format files.

The photovoltaic plant has meteorological stations
within the perimeter of its facilities, and due to this, the data
provided has several columns of the same variable. It covers
an area of 30.2 hectares with an ideal maximum capacity of
11.5 megawatts (MW). Its photovoltaic modules correspond
to a 325W polycrystalline silicon plate, which has horizontal
solar trackers on one axis. The solar plant comes into oper-
ation in February 2019, as can be seen in Figure 1, through
air photography taken of its facilities, it contains a large net-
work of photovoltaic modules.

4.2. Data Preparation. As indicated above, the data comes
from two generating sources, so it is important to point
out that the frequency of records of electrical and weather
variables is not the same. The measurement frequency of
the EAE is per hour, while the rest of the weather variables
come in measurements every 5 minutes and are separated

into files that contain the information referring to each of
the months of measurements.

In the raw data, the variables related to date and time
come in two columns, which are replaced by one that
gathers all the information in a single column. Within the
weather variables to be manipulated, only solar radiation
presents difficulties in the range of values. This occurs
mainly when some pyranometers (solar radiation sensors)
show negative values in the absence of solar radiation when
they really should be zero. To solve this problem, all negative
solar radiation records are replaced by the value zero.

In relation to the electrical variable, only the EAE is
available which represents the daily electrical production
measured in KWh. The records of this variable do not pres-
ent missing values. A problem detected in the EAE records is
outliers, particularly negative numbers, as shown in the
graph in Figure 2, which is highlighted with a red circle.
These negative numbers are not correct in a graph of this
type, and it is inferred that the measurement instrument
used to capture the record of this variable can cause this
anomaly.

To solve this problem, the negative numbers are replaced
by their absolute value, taking into account that at the points
where these anomalies occur, their module agrees with the
expected values of the measurement. These types of graphs
were generated during the data preparation process as part
of a preliminary exploratory analysis using the Python pro-
gramming language.

Another problem found in the records of the EAE vari-
able is the extreme values. To solve these cases, an analysis
is performed to identify the threshold limit of the values.
Considering that the maximum power obtained in the pho-
tovoltaic plant is around 9MW, a threshold of 10MW is
established. As these cases are rare, the values that exceed
10MW are replaced by the value referring to the first value
belonging to the 0.99 quantiles of the records of the EAE
variable. The graph in Figure 3 shows two cases of extreme
values found in the data, both highlighted with a red ellipse.

The data preparation stage is carried out following the
flowchart presented in Figure 4, a process that is imple-
mented with the Python programming language. First,
because the raw data is separated by months and in different
files, this process is done by iterating each file.

Then, for each file, the preprocessing tasks correspond-
ing to each variable, explained in the previous paragraphs,
are carried out: unify date and time, set negative numbers
of the radiation variable to zero, and correct negative num-
bers and extremes of the EAE variable. Once all of the above,
the processed data is added to a single table that accumulates
all the data of the work period, ordered chronologically.

4.3. Work Limitations. This research work has limitations,
on the one hand, having only one variable as input for the
generation of forecast models, and that corresponds to
EAE production data generated by the solar plant through
its system of photovoltaic panels.

And on the other hand, do not include physical and
internal aspects of the photovoltaic panels such as the state
of these panels, their level of calibration, the capacity of the

16 17 18 19 20 21 22 23 24 25
Timeline (day)

26

60000

50000

40000

0

10000

20000

30000

EA
E 

(k
W

h)

Figure 3: Exploratory sample of extreme values in the EAE
variable.
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batteries used for storage and manufacturing characteristics,
measurement noises, and shifting of sensors that can affect
daily forecast performance, among other factors such as
measurements of weather variables.

5. Forecast Models

5.1. Base Architecture. Since the objective of this work is to
generate models to forecast the weekly production of EAE
from historical records of this variable, at the beginning of
this research, experiments were carried out with models
based on an architecture of a hidden layer composed of
recurrent neurons, obtaining satisfactory but improvable
results.

In the search for better performance from these models,
new experiments are carried out that compare two types of
models. The first type of model maintains a hidden layer
with recurrent neurons of the LSTM and GRU structures.
To the second type of model, a second hidden layer with sur-
face neurons of MLP structure is added, thus obtaining 4
models, 2 of them of the first type and 2 of the second type,
the latter corresponding to hybrid RNN-RNA models.

For these experiments, 5,136 records of the total data set
were used, of these 80% were used for training and 20% for
validation. Each of these 4 models is configured with 100
epochs, batch size of 40, the first hidden layer with 60 neu-
rons (LSTM or GRU structure), and for models of the sec-
ond type, the second hidden layer with 30 neurons of MLP
structure. The optimizer used in the models is the Adam
and Huber loss function.

Table 1: Preliminary model comparison.

Models Corr. coeff. Det. coeff. MSE RMSE MAE

LSTM (preliminary hybrid model) 0.983 0.966 0.035 0.188 0.092

LSTM (trend model) 0.970 0.941 0.060 0.246 0.133

GRU (preliminary hybrid model) 0.982 0.964 0.044 0.209 0.105

GRU (trend model) 0.977 0.954 0.045 0.212 0.107

Input
layer

...

RNN
LSTM
GRU

MLP

1st
hidden layer

based on RNN

...

2nd
hidden layer
dense layer

...

Output
layer

Figure 5: Base architecture for RNN-ANN models.
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The performances of hybrid models of the second type
are compared with those of trend RNN models for LSTM
and GRU structures, which are used and recommended by
several authors [9, 10, 12, 17–22] and which are based on
RNN units. With a hidden layer and of the order of 200 neu-
rons. Table 1 shows the results of the metrics applied to the 4
models, and it can be observed, in general, that the 2 prelim-
inary hybrid models obtain a better performance in all the
metrics applied.

(Corr. coeff.: correlation coefficient; Det. coeff.: determi-
nation coefficient)

Furthermore, between the models of the first type based
only on LSTM and GRU structures, there is no great differ-
ence in relation to the correlation and determination coeffi-
cients. However, in performance metrics (MSE, RMSE, and
MAE), these models are outperformed by the proposed pre-
liminary hybrid model, which contains LSTM structure neu-
rons in the first layer and MLP structure neurons in the
second layer.

Due to the above, it was decided to generate new models
based on the hybrid architecture that combines deep RNN
structures with superficial ANN structures, since it was pos-
sible to verify that they allow adjusting the RNN models and
improving their performance. Figure 5 shows the graphical

representation of this base architecture, which is composed
of two hidden layers: the first layer is formed by neurons
with LSTM or GRU structure, and the second layer formed
by neurons with MLP structure.

In order to achieve a better performance of the hybrid
RNN-ANN models, the hyperparameters must be adjusted
based on their characteristics, for example, the number of
neurons that make up the hidden layers, the number of
batches, and the activation function, so that it is necessary
to carry out exhaustive work in the search for the best com-
bination of parameters.

5.2. Tool for Model Generation. Because there are many
combinations that can be achieved between the hyperpara-
meters to generate RNN-ANN hybrid models, a tool is
developed using the Python programming language, the
TensorFlow framework, and the Keras API. This tool allows
the modification of the hyperparameters in an agile and sim-
ple way, and in this way, to be able to generate models with a
certain configuration.

Figure 6 shows the general structure of the developed
tool. It uses two files as input, the first with the data set pre-
pared for the analysis and the second file with the values of
the hyperparameters to generate the model. The tool applies
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the transformations and aggregations to the data, builds the
model, and trains it, as well as validates it and evaluates its
performance. As output, the tool provides, in separate files,
the model with its resulting graphs (forecast, loss function,
and dispersion), and the results of the metrics applied to
measure its performance.

The hyperparameters that are considered for the config-
uration of the models are the size of the input series, output
size, percentage of the division of the data set (for training
and validation), type of recurrent cells, number of recurrent
neurons (first hidden layer), number of conventional neu-
rons (second hidden layer), data batch size, number of
epochs, activation functions, loss function, learning rate,
optimizer, and performance metrics.

5.3. Metrics for Model Assessment. It is important to point
out that the selection of metrics to evaluate the models is
directly related to the type of problem, whether it is classifi-
cation or regression. As this work seeks to perform regres-
sions, the metrics used to measure the performance of the
models can be the MAE and the MSE, which can also be
used as a loss function.

The MSE metric is simple and useful when there are
unexpected values since it is sensitive to these types of
values. On the other hand, the MAE is more convenient
when outliers are expected. In addition, the MAPE is also
used when a weighted analysis of the MAE and the RMSE,
which is nothing more than the square root of the MSE, is
desired, particularly if it is desired to work with lower error

rates. The metrics are calculated at each stage of the model
training process, and in this way its learning behavior can
be determined and the level of accuracy can be evaluated
when faced with new input values.

Another effective method to evaluate a model is to com-
pare its output with the expected value for data not used in
training. For this, the Pearson correlation coefficient is used
in the first instance. With this coefficient, the degree of the
linear relationship between two quantitative and continuous
variables can be measured. The correlation coefficient r is
basically a fraction, where the numerator is represented by
the covariance that exists between the outputs of the model
and the real value of the variable, and the denominator is
the product of the standard deviation of the actual values
and the estimated values. The value of r can be in a range
between -1 and 1. The closer the value of r is to the extreme
values, the greater the existing correlation. For cases where
r < 0, the relationship between the variables is inverse.

Finally, another metric that is also used to evaluate this
type of regression model is the determination coefficient,
which corresponds to the square of the correlation coeffi-
cient, so its values are in the interval between 0 and 1, and
it is represented as r2. It should be noted that while the cor-
relation coefficient measures the degree of association
between variables, the determination coefficient measures
the proportion of variation between these variables.

5.4. Exploratory Data Analysis. Once the data preparation
stage is finished, another exploratory analysis is carried
out, this time to observe how these data behave and the var-
iables are related over time, which substantially helps in the
configuration of the models. For this, a set of graphs is gen-
erated that allows one to visualize and compare this behav-
ior. As can be seen in Figure 7, the records of all the
variables available for this work are graphically presented.

The similarity between the EAE and radiation (IRRAD)
curves can be observed, validating the strong relationship
between these variables. In addition, the temperature
(TEMP) and wind speed (WS1) curves correspond to the
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Figure 8: Distribution of EAE in hours of the day.

Table 2: Metric results by number of neurons.

#Neurons Corr. coeff Det. coeff MSE MAE RMSE

50 0.985891 0.960576 0.038426 0.090999 0.196027

60 0.985505 0.967232 0.036443 0.088482 0.190901

100 0.985643 0.960059 0.037596 0.092096 0.193896

150 0.985167 0.965141 0.033498 0.083120 0.183024

200 0.983515 0.961897 0.039124 0.093815 0.197797
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temporal behavior of IRRAD and EAE; however, they have
an abrupt fluctuating disposition, while the wind angle
(WANG) does not show correspondence with the rest of
the variables.

As a complement to the previous graph, it can be seen in
the box and whisker diagram presented in Figure 8, where
each box represents the production in KWh of the EAE in
each hour of the day, that the highest production is achieved
in the time slot between 11 : 00 and 16 : 00 hours of the day,
precisely when there is more sunlight and possibly more
radiation. The center line of each box in this plot represents
the median of the values, while the borders represent the
lower and upper quartiles. Points outside the whiskers repre-
sent outliers.

This diagram confirms the relationship that the higher
the radiation, the higher the production of photovoltaic
energy. During the hours of sunrise and sunset, the produc-
tion of EAE presents a greater dispersion, which can present
disturbances for the models that seek to forecast this
variable.

6. Results and Discussion

Many features can be considered to obtain forecast models
based on a hybrid RNN-ANN architecture. This research
work seeks to obtain models to predict the production of
photovoltaic energy from historical EAE records, with a
good level of precision, for which the related works reviewed
and described in Section 3 are taken as references, regarding
the machine learning techniques used as well as the evalua-
tion metrics to measure the performance of the models.

6.1. Model Configuration. It should be considered that, as
defined in the base architecture of this work, the models that
are implemented contain recurrent or deep neurons (RNN)

in the first hidden layer, and the second hidden layer is
formed by superficial neurons (ANN).

The incidence of each of the hyperparameters necessary
for the generation of RNN models is analyzed separately
through different experiments in order to obtain an appro-
priate configuration that allows for achieving better the
model’s performance.

For example, the effect of the number of neurons in the
models, for which simulations are carried out by changing
only this hyperparameter. Table 2 shows the results of the
metrics obtained in the tests, where the number of recurrent
neurons varies between 50 and 200.

It can be seen that the results in the metrics are similar
for all models. This shows that sometimes a high number
of neurons does not affect the improvement of model results.
Likewise, it can be observed that the best determination
coefficient is presented by the model with 60 neurons, taking
this as one of the ideal numbers for the case study.

A second example, since this work deals with the time
series of the hyperparameter, the input series size becomes
important. To define the appropriate input series size, tests
are performed where the initial size of the input sequence
is half a day, that is, 12 hours since each element of the series
represents one hour of measurement. The rest of the tests
are done by increasing the size of the input stream by 12
hours. Table 3 shows the results of these tests and indicates
that the models with an input series size between 24 and
48 elements are the ones that obtain the best results in the
metrics.

Similarly, tests are performed to properly determine the
other hyperparameters, such as data set split, activation
function, loss function, and optimizer.

To fulfill the objective of the research, sequences of EAE
historical records are used to forecast the weekly production
of photovoltaic energy in the solar plant. Taking into
account the hyperparameters established in Table 4, for each
of the experiments carried out, models that meet, in a bal-
anced way, the best options for these hyperparameters are
selected.

In this way, three models are obtained, as shown in
Table 5. However, the selected model’s results are better,
where the base architecture is used by adding a second layer
with MLP structure and conventional neurons. The second
layer that is added to the basis of the architecture attempts
to adjust the performance of the generated models.

Another aspect to consider is that, in relation to the results
presented in Table 5, and with reference to the hyperpara-
meters established in Table 4 for each analyzed model, it is
observed that the number of recurrent neurons is correlated
with obtaining better performance values in the evaluated

Table 3: Metrics results by input series size.

Input series
size

Corr.
coeff.

Det.
coeff.

MSE MAE RMSE

12 0.954402 0.871101 0.044466 0.101433 0.210870

24 0.985295 0.967921 0.034139 0.081948 0.184767

36 0.983306 0.944769 0.038480 0.093027 0.196164

48 0.986163 0.971243 0.035201 0.085177 0.187619

60 0.983240 0.957617 0.041900 0.096921 0.204694

72 0.983250 0.954553 0.038122 0.090923 0.195248

Table 4: Selected models configuration.

Hyperparameter Model 1 Model 2 Model 3

#neurons 60 150 150

Activation function LeakyReLU LeakyReLU LeakyReLU

Loss function LogCosh LogCosh Huber

Optimizer RMSprop RMSprop RMSprop

Input series size 48 48 48

Data set split 80-20% 80-20% 80-20%

Table 5: Evaluation of the models.

Models Corr. coeff Det. coeff. MSE MAE RMSE

Model 1 0.9862 0.9652 0.0344 0.0805 0.1856

Model 2 0.9863 0.9650 0.0304 0.0771 0.1743

Model 3 0.9867 0.9708 0.0305 0.0780 0.1747
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metrics, that is, the higher the number of neurons, the better
performance the models can achieve.

It can be seen in Figure 9 that for the three selected
models, the behavior of the loss function is similar and after
20 epochs they begin to adjust, showing irregularities only in
the testing process but maintaining a low loss (less than
0.03). However, in the last epochs, the model 3 has less per-
formance loss than the other two models.

It is confirmed through the forecast graph shown in
Figure 10 that model 3 (in red) has a better approximation
to the real curve (in blue). If only the results of the metrics
given in Table 3 are observed, model 2 is the one with the
best performance in all these metrics, although with a slight
difference with respect to model 3.

However, when analyzing the behavior of the models in
their entirety and considering what is observed in the graphs
of Figures 9 and 10, model 3 is the one that is projected to
have the best predictive performance. Finally, the choice
between one model and another depends on the priority
you want to give to the hyperparameters.

6.2. Analysis of the Obtained Models. The models show accu-
rate results and good performance evaluation metrics. These
results use a sequence of the EAE variable to forecast the
next element in the sequence and thus making a short-
term forecast with an hourly frequency presenting few errors
and differences in some time intervals.

It is important to take into account that the forecast
achieved with these models does not consider the variables
and meteorological conditions, forecasts that may have
errors when unexpected meteorological events are
generated.

The forecast for each hour of the day can be added to
analyze the daily forecast. In this way, the models obtained
in this work have a high potential and a very precise forecast.

Figure 11 shows the fortnightly forecasts of model 3 for a
given period. It can be seen how the biweekly forecast of the
RNN-ANN model is even more accurate than the weekly
forecast, although they tend to always remain below the real
curve.

Another complementary analysis of the results of this
work corresponds to the dispersion obtained between the
EAE production data forecast by model 3 and the actual data
in the complete period. Figure 12 presents this dispersion
graph, where a low dispersion can be observed in the center,
with a slight dispersion at the ends.

Combining the analysis of the graphs in Figures 11 and
12, it can be deduced that the selected model 3 has great
potential to forecast the production of EAE, considering
the possibility of adding meteorological data as well as
increasing the number of data records, both for the training
and validation of these models.

It can be deduced from the results obtained through the
different experiments carried out in this research work that
increasing the volume of data, both for the training and val-
idation of the models, allows to guarantee a substantial
improvement in the performance of the forecast models.

In the preliminary experiments, several models were dis-
carded until the three models finally selected were obtained,
and it can be seen from Table 5 that these models have little
difference in performance in the metrics applied.

Another aspect that would ensure better performance of
these proposed models is to include additional variables in
the input, such as weather measurements (temperature,
radiation, relative humidity, etc.), characteristics of the pho-
tovoltaic panels and their components (silicon cells, type of
panel, internal temperature, etc.), manufacturing character-
istics of batteries for storing the energy generated (coating,
capacity, etc.), and measurement and shift noises from sen-
sors, among other variables.
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Figure 9: Behavior of the loss function in the selected models.
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7. Conclusions and Future Work

As indicated at the beginning of this article, photovoltaic
energy is currently one of the most widely used renewable
energy technologies to reduce polluting emissions. There-
fore, developing advanced forecast models is one of the most
efficient ways to accelerate the use of clean energy, meet the
demand for electrical energy, and, at the same time, contrib-
ute to caring for the environment of our planet.

In this line of argument, the work seeks to contribute to
the efficiency of renewable energies, particularly in the preci-
sion of the forecast of photovoltaic energy production in
solar plants.

For this, in the first place, an exhaustive bibliographical
study was carried out on research works that point to this
dimension. As a result of this study, it was possible to deter-
mine the currently most used techniques and metrics for the
generation of forecast models applied in the production of
photovoltaic energy.

Three groups of techniques were identified: statistical
approaches (regressions, Bayesian networks, and time series
with ARIMA or ARMA), machine learning techniques
(ANN, RNN, SVM, and AG), and hybrid approaches (statis-
tical methods+machine learning+physical models).

Of all these techniques, the most used corresponds to the
RNN, followed by the ANN. The RNNs stand out for their
capabilities in efficient management for the processing of
data ordered in time series.

Additionally, the tendency to generate hybrid models
incorporating physical aspects related to the composition
of photovoltaic modules is confirmed.

Regarding the metrics to evaluate the performance of
these models, the most used are MSE, MAE, RMSE, MAPE,
AIC, and BIC.

Secondly, considering the conclusions of the previous
study, a hybrid RNN-ANN architecture is proposed and
developed to generate forecast models with two hidden
layers, which combine recurrent neurons with LSTM or
GRU structure in the first layer and shallow neurons with
MLP structure in the second layer.

For the implementation of this proposal, a computa-
tional tool is built using the Python programming language,
the TensorFlow framework, and the Keras API, which exe-
cutes the phases of data preparation, RNN-ANN hybrid
architecture, generation, and validation of the models. The
main characteristic of this tool is its simplicity and flexibility,
which allow the encapsulation and generalization of the
hyperparameters required in the generation of the forecast
models.

The data set used for the training and validation of the
models corresponds to records of one year of photovoltaic
energy production with intervals of one hour and ordered
in time series. The volume of real data used in this work also
makes a big difference with respect to the works reviewed.

Third, different controlled experiments were carried out,
which allowed generating a set of preliminary models that
were adjusted until finding and selecting three models with
the best performance in the applied metrics. These practical
experiments have verified the superiority of the models gen-

erated through the RNN-ANN hybrid architecture in terms
of forecast performance over state-of-the-art models, as rec-
ommended in the literature and empirically compared in
Table 5.

Summarizing the main findings and contributions of this
work, these are the following:

(i) Through the bibliographical study developed, it was
possible to detect that there are no works that use
RNNs that combine recurrent neurons with superfi-
cial neurons, generating a research gap in relation to
hybrid models for forecasting. For this reason, the
development and validation of the proposal of a
hybrid RNN-ANN architecture opens an interesting
line of research with potential for improvement in
the generation of models with greater precision in
their forecasts, mainly using data ordered in time
series

(ii) Another contribution of this research work is the
development and availability of a tool that, given
its generality both for data preparation and in the
configuration of hyperparameters to generate
models, can be reused in various use cases, not only
to forecast the production of photovoltaic energy
but for all types of predictive requirements, where
they are used in time series

(iii) Regarding the results obtained, the models gener-
ated under this RNN-ANN hybrid architecture are
capable of predicting the production of photovoltaic
energy from a solar plant for the next few hours
using only historical production records. They do
this with a high level of precision, as can be seen
from the results in the metrics in Table 5

(iv) These forecast models are functional and have been
validated using real data with different weather cir-
cumstances. Specifically, the selected model with
the best performance is capable of forecasting the
production of photovoltaic energy in the next few
hours with a correlation coefficient of 0.98, coeffi-
cient of determination of 0.97, MSE of 0.03, MAE
of 0.07, and RMSE of 0.17

(v) It can be deduced that the results of this work can be
useful for solar plants and their electricity operators,
since through the forecasts provided by the models,
they can support efficient planning and thus achieve
a balance between the capacity of generation and
consumption of photovoltaic energy

(vi) Finally, it is concluded that improving the accuracy
of photovoltaic energy forecast models is essential to
increase the amount of this type of energy and thus
be able to contribute significantly to existing electri-
cal systems

As future work, it is considered to explore additional
aspects that provide improvements to the forecast models
of photovoltaic energy production, such as
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(i) Generation of models with other RNN configura-
tions and new combinations of hyperparameters in
search of more precise results

(ii) Increase the sample data set by incorporating new
data records, mainly in the model training process

(iii) Generation of multivariable models, integrating the
weather variables available in the data set, such as
temperature, radiation, relative humidity, and wind
speed

(iv) Determine the meteorological variables that most
influence the production of EAE, as well as the pre-
cision of the forecast models

(v) Include in the generation of forecast models vari-
ables that are related to external factors or physical
aspects, such as elements of the internal composi-
tion of photovoltaic panels, temperature generated
by solar radiation in these components, measure-
ment noise, and change of sensors, in other aspects

(vi) As mentioned above, if all the elements that affect
photovoltaic energy generation are considered
inputs to forecast models, the complexity of the
model can increase, and more input variables will
improve its forecast capability

Nomenclature

RNN: Recurrent neural networks
LSTM: Long short-term memory
GRU: Gated recurrent units
ANN: Artificial neural networks
MLP: Multilayer perceptron
RMSE: Root mean square error
CO2: Carbon dioxide
EAE: Active energy exported
API: Application programming interfaces
MSE: Mean squared error
MAE: Mean absolute error
MAPE: Mean absolute percentage error
SRNN: Simple recurrent neural network
BiRNN: Bidirectional recurrent neural
ARMA: Autoregressive moving average
ARIMA: Autoregressive integrated moving
SARIMA: Seasonal autoregressive integrated moving

average
BiLSTM: Bidirectional long-short-term memory
ESDA: Electrostatic discharge algorithm
GRNN: Generalized regression neural network
IGD: Indicator of gradient descent
SVM: Support vector machine
GA: Genetic algorithm
AIC: Akaike information criterion
BIC: Bayesian information criterion
CSV: Comma-separated values
IRRAD: Radiation
TEMP: Temperature
WS1: Wind speed

WANG: Wind angle
KWh: Kilowatt hour
°C: Degree celsius
W/m2: Watt per square meter
MW: Megawatts
r: Pearson correlation coefficient
r2: Determination coefficient.
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