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In this study, speed control of PV battery-powered brushless DC motor (BLDC) is controlled by novel hybrid horse herd particle
swarm optimization- (HHHPSO-) tuned proportional integral derivative (PID) controller. The optimal gain parameter of the PID
controller is tuned by hybrid horse herd optimization algorithm. The purpose of the newly developed HHHPSO algorithm is to
enhance the performance of the classic horse herd algorithm (HHA), specifically in two different ways. In the first place, it bolsters
HHA’s aptitude for exploratory learning related to the ageing issue. By doing so, it is possible to circumvent the phenomenon of
the local minimum stagnation. Second, it permits HHA to have a superior capability of exploitation with the assistance of
hybridization through the utilisation of particle swarm optimization. This hybrid technique helps improve the rate
convergences of the HHA method. The time domain-based performance indices were considered as an objective function such
as addition of integral of squared speed error, integral of squared current error, and integral of squared electromagnetic torque
error for finding the optimal gain values for the PID controller using HHHPSO. The proposed HHHPSO-tuned PID controller
for PV battery-powered BLDC motor is tested for various working conditions such as constant speed conditions, varying speed
conditions, and varying load conditions and also compared with state-of-the-art method. The proposed method has quick rise
time around 20-21msec, quick settling time around 35-39msec, zero steady-state error, and zero overshoot than state-of-
the-art optimization method. The proposed control techniques were also tested in hardware to confirm the suitability for
real-time applications.

1. Introduction

Packaging equipment, compressors, riders, elevators, con-
veyor belts, mills, fans, pumps, and many more have all
included BLDC motors in recent years [1]. Other uses for
BLDC motors include those in electric vehicles, medical
devices, robotics, car industry, and aerospace. The BLDC
motor is superior to conventional induction motors in sev-
eral respects, including its versatility in speed regulation, its
power density, its torque-to-weight ratio, its low mainte-
nance requirements, and its efficiency [2]. Many applications
need the usage of a three-phase BLDC motor in order to

lessen their carbon footprint by decreasing their need for
fuel and the complexity of their control systems. A BLDC
motor is essentially the same as a permanent magnet syn-
chronous motor (PMSM). For the purpose of generating a
trapezoidal back EMF [3], permanent magnets are installed
on the rotor and windings are placed on the stator. The
BLDC’s functioning is structured, and its key variable is
the rotor’s orientation.

The BLDC motor’s control may be divided into two dis-
tinct categories: sensorless control and sensor-based control.
In sensor-based control, the Hall effect sensors are used to
determine where the rotor of the BLDC motor is located
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[4]. The control of speed of the BLDC motors is crucial for
achieving ripple-free operation of speed and torque of the
BLDC motor [5]. Because of the inductance effect of the
winding, the rectangular stator current and trapezoidal back
EMF of a BLDC motor take on their characteristic shapes. In
order to calculate the speed variations caused by the stator
current deviation, the ideal rectangular form is used [6–8].
The motor’s vibration and sound are a result of its increased
speed. The motor’s speed regulation is vital factor for
enhancing the efficiency of the BLDC motors [9]. Compared
with proportional integral (PI) controllers, PID controllers
are commonly used to control the BLDC motor’s speed. In
contrast to PI controllers, PID controllers may be fine-
tuned to provide ideal speed control, noise suppression,
and vibration damping via a combination of these features.
Furthermore, BLDC motor speed is regulated by PID con-
trollers [10]. Furthermore, a BLDC motor’s speed control-
ler’s performance relies heavily on the fine-tuning of PID
gains. Parameter tuning for a PID controller requires deter-
mining the best possible proportional, integral, and deriva-
tive gains for the PID controller to achieve the speed
tracking performance [11].

In most cases, adjusting a PID controller is an extremely
difficult process that is completed using a combination of
rule-based and empirical approaches. PID control parame-
ters are tuned using the rule-based Ziegler Nichols tuning
technique [12]. The rule-based approach takes longer, is
more time-consuming task, and causes hardware damage
during control operations. Because of these properties, cer-
tain higher-order plants should not be supported by rule-
based techniques, and again, it is increasing the tuning time

as a result [13]. By using an integral square error (ISE) as the
goal function for PID tuning, numerous researchers have
created several optimization-based approaches for many
applications at present. Tuning the PID controller to regu-
late the speed of the BLDC motor is the subject of a number
of optimization techniques [14, 15]. Genetic algorithm (GA),
fuzzy logic controller (FLC), bacterial foraging optimization
(BFO), particle swarm optimization (PSO), artificial bee
colony (ABC) optimization, firefly algorithm (FA), etc., are
all examples of metaheuristic algorithms used for tuning of
PID controller in application of speed control of BLDC
motor. The next subsection provides the literature review
on controllers and optimization methods used for control
of BLDC motor and related applications.

1.1. Literature Review on Related Works. Comparison of
model reference adaptive control (MRAC) with PID
compensator and self-tuning fuzzy PID control for high-
performance brushless DC motors is shown in [16]. The
aim is to have the rotor speed tracked accurately regardless
of load disturbance or changes in the parameters. MRAC
with PID compensator outperforms self-tuning fuzzy PID
control in simulations. High overshoot and a persistent
steady-state inaccuracy, however, are the outcome of MRAC
implementation alone.

In [17], we see how the flower pollination algorithm can
be used to manage the speed of a brushless DC motor
(BLDC) with optimal PID tuning. The flower pollination
method mimics the process of pollination in flowers and is
a metaheuristic optimization algorithm inspired by nature.
Particle swarm optimization (PSO) and firefly algorithms,
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Figure 1: Analysis of control strategy of BLDC motor.

2 International Journal of Photoenergy



both of which are inspired by natural processes, are used as
benchmarks to evaluate the algorithm’s performance. The
system tests revealed that the BLDC motor’s speed response
has a chattering problem and a significant overshoot.

In [18], a PI+DF controller is constructed by fusing a PI
control law with windup protection with a derivative path
that employs a first-order low-pass filter. Next, the stochastic
fractal search (SFS) technique, which is analogous to particle
swarm optimization, is used to fine-tune the controller’s
gains, which include proportional, integral, derivative, and
filter gains. There is significant overshoot in the speed
response of the BLDC motor when using the SFO approach.

In [19], the fast terminal sliding mode control (FTSMC)
strategy for controlling the speed of switching reluctance
motors (SRMs) is described. By incorporating a fuzzy logic
compensator into the FTSMC, this controller is able to
dampen chattering effects and increase the sign function’s
value. The research shows that the proposed method is supe-
rior in the time and frequency domains compared to the
proportional integral method and the traditional sliding
mode control method. However, designing this controller
is a time-consuming procedure due to its complexity.

In [20], an adaptive sliding mode observer (SMO) is
studied for sensorless control of a brushless DC motor.
The boundary layer is adaptively adjusted for changes in

speed using fuzzy algorithms, and the observer is built with
a sinusoidal saturation switching function. As a result, the
observer is better able to make accurate predictions of low-
and high-speed EMF values, rotor positions, and rotor
speeds. Due to its straightforward design, high computing
efficiency, and resilience, the SMO method has largely sup-
planted the extended Kalman filter (EKF) and model refer-
ence adaptive systems (MRAS). However, EKF and MRAS
are both inadequate for widespread use in industry because
of their restrictions.

In [21], we see how the sine cosine algorithm (SCA) can
be used to tune a PID controller for DC motor speed regula-
tion. The SCA is a recently developed optimization method
that use sine and cosine functions to generate a set of initial
candidate solutions then iteratively refine them until the
optimal one is reached. The authors evaluate their SCA/
PID strategy against conventional methods. The results of
the tests showed that their method produced a lot of over-
shoots, a long rise time, and a long settling time.

In [22], the authors offer a method for controlling the
speed of a DC motor by combining the Henry gas solubility
optimization (HGSO) algorithm and adversarial learning
(OBL). An OBL/HGSO-tuned PID controller is used to
reduce the integral of time multiplied absolute error (ITAE)
in this method. Robustness and disturbance rejection
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abilities of the proposed OBL/HGSO-PID controller are
then evaluated, and the controller is compared to others
modified with various optimization strategies. These optimi-
zation algorithms are not without their drawbacks, though,
as they require more processing power, converge too
quickly, get stuck at a local minimum, have poor parameter
tuning flexibility, and take too much time to run.

A stochastic fractal search (SFS) technique is proposed in
[23] for approximation and control of linear time-invariant
(LTI) systems. The diffusion property seen in random frac-
tals is exploited by SFS, a nature-inspired algorithm, to
uncover the search space, making it accessible for usage in
control systems. Low-order systems (LOS) are obtained
from high-order systems (HOS) using SFS in approximation
of LTI systems, with the original HOS’s transient and
steady-state features preserved. Simulation results show that
SFS combined with a PID controller provides better control
of a DC motor than a traditional PID controller. These opti-
mization algorithms are not without their drawbacks,
though, as they require more processing power, converge
too quickly, get stuck at a local minimum, have poor param-
eter tuning flexibility, and take too much time to run.

The optimal tuning of fractional order proportional
+integral+derivative (FOPID) controllers for DC motor
speed control is provided in [24], along with the atom search
optimization (ASO) algorithm and a novel chaotic variant
termed the chaotic atom search optimization (ChASO) algo-
rithm. The convergence rate and resulting precision of the
ChASO algorithm are improved over those of ASO thanks
to its foundation in logistic map chaotic sequences. The
ASO and ChASO algorithms are useful because they are
straightforward, can be quickly implemented, and can be
used to a wide range of optimization problems. Conse-
quences of using heuristic optimization techniques include
sluggish convergence or early convergence to inferior solu-
tions, both of which can result from using inappropriate
parameter values.

In [25], the grey wolf optimizer (GWO) algorithm is
used to fine-tune the settings of a PID controller used to reg-
ulate the rotational velocity of DC motors. The GWO algo-
rithm is based on the cooperative hunting strategies of grey
wolves and is aimed at striking a happy medium between
discovery and exploitation. The study gives a comparison
and robustness analysis of the GWO/FOPID method,
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contrasting its settling and rising times and finding that it
has comparable overshoot to other methods already in use.
These optimization algorithms are not without their draw-
backs, though, as they require more processing power, con-
verge too quickly, get stuck at a local minimum, have poor
parameter tuning flexibility, and take too much time to run.

Brushless DC (BLDC) motor speed management using a
fractional order fuzzy PI (FOFPI) controller is studied in
[26]. The FOFPI controller uses the whale optimization
algorithm (WOA) for optimization, and it solves these prob-
lems. The robustness of the suggested controller was con-
firmed through an examination of the control system’s
performance at varying speeds. However, in nonlinear and
unpredictable systems, this controller performs poorly.

To optimize the parameters of a FOPID controller for speed
control of a DCmotor, [27] uses a hybrid of manta ray foraging
optimization (MRFO) and simulated annealing (SA) algorithm
(OBL-MRFO-SA). Time domain and frequency domain simu-
lations, robustness, and load disturbance rejection assessments
are only some of the ways that the algorithm is tested.

In [28–30], an improved slime mould algorithm (ISMA) is
described for managing the speed of a direct current (DC)
motor and keeping the terminal voltage level of an automated
voltage regulator (AVR) constant. By combining a modified
opposition-based learning scheme with the Nelder-Mead sim-
plex search method, the suggested approach enhances the
exploration and exploitation capabilities of the original slime
mould algorithm.

The simulated annealing (SA) algorithm is embedded
within an enhanced version of the atom search optimization
(ASO) algorithm to improve its search capability in [31].
This enhanced version is called hASO-SA. Multilayer per-
ceptron (MLP) training and proportional integral derivative
(PID) controller design for regulating DC motor speed are
just two examples of the linear and nonlinear issues that
benefit from the hybrid algorithm’s optimization. Unimodal,
multimodal, hybrid, and composition benchmark functions
are all put through their paces using this approach.

The PID controller used to regulate DC motor speed is
tuned with a hybrid algorithm (LFDNM) described in [32].
The technique combines the robust local search capabilities
of the Nelder-Mead (NM) algorithm with the exploratory
nature of the Levy flight distribution (LFD) algorithm. Sim-
ulations were used to check the effectiveness of the suggested
method in comparison to the cuckoo search algorithm,
genetic algorithm, and original LFD algorithm.

When examining the above literature reviews, some of
the optimization and control methods have high overshoot,
high settling time, high rise time, and high steady-state error.
Some methods are very complex and not applicable to
industrial application. Some optimization takes longer con-
vergence time and trap into local minima and requires lot
more trials for getting optimal values for the controllers.
These are to be considered as research gap in the literature
review. This is considered as problem statement for this
paper, and it is going to address using hybrid horse herd
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particle swarm optimization. The PSO provides quick conver-
gence results and works well in exploration phase, and HHA
works well in exploitation phase from the results of the PSO.

The main contribution of this article is presented as
follows:

(i) To optimize the PID controller’s gain parameter to
regulate the speed of a BLDC motor using a hybrid
horse herd particle swarm technique

(ii) MATLAB simulation developed for implementing pro-
posed hybrid horse herd particle swarm optimization-
tuned PID-controlled PV-powered BLDC motor

(iii) The proposed controller is compared with SCA
[21], GWA-FOPID [22], CASOA [23], SFSA [24],
HGSOA [25], WOA [26], and FA [33]

(iv) Experimental verification of the proposed method
realized for checking the suitability of the proposed
work

The rest of the article is organized as follows: Section 2
detailed the BLDC motor’s modelling, and Section 3 out-
lined the proposed methods for regulating the motor’s speed
using a PID controller, and controller optimization tech-
nique and procedure are described. In Section 4, simulation
and experimental findings based on our proposed technique
are described. Finally, in Section 5, we discuss the inferences
of our work and work for future.

2. Design of the Speed Control of BLDC Motor

Because of its high-power density, extended working life,
low noise, high efficiency, and excellent speed vs. torque
characteristics [21], the brushless DC motor (BLDC) is gain-

ing popularity and is employed in a variety of applications.
Despite the decades of steady progress in adjustable speed
driver control, microprocessors, and semiconductors, these
applications need effective control of the speed in all kinds
of operating conditions. Therefore, the BLDC motor’s speed
regulation is crucial for optimizing the motor’s performance.
Figure 1 depicts the suggested speed control for the BLDC
motor. BLDC motor was powered by PV and battery system.

An encoder is used to determine the BLDC motor’s rota-
tional velocity or speed. The speed is then compared to the
standard reference speed as per application, and the speed
error is calculated. The PID controller receives the speed
error. The developed hybrid horse herd particle swarm opti-
mization approach is used to fine-tune the gains of the PID
controller. The tuning of the PID controller is subjected to
minimize the fitness function or objective function of the
BLDC motor, and it is framed as a multiobjective function.
In this work, multiobjective function has additions of the
integral of the squared speed error value (ISSE), integral of
squared current error value (ISCE), and integral of squared
torque error value (ISTE). The Mut objective function is rep-
resented by the following equations:

ϑ =min Δ1 + Δ2 + Δ3ð Þ, ð1Þ
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Table 1: Specification parameters of BLDC motor.

Description Values

Stator phase resistance (Rs) 0.2 (ohm)

Stator phase inductance (Ls) 8.5e-3

Flux linkage 0.175

Back EMF flat area 120 (degrees)

Inertia 0.089 J (kg·m2)
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where Δ1 = ϑ1, Δ2 = ϑ2, and Δ3 = ϑ3.

Δ1 =
ðT
0
Nref −Nbldcð Þ2, ð2Þ

Δ2 =
ðT
0
Iref − Ibldcð Þ2, ð3Þ

Δ3 =
1

Tbldc

ðT
0
Tmax − Tminð Þ2: ð4Þ

From these equations, Δ1, Δ2, and Δ3 are represented as
ISSE, ISCE, and ISTE, correspondingly. The multiobjective
function of ϑ1, ϑ2, and ϑ3 is represented as ISE current error,
ISE speed error, and ISE torque ripple, correspondingly. The
error values are determined and pass to the proposed con-
troller and optimization algorithms. In PID regulator, the
speed and current control are accomplished by the optimal
choice of gain parameters. In operating condition, the actual
speed (Nbldc), current (Ibldc), and torque (Tbldc) are evaluated
from the BLDC motor. Afterward, the actual speed, current,
and torque values are contrasted by means of the reference
values (Nref , Iref , and Tmax − Tmin). The reduction of error
values ϑ is minimized by the tuning of PID regulator using
HHHPSO method. The controller gain parameters are cal-
culated in the exploitation of hybrid horse herd particle
swarm optimization algorithm. The brief depiction of PID
controller model and design is presented in Section 2.2.
The next section explains the modelling of the BLDC motor.

2.1. Mathematical Modelling of the BLDC Motor. Modelling
a BLDC motor is analogous to modelling a synchronous
machine. At first, a BLDC motor is connected to a three-
phase power supply. The BLDC motor is unique in that it
can operate with a nonsinusoidal power supply. The peak

voltage should not be higher than the motor’s maximum safe
operating voltage. The following equations are used for
denote the voltage of the BLDC motor armature windings:

ua = ia × ra +
dia
dt

× La + ea,

ub = ib × rb +
dib
dt

× Lb + eb,

uc = ic × rc +
dic
dt

× Lc + ec,

ð5Þ

where ea, eb, and ec can be described as the trapezoidal back
EMF of different phases such as phases a, b, and c; ia, ib, and
ic can be described as the motor input current of phases a, b,
and c; ua, ub, and uc can be described as the terminal voltage
of phases a, b, and c; ra, rb, and rc can be referred as the
armature resistance of stator phase winding; and La, Lb,
and Lc can be represented as the armature self-inductance
of the BLDC motor [22]. Based on the motor specifications,
the voltage equation matrix is derived which is presented in
the below equation:
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phases. The following equations represent the BLDC motor
with mutual inductance form:

ra = rb = rc = r,
La = Lb = Lc = L,
Lab = Lac = Lba = Lbc = Lca = Lcb = Lm,

ua

ub

uc

2
664

3
775 =

r 0 0
0 r 0
0 0 r

2
664

3
775

ia

ib

ic

2
664

3
775 + d

dt

L Lm Lm

Lm L Lm

Lm Lm L

2
664

3
775
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ib

ic

2
664

3
775 +

ea

eb

ec

2
664

3
775:
ð7Þ

The back EMF phase equations are computed based on
rotor position of the motor and speed of the motor and rep-
resented in the following equations:

ea

eb

ec

2
664

3
775 =

Kv × f as θð Þ × ω

Kv × f bs θ + 2π
3

� �
× ω

Kv × f cs θ + 4π
3

� �
× ω

2
6666664

3
7777775
, ð8Þ

where ω can be represented as the speed of rotor (rad/sec);
f as, f bs, and f cs can be represented as the trapezoidal func-
tions; θ can be represented as the electrical rotor angle; and
Kv can be represented as back EMF constant of one phase
(v/rad/sec). The trapezoidal functions are described in the
following equations:

f as θð Þ =

6θ
π

0 < θ ≤
π

6 ,

1 π

6 < θ ≤
5π
6 ,

−1 − 0 − 5π/6ð Þð Þ
π/6

5π
6 < θ ≤

7π
6 ,

−1 7
6 < θ ≤

11π
6 ,

−1 + θ − 11π/6ð Þð Þ
π/6

1π
6 < θ ≤ 2π:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð9Þ

Similarly, the functions of the f bs and f cs can be
described in the following equations:

f bs = f as θ + 2π
3

� �
,

f cs = f as θ + 4π
3

� �
:

ð10Þ

There is a correlation between the mechanical rotor
angle and the electrical rotor angle, as well as the number
of pole pairs. The mathematical relation of the electrical
and mechanical rotor angles is described in the following
equation:

θ = P
2 θm, ð11Þ
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Figure 7: Analysis of BLDC at 1500 rpm: (a) current, (b) voltage, (c) mechanical torque, and (d) motor torque.
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where θm is represented as angle of rotor in mechanical
degree in the motor. Tbldc is the electromagnetic torque
which can be described as the below equation:

Tbldc =
ea × ia + eb × ib + ec × ic

ω
: ð12Þ

From the motor torque, equation with inertia, load tor-
que, and friction coefficient can be represented in the below
equation:

Tbldc − TL = J
dω
dt

+ B × ω, ð13Þ

where TL is the load torque of the BLDC motor, J is the
moment of inertia of the BLDC motor, and B is the friction
coefficient of the BLDC motor.

2.2. Description of the PID Controller. The gain parameter of
the PID controller used in the speed, current, and torque
controller is optimized using HHHPSO to minimized objec-
tive function mentioned in Equations (1) to (4), and also for
minimizing the torque ripple, the following constraints
should meet during optimization, and it is described as the
following equations:

max ϑ2ð Þ < ξ: ð14Þ

From Equation (14), the maximum current limit is rep-
resented by the constraints ξ. Here, the ξ = 0:9 value is calcu-
lated by the trial error method. The gain limitations for PID
controllers, current limitation, speed limitation, and rotor
angle limitation are described in the following equation to
obtain optimal values of the PID controllers:

KP,min ≤ KP ≤ KP,max,
KI,min ≤ KI ≤ KI,max,
KD,min ≤ KD ≤ KD,max,
Vmin ≤V ≤ Vmax,
Imin ≤ I ≤ Imax,

θon,min ≤ θ ≤ θon,max,
θoff ,min ≤ θ ≤ θoff ,max:

ð15Þ

The gain parameters are calculated by means of the pro-
cedure of HHPSO. Normally, the tuning of gain parameters
is accomplished by the speed, current, torque, and turn on
and turn off angle control of BLDC. With the use of a
HHPSO technique, the best gain parameters are determined.
In the following section, the detailed steps taken by the
HHPSO techniques are provided.

3. Hybrid Horse Herd Particle
Swarm Optimization

Particle swarm optimization, horse herd optimization, and
hybrid horse herd particle swarm optimization are discussed
in this section.

3.1. Horse Herd Optimization Algorithm. To develop the
HHO algorithm, we studied equine behaviour in its natural
settings. Horses often display the grazing (A), hierarchical
(B), sociable (C), imitative (E), and defensive (D) behaviours
(F) [34]. Because of this, our algorithm was inspired by the
six behaviours of stallions over many ages. The horse move-
ment equation is described below:

Ziter,AGE
i = Siter,AGEi + Z iter−1ð Þ,AGE

i , AGE = α, β, γ, δ: ð16Þ

0.2 0.4 0.6 0.8 1 1.2
Time (sec)

1.4 1.6 1.8 20
0

1000

2000

3000

Sp
ee

d 
(R

PM
)

4000

5000

6000

Figure 9: Speed reference variation.

11International Journal of Photoenergy



0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
Time (sec)

Cu
rr

en
t (

A
)

0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

Time (sec)

Vo
lta

ge
 (V

)

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

−200

−100

0

100

200

(b)

Time (sec)

To
rq

ue
 (N

m
)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0

0.2

0.4

0.6

0.8

1

1.2

−0.2

(c)

Figure 10: Continued.

12 International Journal of Photoenergy



The ith stallion’s location is shown by Ziter,AGE
x , the stal-

lion’s age range is shown by AGE, the current repetition is
indicated by Iter, and the horse’s velocity is shown by
Siter,AGEi . Horses’ personalities and habits change as they
mature. It is estimated that the average life expectancy of a
horse is between 25 and 30 years. Equine ages 0–5 years,
5–10 years, 10–15 years, and above 15 years are represented
as α, β, γ, and δ. Iteratively sifting through a whole matrix of
responses is the best strategy for determining the appropri-
ate age for stallions. Using a best-response ranking, we
may choose 10% of the horses in the whole matrix as
“horses” for further examination. That group comprises
the next 20% of survey takers. The remaining 30% are γ
horses, while 40% are just plain horses.

For food, they graze on grass, forage, and other plants.
They graze for 16–20 hours a day, with very little downtime
in between. Continuous eating describes the condition in
which a person eats without stopping. Maybe you have seen
the mares and their young in the pasture. The HHO algo-
rithm calculates an estimated grazing space for each horse
by using a coefficient of grass. Horses of all ages are often
seen frolicking on the grass. The following formula is a
mathematical implementation of grazing:

Aiter,AGE
i = ai

iter,AGE × U + R × Lð Þ × Z iter−1ð Þ
i

� �
, AGE = α, β, γ, δ,

ai
iter,AGE = ai

iter−1ð Þ,AGE ×wa,
ð17Þ

where wa is the horse’s motion parameter and Aiter,AGE
i dem-

onstrates the horse’s inclination to graze. With this consider-
ation, in the linearity ofai

iter,AGE, each iteration is reduced.

The results of this formula vary between zero and one, with
R being a random value between zero and one. Taking all
ages into account, set U and L to 1.05 and 0.95, respectively,
and set the constant wa to 1.5.

In the wild, horses have no place. They behave similarly
to humans in that they obey someone in authority. Adult
stallions and mares, following the law of hierarchy, are also
responsible for leading herds of wild horses. Coefficient h
of HHO considers herd behaviour in which animals tend
to flock to the leader. Young horses (aged 5–15) have been
the subject of substantial research, and the extent to which
they conform to the law of hierarchy has been quantitatively
defined as

Biter,AGE
i = biter

iter,AGE × Z iter−1ð Þ
∗ − Z iter−1ð Þ

i

� �
, AGE = α, β, γ,

bi
iter,AGE = bi

iter−1ð Þ,AGE ×wb:

ð18Þ

Biter,AGE
i demonstrates that the best horse location has a

large effect on the velocity parameter, and Zðiter−1Þ
∗ reveals

the precise position of the best horse.
Horses thrive in social environments and may even be

housed among other animals. Consequently, the stallions
are being targeted by predators, while the herd environment
previously made them feel secure. Being part of a diverse
community increases your chances of staying alive and
breaking free. Due to their extroverted nature, horses often
engage in violent altercations with one another. It is because
of the horse’s individuality that they gets so excited. It seems
that some of the horses would rather not be alone, since they
get along rather well with the cattle and sheep. The horse

Time (sec)

To
rq

ue
 (N

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−10

0

10

20

30

40

(d)

Figure 10: Analysis of BLDC for varying speed conditions: (a) current, (b) voltage, (c) mechanical torque, and (d) motor torque.
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seems to be moving toward the middle of the pack. Equating
a horse’s social behaviour to the following formula, we can
see that young horses (aged 5-15) are very social:

Citer,AGE
i = citer

iter,AGE × 1
N
〠
N

k=1
Z iter−1ð Þ
k

 !
− Z iter−1ð Þ

i

 !
, AGE = β, γ,

ci
iter,AGE = ci

iter−1ð Þ,AGE ×wc:

ð19Þ

The social velocity vector, Citer,AGE
i , of the ith stallion,

and the direction, Citer,AGE
i , towards the herd, are both

defined in terms of age. Each iteration, Citer,AGE
i , decreases

by a factor of wc. Both the total number of horses and their
age distribution are shown in the N field. To do a parameter
sensitivity analysis, we determine the c coefficients for both
and horses. It is commonly known that horses learn from
one another, both good and harmful habits like where to
locate grass. The current algorithm also takes equine
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Figure 11: Analysis of BLDC for varying speed conditions: (a) pulses of inverter, (b) rotor angle, and (c) output speed.

Table 2: PID gains for speed control of BLDC motor.

S. no. Tuning method
Gain parameters of the PID

Proportional Integral Derivative

1 Proposed HHHPSO 0.35 1.25 0.05

2 SCA [21] 11.3163 0.5544 1.8072

3 GWA-FOPID [22] 18.328 4.9418 3.2612

4 CASOA [23] 11.9437 2.0521 2.4358

5 SFSA [24] 1.6315 0.2798 0.2395

6 HGSOA [25] 13.4430 1.2059 2.2707

7 WOA [26] 12.3 1.4 1.7

8 FA [33] 11.4 2.3 2.64

Table 3: Transient response criteria for PID control in BLDC motor.

S. no. Tuning method
Transient response criteria

Maximum overshoot Rise time Settling time

1 Proposed HHHPSO No overshoot 0.021 0.039

2 SCA [21] 0.192 0.0833 0.138

3 GWA-FOPID [22] 0.51 0.058 0.1172

4 CASOA [23] No overshoot 0.0253 0.0405

5 SFSA [24] 0 0.638 1.06

6 HGSOA [25] 0 0.0798 0.0457

7 WOA [26] 0 0.035 0.0498

8 FA [33] 0 0.033 0.0476
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mimicry into account. The following equation expresses the
lifelong tendency of a young horse to mimic its elders:

Eiter,AGE
i = eiter

iter,AGE × 1
pN

〠
pN

k=1
Z iter−1ð Þ
k

 !
− Z iter−1ð Þ

i

 !
, AGE = γ,

ei
iter,AGE = ei

iter−1ð Þ,AGE ×we:

ð20Þ

In order to get to where the best horses in the region

average, Eiter,AGE
i indicates Zðiter−1Þ

k positions. pN is the total
number of top-finishing horses. Roughly 10% of the horses

have been put up as p. If we apply the above example, we
see that the reduction factor is denoted by the symbol we.

Horses’ abusive treatment at the hands of predators may
be seen in the animals’ subsequent behaviour. For self-pres-
ervation, they exhibit the fight-or-flight response. The need
to run away is ingrained in them. Furthermore, if they are
captured, they will buck. Horses instinctively defend their
territory and territory resources from competitors and pred-
ators like wolves. The protective mechanism of a horse in the
HHO algorithm is to avoid collision with other horses that
provide incorrect replies. Essential to their defence is factor
d. In the face of danger, horses have two options: flee away
or stand their ground. A horse, whether young or old, will
always choose this safety mechanism if given the chance. A
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negative coefficient represents the horse’s protective mecha-
nism, which protects it from being positioned incorrectly.

Diter,AGE
i = −diter

iter,AGE × 1
qN

〠
qN

k=1
Z iter−1ð Þ
k

 !
− Z iter−1ð Þ

i

 !
, AGE = α, β, γ,

di
iter,AGE = di

iter−1ð Þ,AGE ×wd ,
ð21Þ

where Diter,AGE
i is the outflow vector of the ith stallion from

the worst-case placements of the Zðiter−1Þ
k vector. In addition,

the worst-case total number of horses is provided in qN .
One study found that q accounts for 20% of the world’s
horses. The reducing factor is denoted by wd .

Horses may go from pasture to pasture in the country-
side for hours at a time in search of food. While there are
few wild horses, the vast majority of horses nowadays are

kept in stables. The urge to graze might cause a horse to sud-
denly move to a new location. Horses are naturally curious
animals who are always on the lookout for new territory.
This fulfils the horses’ innate curiosity in their environment,
as they can observe one other through the walls. Calculated
by multiplying a random motion model by a significant
value. Wild behaviour in horses often begins at a young
age and gradually fades as the horse becomes older.

Fiter,AGE
i = f iter

iter,AGE ×P Z iter−1ð Þ
i

� �
, AGE = γ, δ,

f i
iter,AGE = f i

iter−1ð Þ,AGE ×wf :

ð22Þ

A horse’s velocity is chosen at random for use in local
search and evasion of minimums, where Fiter,AGE

i represents
the random velocity vector of ith horse for local search and
wf displays the reduction factor of f i

iter,AGE every cycle.
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The age-specific velocity vector of horses during each itera-
tion of the algorithm may be expressed by the following
equation, and flowchart of HHO is shown in Figure 2.

Siter,αi = Aiter,α
i +Diter,α

i ,

Siter,βi = Aiter,β
i + Biter,β

i + Citer,β
i +Diter,β

i ,

Siter,γi = Aiter,γ
i + Biter,γ

i + Citer,γ
i + Eiter,γ

i +Diter,γ
i + Fiter,γ

i ,
Siter,δi = Aiter,δ

i + Eiter,δ
i + Fiter,δ

i :

ð23Þ

3.2. Particle Swarm Optimization. PSO, or particle swarm
optimization, was developed in 1995 by Kennedy and Eber-
hart. It takes its cues from the cooperative behaviours of
flocking birds and schooling fish. The simulation of social
behaviour provided the impetus for the development of par-
ticle swarms. PSO employs just the simplest mathematical
operators and is very light on both memory and processing
speed in comparison to other algorithms. In PSO, a swarm
is made up of numerous individual particles. Each particle
position for a potential answer to the problem statement of
optimization. One may argue that every single position rep-
resents a possible answer. Each particle moves to a new posi-
tion using its new velocity and the movement vectors in
accordance with the previous best solution and the global
best solution. Thereafter, the optimal solution is saved, and
each particle speeds up in the direction of both the optimal
global and optimal local solutions. More particles will
approach a location where a particle has discovered a poten-
tial answer. The flowchart for PSO is shown in Figure 3.

In the y-dimension, x particles travel at a predetermined
speed. All particles modify their positions based on a com-
parison of their individual greatest location and the best
position of other particles. ith swarm particle location is
expressed as �zi = ðzi1, zi2,⋯ziyÞ, where 1 ≤ i ≤ x and x are
the swarm particle size. ith swarm particle speed is expressed
by �si = ðsi1, si2,⋯siyÞ, where 1 ≤ i ≤ y and y are searching
space dimension of all swarm particle. The finest position in
history for the ith swarm (Qbest) is �Qi = ðQi1,Qi2,⋯QiDÞ.
The whole swarm optimal location (Lbest) is �Lg = ðLg1, Lg2,
⋯LgxÞ g ∈ f1, 2,⋯xg.

The following formulas can be used to update the parti-
cle’s speed and location:

siy t + 1ð Þ = siy tð Þ + c1r1 Qiy tð Þ − ziy tð ÞÀ Á
+ c2r2 Lgy tð Þ − ziy tð ÞÀ Á

,
ziy t + 1ð Þ = ziy tð Þ + siy t + 1ð Þ:

ð24Þ

Learning factors c1 and c2 are both positive constants,
ziyðtÞ is the location vector associated with the ith particle,
and siyðtÞ is the related speed vector. This capacity to self-
sufficiency and learning from one of the group’s most tal-
ented members is what allows particles to get near to both
their historical greatest position and the group’s. In most
cases, c1 and c2 are set to 2. Randomly distributed in the

range [0,1] are the values of r1 and r2. Particles can only
travel at a maximum speed of Smax. For better algorithm
astringency, Shi and Eberhart created the concept of inertia
weight, which is shown in the following equation:

siy t + 1ð Þ = αω × siy tð Þ + c1r1 Qiy tð Þ − ziy tð ÞÀ Á
+ c2r2 Lgy tð Þ − ziy tð ÞÀ ÁÀ Á

:

ð25Þ

The inertia weight (αω) determines how much of the par-
ticle’s current speed is inherited. If the particle is picked cor-
rectly, it will be able to exploit and develop at the same time.

3.3. Hybrid Horse Herd Particle Swarm Optimization. The
goal of PSO is to find the optimal solution to a given
problem. Compared to the PSO, the HHA has a quicker
convergence rate. Based on the same population for both
algorithms, the HHA and PSO each represent a unique solu-
tion. High performance may be achieved by combining these
two algorithms in a hybrid approach that takes use of both
their strengths and their distinctiveness. Hybrid horse herd
particle swarm optimization for tuning of the PID controller
parameter is shown in Figure 4. To begin, set the population,
number of generations, social parameter, cognitive parame-
ter, initial velocity, and initial weight for HHA and PSO,
respectively. The PSO operator is used to find many viable
solutions for the first population by reading the integral
square error for the speed, current, and torque ripple of

Figure 15: The DC bus voltage of PV battery system.

Figure 14: The experimental setup for hybrid horse herd particle
swarm optimization-based improved tuning of PID controller
speed controller for BLDC motor drive.
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the brushless DC motor under various operating circum-
stances. The PSO’s solutions make up the initial population
of the HHA. HHA starts to fine-tune the parameter of the
PID controller from best value obtained from the PSO, and
after the final iteration, it provides optimal values for the
PID controllers.

4. Results and Discussion

In this study, the PID controller parameters are optimized
for regulating the speed and current of a brushless DC motor
(BLDC) using a HHHPSO techniques. In this chapter, the
effectiveness of the proposed HHHPSO technique is exam-
ined using simulation. The HHHPSO method has been
tested on a computer with an Intel(R) core (TM) i5 CPU,
4GB of RAM, and the MATLAB/Simulink (R2015a) envi-
ronment. Figure 5 shows the simulation model of the
HHHPSO-optimized PID-controlled BLDC motor. The dif-
ference between the BLDC motor’s reference speed and its
measured speed is used to determine the speed error. The
PID control receives the speed error, and it is used to opti-
mize the system’s performance by minimising objective
function in Equations (1) to (4). The HHHPSO technique
regulates the proportional, integral, and derivative (PID)
gains. The HHHPSO PID controller-assessed results are
compared to those obtained from other controllers, such as
SCA [21], GWA-FOPID [22], CASOA [23], SFSA [24],
HGSOA [25], WOA [26], and FA [33].

4.1. Performance Analysis. The BLDC motor specification
use for test the proposed HHHPSO techniques is shown in
Table 1. The HHHPSO method is tested out on two different
working conditions in simulation and compared to state-of-
the-art standard methods such as SCA [21], GWA-FOPID
[22], CASOA [23], SFSA [24], HGSOA [25], WOA [26],
and FA [33]. The two working conditions are explained in
the following sections.

4.1.1. Case 1: Constant Speed Condition. The performance of
the proposed HHHPSO PID controller is examined with
constant reference speed condition. The constant speed ref-
erence is shown in Figure 6. The reference speed of the
BLDC motor is maintained at 1500 rpm from zero to two
seconds. And corresponding results are presented in
Figures 7 and 8.

Figure 7 depicts the motor’s voltage, current, mechanical
torque, and motor torque at a constant motor speed. The
BLDC motor stator current is maintained at 0.55A. The
BLDC motor back EMF is maintained at 60 volts. Peak load
torque is maintained at 1Nm, and peak electromagnetic tor-
que of the motor is maintained at 0.4Nm for constant speed
reference conditions. Figure 8 depicts the BLDC motor’s
inverter pulses, rotor angle, and output speed. From
Figure 8(c), the BLDC motor speed reaches the 1500 rpm
around 20msec; it has no overshoot, zero steady-state error,
and quick rise time.

(a) (b)

Figure 16: The performance analysis of three-phase (a) current and (b) voltage waveform.

(a) (b)

Figure 17: The performance analysis of change in speed: (a) case 1 and (b) case 2.
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4.1.2. Case 2: Variation of Speed Reference Condition. In this
condition, motor speed reference is varied at random time
step, and corresponding results are measured and analysed.
The speed reference command variations are shown in
Figure 9. The speed reference is maintained at 1000 rpm
from 0 to 0.8 sec. The speed reference is maintained at
5000 rpm from 0.8 to 1.2 sec, and speed reference is main-
tained at 3000 rpm from 1.2 sec to 2 sec. The corresponding
results are depicted in Figures 10 and 11.

Figure 10 depicts the voltage, current, mechanical tor-
que, and motor torque as a function of changing motor
speed. The BLDC motor stator current is maintained at
1.6A. The BLDC motor back EMF is maintained at 50 volts.
Load torque is maintained at 1Nm, and electromagnetic tor-
que of the motor is maintained at 1Nm for varying speed
reference conditions. Figure 11 depicts the inverter pulses,
rotor angle, and output speed of the BLDC motor.
Figure 11(c) displays the BLDC motor’s output speed, which
demonstrates the effectiveness of the HHHPSO-optimized
PID controller; that is, speed of the BLDC motor is tracked
effectively; it has quick rise time, settling time, zero over-
shoot, and low steady-state error from the simulation results
under reference speed varying conditions.

4.2. Comparison Analysis. The HHHPSO-tuned PID con-
troller is compared with SCA [21], GWA-FOPID [22],
CASOA [23], SFSA [24], HGSOA [25], WOA [26], and FA
[33] to demonstrate the efficacy of the proposed approach.
PID controller gains are tuned using the HHHPSO tech-
nique. Optimizing the proportional, integral, and derivative
gains improves the BLDC motor’s performance by keeping
the motor at a constant speed. The performance of the sug-
gested technique is evaluated across two distinct scenarios,
including both reference speed variation and constant motor
speed. A comparison of the proposed method’s optimal gain
parameters with other considered approaches is shown in
Table 2.

Table 3 shows a comparison of the transient response
criteria such as maximum overshoot, rise time, and settling
time are compared for proposed HHHPSO methods with
other considered methods. From these table results, the
HHHPSO-tuned PID controller has no overshoot, rise time
around 21msec, and settling time around 39msec, but these
parameters are not favour for other methods.

Case 1. The comparative speed and torque response for the
BLDC motor with HHHPSO and WOA and FA are analysed
in this section for constant speed reference. Figure 12 shows
a comparison response of the speed and torque with
HHHPSO, WOA, and FA methods.

Figure 12(a) depicts the speed of the BLDC motor. The
reference speed is 500 rpm maintained at all time. The FA
algorithm attains the constant speed at 0.07 s. The WOA
attains the constant at 0.075 s. The HHHPSO attains the
500 rpm at 0.05 s. The HHHPSO method only reaches the
reference speed but WOA and FA having steady-state error
of 10 to 20 rpm. Figure 12(b) depicts torque of the BLDC
motor. The FA has the torque ripple value which is 10Nm,
and WOA has the torque ripple value which is 15Nm. The
HHHPSO has the torque ripple value which is approxi-
mately 3 or 5Nm. From this analysis, HHHPSO-tuned

Figure 20: The performance analysis of Hall sensor and current
signal.

Figure 19: The performance analysis of inverter’s PWM pulses.

(a) (b)

Figure 18: The performance torque analysis of (a) case 1 and (b) case 2.
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PID controller has superior performance than WOA- and
FA-tuned PID controller.

Case 2. The comparative speed and torque response for the
BLDC motor with HHHPSO and WOA and FA are analysed
in this section for speed reference varying conditions. The
speed and torque response for HHHPSO, WOA, and FA
are shown in Figure 13.

The speed response comparison with HHHPSO, WOA,
and FA is depicted in Figure 13(a). Initially, speed reference
is maintained at 100 rpm, and after 0.35 seconds, speed refer-
ence was changed to 700 rpm. The speed error is almost zero
for the HHHPSO-tuned PID controller, but WOA- and FA-
tuned PID controller has 10 to 20 rpm steady-state error in
speed reference changing conditions also. Figure 13(b) depicts
output torque of the BLDCmotor with HHHPSO, WOA, and
FA methods. The FA has the torque ripple value which is
10Nm, andWOA algorithm has the torque ripple value which
is 15Nm. The HHHPSO-tuned PID controller has the torque
ripple value which is approximately 3 or 5Nm. From this anal-
ysis, HHHPSO-tuned PID controller has superior perfor-
mance than WOA- and FA-tuned PID controller.

4.3. Experimental Results. Experimental tests of the proposed
method are first simulated and then implemented in the lab-
oratory to verify in various conditions. Figure 14 depicts the
experimental setup for the improved tuning of a PID con-
troller speed controller for a BLDC motor drive using a
HHHPSO. Figure 15 shows the DC bus voltage of the PV
battery system.

The performance analysis of three-phase current and
voltage waveform is presented in Figure 16. The perfor-
mance analysis of change in speed for case 1 and case 2 is
presented in Figure 17.

The performance torque analysis of case 1 and case 2 is
presented in Figure 18. The performance analysis of
inverter’s PWM pulses is illustrated in Figure 19. The perfor-
mance analysis of Hall sensor and current signal is presented
in Figure 20. The performance analysis of current and volt-
age signal is illustrated in Figure 21. The experimental
results for speed regulation in the BLDC motor with
HHHPSO-, WOA-, and FA-tuned PID controller tested in
real time and corresponding details are presented in
Figure 22. The results from the real-time analysis are

matched with simulation results. From this analysis, the
HHHPSO-tuned PID-controlled BLDC motor is performed
well than WOA and FA methods and also suitable for real-
time applications.

5. Conclusion

This work presents an approach for controlling the torque
and speed of a PV and battery-powered BLDC motor using
HHHPSO-tuned PID controller. The HHHPSO was used to
optimize the parameter of the PID controller with reducing
integral square of speed error, current error, and torque
error. The proposed method has been created and tested in
MATLAB simulation. The proposed method was tested for
constant speed conditions and varying speed conditions
and was also compared with the following methods: SCA,
GWA-FOPID, CASOA, SFSA, HGSOA, WOA, and the
FA. From the test results, the proposed HHHPSO-tuned
PID controller has rise time of 20 to 21msec, settling time
of 35 to 39msec, zero overshoot, and zero steady-state error
in both operating case, but these parameters are not favour
of other methods considered for comparisons. The hardware
experimentation on the proposed HHHPSO-tuned PID-
controlled PV battery-powered BLDC motor is presented
and performed well in real time also. The proposed
HHHPSO can be applied to tune the parameter of fuzzy
logic control of PV battery-powered BLDC motor, and this
is considered to be the scope for future work.

Figure 22: Experimental BLDC motor speed comparisons of
HHHPSO-, WOA-, and FA-tuned PID controller.

(a) (b)

Figure 21: The performance analysis of (a) current and (b) voltage signal.
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