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This study proposes a hybrid AC/DC microgrid with plugin EVs, leveraging PSO-tuned ANFIS for voltage and power control.
With the existing control, which faced challenges such as instability and complexity, the proposed approach is aimed at
simplifying control through PSO, efficient power sharing, and reduced sample requirements. This innovative method
contributes to improved energy management in hybrid microgrids, bridging existing research gaps. This approach streamlines
neural transmission in microgrid control, addressing challenges in distributed generation power, load demand, energy storage
system SOC, and AC grid power integration. Notably, the proposed PSO-ANFIS simplifies electric vehicle power references
using distinct inputs for each mode, trained through PSO. This methodology is tailored for microgrids with varying power
profiles, presenting a promising solution for efficient energy management. The proposed EMS was experimentally verified
using MATLAB simulations of a small-scale hybrid AC/DC microgrid for every operating mode. The financial dynamics of a
microgrid’s power exchange with the main grid are examined through three distinct methodologies: fuzzy logic, ANFIS
(adaptive neurofuzzy inference system), and PSO-ANFIS (ANFIS optimized using particle swarm optimization). In case 1, the
PSO-ANFIS approach demonstrates its superiority by achieving the lowest grid purchase power cost of 1995.24 Rs/day
compared to fuzzy (2243.63 Rs/day) and ANFIS (2150.45 Rs/day), while also yielding the highest revenue from power selling to
the microgrid: PSO-ANFIS (668.84 Rs/day) surpassing fuzzy (536.12 Rs/day) and ANFIS (575.35 Rs/day). Similarly, in case 2,
PSO-ANFIS proves its efficiency with the lowest net price of 8619.192 Rs/day, showcasing its effectiveness in optimizing
financial dynamics. Furthermore, in case 3, the revenue aligns precisely with net prices, indicating the PSO-ANFIS method’s
financial advantage, generating the highest revenue of 6544.0224 Rs/day compared to fuzzy (6025.36 Rs/day) and ANFIS
(6153.214 Rs/day). These findings underscore the potential utility of the PSO-ANFIS approach in optimizing microgrid
operations and enhancing cost-effectiveness across various scenarios.

1. Introduction

The environment is harmed due to increase in road trans-
port industry; it results in the excess release of greenhouse
gases and increases pollution [1]. Battery electric vehicles
(BEVs) have been developed as an alternative option to
reduce reliance on fossil fuels and associated carbon dioxide
(CO2) emissions [2]. With the increasing adoption of BEVs
in various modes of transportation, their importance has
grown. However, the growing popularity of microgrids and
their dependence on intermittent renewable energy sources

(RES) and unpredictable EV activities have raised concerns
about voltage stability and frequency control [3]. It is crucial
to address the issues related to voltage stability and fre-
quency control in order to ensure harmless and hardy oper-
ation. Large-scale integration of renewable sources without
coordination and the fast adoption of electric vehicles with
stochastic charging and discharging operations can result
in voltage breakdown, power quality issues, frequency and
stability fluctuations, and other problems. The heteroge-
neous mix of characteristics associated with various power
sources further emphasizes the need for appropriate control
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and operation of microgrids, and the implementation of
coordinated control mechanisms is critical [4]. Research on
the management and operation of microgrids has garnered
significant attention in recent years.

[5] explored various types of microgrid design, manage-
ment, and control, while [6] conducted a comprehensive
review of studies on microgrids and distributed energy
resources from multiple countries. In order to ensure effec-
tive management in the event of downstream component
failure, [7] examined a decentralised energy regulator system
for independent polygeneration microgrid architecture. By
employing fuzzy cognitive maps for decentralised agent
coordination, [8] examined a game-theoretic, multi-agent-
based microgrid energy management system (FCM). Addi-
tionally, [9] provided a useful review study on different
graded control schemes of microgrids on the three control
layers, namely, primary, secondary, and tertiary, with the
aim of reducing global operation costs while increasing the
control technique and consistency of microgrids.

Efficient and effective renewable energy conversion is
achieved through photovoltaic (PV) solar and wind power.
However, there are still operational challenges that must be
addressed before microgrids can rely on PV and wind energy
systems. The main issue with PV and wind energy conver-
sion systems is their output variability throughout the day.
This study focuses on investigating how increasing the
energy transfer to the microgrid through electric vehicles’
discharge can mitigate energy supply shortages from PV
and wind energy systems. Researchers have been working
on developing PV and wind energy conversion technologies
in recent decades. To account for the stochastic nature of PV
systems, several optimization problems have been developed
and validated. The aforementioned studies examined the
DC-DC converter used in PV systems that is explained in
[10], who looked at how cell temperature and solar irradi-
ance changed the design of these converters. A new DC/
DC converter topology for enhancing the efficiency of pho-
tovoltaic (PV) systems was proposed in [11], from the inves-
tigation of the characteristics of PV modules. An algorithm
was presented in [12] for the dynamic control of a variety
of distributed energy resources, including PV systems,
microwind turbines, energy storage units, and controlled
loads. [13] demonstrated the versatility of PV systems by
presenting an energy management plan for a PV-powered
desalination station connected to DC microgrids. These
examples illustrate the diversity of applications that can be
addressed by research on PV systems.

In [14], energy management approach for integrated
rural energy systems (IRES) with greenhouses addresses
the inefficiency and environmental concerns of traditional
rural energy sources. The proposed method incorporates
local renewable resources like biogas and wind power while
optimizing electricity and heat supply. It presents a two-
stage robust optimization model to handle uncertainties in
electric load and wind power output, ensuring system resil-
ience. The approach involves a cooperative framework for
IRES with greenhouses, utilizing forecast scenarios to
enhance economic dispatch outcomes. The optimizing home
energy usage within smart grid (SG) scenarios through a

home energy management system (HEMS) is presented in
[15]. It introduces novel-limited and multilimited planning
approaches, utilizing time-of-use pricing (TOUP) to mini-
mize power costs, peak-to-average ratios (PAR), and peak
load demands. The wind-driven optimization algorithm
(WDOA) is employed to solve the optimization problem
and is compared with other algorithms. The integration of
a rooftop photovoltaic (PV) system is demonstrated for
enhanced cost-effectiveness.

In [16], a secure management framework for optimizing
energy system operations in smart cities addresses chal-
lenges arising from the integration of energy systems and
the high data transfer rate. It explores efficient energy man-
agement considering smart transportation systems and pro-
poses a bilateral power flow strategy (V2S and V2G) for
enhanced efficiency. The model employs a novel stochastic
architecture based on unscented transformation (UT) to
handle uncertainties and incorporates blockchain technol-
ogy for secure data transfer. The secure and efficient man-
agement of energy systems in smart cities by focusing on
interconnected energy hubs and their operation within a
smart microgrid system is presented in [17]. It explores false
data injection attacks (FDIA) in energy hub systems and
proposes an intelligent priority selection-based reinforce-
ment learning (IPS-RL) approach for FDIA detection. The
study incorporates the uncertainties of various energy car-
riers through the unscented transformation (UT) method.

An important aspect of the investigation is the influence
of EV incorporation on the functioning of hybrid micro-
grids. To model EVs’ real-time operations on residential
feeders, [18] provides a linearization approach using the
Kirchhoff voltage and current laws, nodal analysis, and mod-
ulation index. The potential for EVs to function as mobile
backup storage units and enhance grid resilience through
smart grid applications has been noted in [19]. A
MATLAB-based Monte Carlo simulation algorithm is avail-
able in [20] to evaluate the dependability of the distribution
network using DERs, including electric vehicles. Studies
have also investigated the potential of EVs in regulating
the frequency and controlling the system operation. In
[21], a brainy collector to coordinate the charging and dis-
charging of a fleet of EVs for frequency control and to make
up for any power shortfall is presented. In addition, in [22], a
real-time frequency regulation based on the Markov deci-
sion process (MDP) (dynamic decision-making system) to
enable intelligent frequency management through energy
assistance from EVs is demonstrated. In [23], a multi-
variable-generalised predictive controller for load frequency
management in a decentralised microgrid that utilizes V2G
integration is investigated. The controller’s aim is to prevent
frequency shortages while maintaining enough energy
exchange in the face of potential load perturbations. With
the intention of reducing GHG emissions from the transpor-
tation sector, recent policies have been put in place to
encourage the adoption of EVs [24]. In regions where the
weather and energy grid mix make EVs a feasible option, a
significant increase in EV usage is expected in the coming
years. However, the rapid and uncoordinated deployment
of EVs may lead to a range of issues, including phase
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imbalance, equipment failure, and increased active and reac-
tive power losses [25]. Therefore, it is essential to carefully
consider the potential problems that are due to the debatable
property of the energy sources in hybrid microgrids.

The objective of the hybrid AC/DC microgrid with plu-
gin electric vehicle system is to ensure stable power supply
and effective consumption. However, predicting the amount
of power generation from distributed sources such as solar
and wind power and determining the remaining capacity
of the EVB is crucial to achieving these goals. Nevertheless,
the accuracy of such predictions is hindered by the instanta-
neous fluctuations in power generation, which makes it chal-
lenging to obtain precise data. Even with medium- and long-
term load demand profiles and distributed power source
generation data, accurate estimation remains difficult. For
instance, accurately estimating the energy production of
photovoltaic power based only on solar radiation has been
a difficult task, and various studies have attempted to
address this issue. Moreover, existing load demand predic-
tion studies have mostly focused on large loads that exhibit
low variability and uncertainty, leaving a gap in knowledge
for smaller customers and buildings with significant load
fluctuations. The energy management system (EMS) for an
energy storage system (ESS) calculates the power reference
using only the power produced by the distributed generation
(DG) and the demand, in load side while disregarding the
amount of power supplied by the AC grid and the ESS’s state
of charge (SOC). This approach is not optimal, and the EMS
algorithm may be too complex for practical use.

In [26], a hybrid vehicle system was examined, and fuzzy
logic was employed for voltage and power control. However,
the complexity of the fuzzy rule led to increased oscillations
during sudden changes in operating conditions, potentially
causing system instability. In [27], a hybrid AC/DC micro-
grid utilized an artificial neural network for voltage and
power control. Although this method demonstrated effec-

tiveness, it highlighted the challenge of requiring a substan-
tial number of samples for model training and control,
which in turn could complicate the overall system control
process. With the hybrid AC/DC microgrid scenario, as
explored in [28], an adaptive neural network combined with
a fuzzy logic-based system was implemented for voltage and
power control. Despite the advantages of online adaptive
control, the system encountered instability issues, possibly
due to the dynamic nature of the neural network and fuzzy
logic integration. Investigating a grid-connected hybrid sys-
tem that integrates renewable energies [29], it utilized an
adaptive neurofuzzy system for voltage and power control.
However, the reliance on a substantial number of samples
for model training was identified as a drawback, contribut-
ing to increased complexity in the control process. Addi-
tional information on prior research and proposed
solutions is provided in Table 1.

The previous studies discussed in Table 1 reveal a recur-
ring challenge in the implementation of energy management
methods for voltage and power control in hybrid systems,
including hybrid vehicles and AC/DC microgrids. Specifi-
cally, these studies highlighted the need for a substantial
number of samples to effectively train the control models,
leading to increased complexity in system control and
potential instability. This research gap underscores the
requirement for more efficient and streamlined control tech-
niques that can achieve stable voltage and power control
without the drawbacks associated with extensive sample
needs and system complexity. To address the identified
research gap, this study proposes a novel approach in the
context of a hybrid AC/DC microgrid integrated with plugin
electric vehicles (PEVs). The method leverages a PSO- (par-
ticle swarm optimization-) tuned ANFIS (adaptive neuro-
fuzzy inference system) for voltage and power control. By
incorporating PSO, the proposed method reduces the num-
ber of required training samples for the ANFIS model.

Table 1: Comparison of the existing work with the proposed work.

Reference System Energy management method Control Remarks

[26] Hybrid vehicles Fuzzy logic
Voltage and power

control

The system has more oscillation during
sudden change in operating conditions
due to complex fuzzy rule; system may

go for unstable state.

[27]
Hybrid AC/DC

microgrid
Artificial neural network

Voltage and power
control

It requires huge number of samples to
train the model and control the system,
and it will make system control more

complex.

[28]
Hybrid AC/DC

microgrid
Adaptive neural network and
fuzzy logic-based system

Voltage and power
control

System goes to unstable state due to
online adaptive control of neural

network and fuzzy system.

[29]
Grid-connected hybrid
system integrating
renewable energies

Adaptive neurofuzzy
system

Voltage and power
control

The necessity for a large quantity of
samples to train the model and manage

the system adds complexity to the
control process.

Proposed method
Hybrid AC/DC

microgrid along with
plugin electric vehicle

PSO-ANFIS
Voltage and power

control

It requires a smaller number of samples
to train the model due to PSO and power
sharing effectively controlled among
renewable energy and plugin EV.
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Additionally, the introduction of PEVs into the microgrid
allows for effective power sharing among renewable energy
sources and PEVs, further enhancing the overall system con-
trol. In contrast to previous methods that struggled with
sample-intensive training and potential instability, the pro-
posed approach offers a more efficient solution for voltage
and power control in hybrid microgrid systems. By combin-
ing PSO and effective power sharing through PEVs, the pro-
posed method is aimed at providing stable and reliable
control while minimizing the complexity associated with
extensive sample requirements. This research contributes
to bridging the existing research gap and offers a promising
avenue for improved energy management in hybrid AC/DC
microgrid systems.

This study introduces an integrated energy management
strategy tailored for efficient power regulation within small-
scale microgrids. Utilizing particle swarm-optimized artifi-
cial neurofuzzy inference system (PSO-ANFIS) theory and
central control, the method simplifies the intricate neural
transmission process observed in biological organisms. The
ANFIS model identifies optimal operating modes for con-
verters involved in energy management within distribution
networks. This novel approach takes into account distrib-
uted generation power, load demand, state of charge (SOC)
of the energy storage system (EVB), and AC grid power to
establish EVB’s power reference. Notably, the PSO-ANFIS-
based energy management system is well suited for micro-

grids with regular power variations. By encompassing DG
power, load demand, EVB’s SOC, and AC grid power, the
proposed method optimizes power converter modes for effi-
cient energy management. The process is streamlined as
ANFIS calculates EVB’s power output based on distinct
input data for each operating mode, trained through PSO.

The structure of the paper is outlined as subsequent sec-
tions. Section 2 elucidates the centralised distribution sys-
tem’s power flow and system design, along with the
introduction of the proposed PSO-ANFIS algorithm. Section
3 details the simulated training environment for the PSO-
ANFIS theory, followed by an analysis of the conducted
experiments for approach validation in Section 4. The paper
concludes with final remarks presented in Section 5.

2. Hybrid AC/DC Microgrid along with Plugin
Electric Vehicle

In this section, we will describe the functioning of the pro-
posed EMS and the arrangement of the hybrid AC/DC
microgrid with a plugin electric vehicle used in this study.
Figure 1 illustrates the layout of the distribution network
of the hybrid microgrid, which includes a PV array with a
battery storage system (DC grid), a doubly fed induction
generator-based wind energy conversion system, three plu-
gin electric vehicle batteries, home and industrial loads,
and the main AC grid.
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source 

converter
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converter
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Figure 1: Hybrid AC/DC microgrid distribution network with plugin electric vehicle.

4 International Journal of Photoenergy



2.1. PV with Battery Storage System. The DC-DC boost con-
verter is responsible for connecting the PV array to the volt-
age source converter. To ensure that the maximum power is
extracted from the PV array, the converter is controlled
using a perturb and observe (P&O) maximum power point
tracking (MPPT) algorithm, which is depicted in Figure 2.
The algorithm uses the PV voltage and current readings
from the array, which are processed via the P&O MPPT.
The P&O MPPT is implemented using four conditions,
which are expressed in Algorithm 1.

The duty cycle of the P&O MPPT generator is deter-
mined by the PV voltage and current, and it is converted
into PWM pulses by the PWM generator to drive the boost
converter and extract the maximum power from the PV
array. The PV array used in this study comprises ten mod-
ules in series and 22 parallel strings, with each panel having
a power rating of 228.375W, a maximum power point volt-
age of 29.9 volts, and a maximum power point current of
7.65A. Figure 3 shows the P-V and I-V characteristics of
the PV array, which has a total power rating of 50.32 kW.
Details of the PV array and the boost converter are pre-
sented in Table 2.

The battery is linked through a bidirectional converter to
the DC link of the voltage source converter, serving as the
DC bus. To regulate the DC bus voltage, a proportional inte-

gral (PI) controller compares the actual voltage with the ref-
erence voltage. The PI controller generates the duty cycle,
which is then sent to the PWM generator. The PWM gener-
ator produces the pulse necessary for the bidirectional DC-
DC converter to maintain the DC bus voltage constant at
the reference DC bus voltage. The battery has a maximum
operating voltage of 300V and a capacity rating of 400Ah.
Table 3 presents the battery and bidirectional DC-DC con-
verter specifications.

The voltage source converter operates on a feed-forward
decoupling control concept with a switching frequency of
20 kHz. The inverter current is transformed into D-Q form
using park transformation and compared with reference
direct axis current based on the state of charge (SOCSB) of
the storage battery. If SOCSB is greater than 70%, 50% PV
power is sent to the AC grid and the remaining power is uti-
lized for battery charging. If SOCSB is less than 30%, 50%
power is taken from the AC grid to charge the battery along
with PV power. The PI controller processes the error among
actual and reference current, and the output is added to the
feed-forward decoupling control logic to generate the con-
trol signal in the form of D-Q. The inverse park transform
is used to convert the D-Q control voltage into ABC control
voltage form. The sinusoidal PWM generator processes the
control voltage and generates the pulse for the voltage source
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Figure 2: Circuit and control logic of PV with battery storage system.
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converter to control the real power flow in both directions
based on the reference current. Figure 4(a) illustrates the
control logic of the voltage source converter. The control
modelling of the voltage source inverter is presented below.

Assuming uniform voltage throughout the three-phase
electrical system, we can obtain the following equations:

ea = E cos ωt, 1

ea = E cos ωt −
2π
3 , 2

ea = E cos ωt + 2π
3 3

The equations presented above allow us to determine the
maximum voltage (E) and the power grid’s angular fre-
quency, assuming that the voltage across the three-phase
electrical system is constant.

dia
dt

dib
dt

dic
dt

=

−
R
L

0 0

0 −
R
L

0

0 0 −
R
L

ia

ib

ic

+ 1
L

ua − ea

ub − eb

uc − ec

4

Equation (4) outlines the process of converting coordi-
nates from the abc fixed frame of the three-phase system
to the d‐q synchronously rotating two-phase system.

did
dt

diq
dt

= 1
L

−R ωL

−ωL −R

id

iq
−
1
L

ed

eq
+ 1
L

ud

uq

5

In the equations mentioned earlier, id and iq represent
the d-axis and q-axis elements of the output current of a

three-phase grid-connected inverter, while ed and eq repre-
sent the d-axis and q-axis elements of the three-phase grid
voltage, and ud and uq represent the d-axis and q-axis ele-
ments of the three-phase grid current (see the following
equations for the description).

ud = L
did
dt

+ Rid − ωLiq + eq, 6

uq = L
diq
dt

+ Riq − ωLiq + eq 7

Creating a controller for the system is difficult due to
the interdependence of the d-axis and q-axis variables in
the d‐q mathematical model described earlier. However, it
is feasible to achieve closed-loop stable control of the sys-
tem by employing a PI regulator and the feed-forward
decoupling control technique, as shown in the following
control equations:

ud = Kp +
Ki

s
id
∗ − id − ωLiq + ed , 8

uq = Kp +
Ki

s
iq
∗ − iq − ωLid + eq 9

The feed-forward decoupling control method allows for
independent control of active power and reactive power in
the inner-loop current of a three-phase solar grid-
connected inverter. Figure 4(b) depicts the inner-loop cur-
rent controller. To achieve this, the proportional gain is
set to 0.3 and the integral gain to 20.

2.2. Wind Energy Conversion System. This advanced tech-
nology enables wind power to contribute to both active
and reactive power regulation, thus making it a promising
source of energy. In modern variable-speed turbines, the
doubly fed induction generator (DFIG) is a widely used
arrangement, as shown in Figure 5. The DFIG is an induc-
tion generator in which the windings are directly connected
to the power grid and the rotor is connected to a back-to-
back power converter. This back-to-back power converter
can operate in both directions to achieve partial generator
output.

The amount of energy produced by a wind turbine gen-
erator system (WTGS) can be computed using the kinetic
energy of wind, which is multiplied by a factor known as
Betz’s factor or power coefficient. The power coefficient, Cp
, is mainly influenced by the wind’s average velocity in the
swept area, which is determined by the blade’s rotational
speed and geometrical characteristics (including the instan-
taneous pitch angle setting). The formula for calculating
the energy output of a wind turbine is

Pw = CpPwind = Cp
1
2 ρAV

3
w 10

To find the energy obtained by a wind turbine, the
kinetic energy of the wind can be multiplied by Betz’s factor

if ΔP < 0 ΔP = Pnew − Pold
if ΔV < 0 ΔV =Vnew −Vold

Dnew =Dold + ΔD
ΔD = Small change in duty cycle

else
Dnew =Dold − ΔD

end
else

if ΔV < 0
Dnew =Dold − ΔD

else
Dnew =Dold + ΔD

end
end

Algorithm 1: Perturb and observe MPPT.
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or power coefficient, which depends on the wind’s average
speed in the area covered by the turbine blades. The power
coefficient (Cp) can be calculated using various modeling
methods, including lookup tables and observed data. In
some cases, it is treated as a constant for simulations of
steady-state and small-signal responses. The analytical
expression for Cp is given as a function of the wind blade’s
angular speed and other symmetrical parameters, such as
the instantaneous pitch angle configuration. The air stream
kinetic power is denoted by Pwind, air density is represented
by ρ, the area covered by the wind blade is denoted by A, and
the wind’s average speed is denoted by Vw.

Cp λ, θpitch = C1 C2
1
λ1

− C3θpitch − C4θ
C5
pitch − C6 exp−C7 1/λ1

11

The tip speed ratio is denoted by λ and expressed by the
following equation: λ = ωt R/Vw. The radius of the turbine is
denoted by R, the speed of the turbine is denoted by ωt, and
λ1 is expressed by the following equation: 1/λ1 = 1/ λ + C8
θpitch − C9/ 1 + θ3pitch . Wind turbine characteristic coef-
ficient is denoted by C1 to C9, and wind turbine blade pitch
angle is denoted by θpitch. Perceptively, the wind speed, blade
pitch angle, and the wind turbine’s angular speed angle allow
you to readily compute the turbine shaft mechanical torque.

Wind speed can vary significantly from one location to
another, and it can also fluctuate randomly over time, which
needs to be considered while modeling the dynamics of a
wind turbine generator system (WTGS) appropriately. Pre-
vious studies have shown a direct correlation between the

torque on the turbine and the power output of the WTGS.
However, one challenge is to generate a realistic wind speed
signal for simulations. One approach is to use logs of actual
wind speed measurements taken at the WTGS’s location.
However, this method has some drawbacks as it requires
measurements at each simulated location. Alternatively,
Slootweg suggests using a mathematical model based on
landscape parameters to generate a sequence of wind speeds
for any location. The expression for wind speed is

Vw t =Vaw t + VRw t + Vgw t + V tw t 12

Constant wind speed component is symbolized as Vaw t ,
wind speed ramp component is symbolized as VRw t , wind
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Figure 3: P-V and I-V characteristics of the PV array.

Table 2: Specification of PV array and boost converter.

S. no. Descriptions Values Unit

PV array

1 Open circuit voltage 37.1 V

2 Short circuit current 8.18 A

3 Maximum power point voltage 29.9 V

4 Maximum power point current 7.65 A

5 No. of parallel strings 22 —

6 No. of panel in series in each string 10 —

Boost converter

1 Boost converter inductor 10.5 mH

2 Boost converter capacitor 525 μF

3 Boost converter switching frequency 10000 Hz

4 Proportional gain 2 —

5 Integral gain 40 —
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speed gust component is symbolized as Vgw t , and wind
speed turbulence component is symbolized as V tw t .

The drive train of a WTGS consists of the wind wheel,
turbine shaft, gearbox, and rotor shaft of the generator.
The gearbox in a wind turbine typically has a product ratio
ranging from 50 to 150, and the wind wheel contributes to
about 90% of the overall system’s inertia. Due to the high
torque experienced by the turbine shaft, it undergoes defor-
mation and elastic behavior that cannot be neglected. To
simulate the gearbox’s function, an elastic coupling with lin-
ear stiffness, damping ratio, and mass-to-mass dispersion
factor can be used.

In a double-fed WTGS, an asynchronous generator with
a wounded rotor is used. Assuming sinusoidal and symmet-
rical positioning of all the windings, neglecting magnetic sat-
uration effects, and considering the floating neutral of all
windings, the relationship between the voltage, current,
and its first derivative can be expressed in the d‐q frame.

isd

isq

ird

irq

=

0 Ls 0 M

Ls 0 M 0

0 M 0 Lr

M 0 Lr 0

d
dt

isd

isq

ird

irq

+

−Lsωs rs −Mωs 0

rs Lsωs 0 Mωs

−sMωs 0 −sLrωs rr

0 sMωs rr sLrωs

isd

isq

ird

irq

13

The self-inductance of the doubly fed induction genera-
tor is represented by Ls and Lr. The mutual inductance of the
machine’s stator and rotor is denoted by M. Meanwhile, the
resistance of the stator and rotor is denoted by rs and rr. The
slip of the machine is represented by s, and the angular syn-
chronous speed of the machine is represented by ωs. The d‐q
voltage in the rotor and stator side is represented by vsd , vsq,

vrd , and vrq, while the d‐q current in the rotor and stator side
is represented by isd , isq, ird , and irq. The electromechanical
torque of the machine is expressed in terms of d‐q control
parameters, which is given in the following equation:

Tm = 3
2 PM isqird − isdirq 14

The stator’s reactive power may be calculated using the
following formula:

Qs =
3
2 vsqisd − vsiisq 15

The number of pole pair of the generator is denoted by P.
In a two-feed system, a commonly used converter layout

involves connecting two inverters, with one acting as an
active rectifier, in series with a three-phase grid through a fil-
ter inductance. The WTGS employs an IGBT voltage source
back-to-back converter. To prevent DC bus overvoltage
caused by excessive power flowing from the rotor inverter
to the grid-side converter, crow bars may be connected on
the rotor side or in the DC bus before the converter. Various
assumptions can be made regarding the converter’s perfor-
mance to achieve different levels of information in the
modelling process. If the switching frequency is high
enough, we assume that the voltage signal generated by the
inverters is entirely filtered out and that switching energy
losses may be ignored. The wind energy system used in this
work has a rating of 45 kW, 400V, and 50Hz. Figure 6
shows the power versus wind speed, tip speed versus wind
speed, and power coefficient versus wind speed of the con-
sidered wind energy system.

2.3. Electric Vehicle Battery Operation and Control. The elec-
tric vehicle battery is connected directly to the AC bus
through a voltage source converter. Figure 7 illustrates the
control logic of the electric vehicle battery, which uses
feed-forward decoupling control. The inverter’s actual real
power is measured and compared to the real power reference
from the PSO-ANFIS energy management system, which
determines the reference power based on parameters like
the electric vehicle battery’s state of charge (SOCEVB), load
power, grid power tariff, and operation time. The error
power is processed through a PI controller, which generates
a direct axis reference current. This reference current is com-
pared to the inverter’s actual direct axis current, and the
error between them is processed through another PI control-
ler. The output of this PI controller is added to the feed-
forward decoupling control logic to generate a D-Q control
signal. The D-Q control voltage is converted into ABC con-
trol voltage using an inverse Park transform, and the control
voltage is then processed by a sinusoidal PWM generator.
The PWM generator generates pulses for the voltage source
converter, controlling the real power flow in both directions
based on the reference current and reference power from the
PSO-ANFIS EMS. This paper considers three electric vehicle
batteries with a rating of 33.33 kW, 480V, and 500Ah.

Table 3: Specification of battery and bidirectional DC-DC converter.

S. no. Descriptions Values Unit

Battery

1 Nominal voltage 300 V

2 Nominal ratings 400 Ah

3 Nominal discharge current 80 A

4 Cut-off voltage 225 V

5 Fully charged voltage 326.6 V

Bidirectional DC-DC converter

1 Bidirectional DC-DC converter inductor 10.5 mH

2 Bidirectional DC-DC converter capacitor 525 μF

3
Bidirectional DC-DC converter switching

frequency
10000 Hz

4 Proportional gain 0.001 —

5 Integral gain 0.01 —
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3. Particle Swarm-Optimized ANFIS-Based
Energy Management System

3.1. Adaptive Neurofuzzy Inference System. The ANFIS
architecture shown in Figure 8 consists of five levels. Unlike
scatter partition, tiered partition, and fuzzy c-mean, grid
partition divides the input space into subsets that are likely
to contain input vectors, reducing the number of rules to
practical levels.

The first layer of the system is known as layer 1, where
input is fuzzified. In this layer, each subset of the input space
in the fuzzy system is assigned a membership value based on
a mathematical expression, which is given by the following
equation:

o 1
ij = μj I 1

ij 16
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Figure 4: (a) Feed-forward decoupling control of voltage source converter. (b) Schematic diagram of inner-loop current controller.
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Layer 2 is known as the fuzzy AND operation layer. In
this layer, all nodes perform fuzzy AND operations using
the algebraic product’s T-norm operator. The outcome of
each node is the output.

o 2
k = ωk =

q

i=1
o 1
ij 17

Layer 3 is known as the normalizing layer. It calculates
the output of each node based on the sum of the activation
values of all the rules in the fuzzy system. This ensures that
the activation value of each fuzzy rule is normalized.

o 3
k = ωk =

o 2
k

∑y2
m=1o

2
m

18

Layer 4 of the ANFIS model consists of nodes with linear
parameters. Each node k in this layer applies the direct func-
tion represented by the equation and has a set of adjustable
parameters (d1k, d2k,..., dyk, d0) associated with it.

o 4
k = ωk f k = ωk d1kI

1
1 + d2kI

1
2 +⋯+dykI 1

y + d0 19
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Figure 5: Doubly fed induction generator-based wind energy system.
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Layer 5 is the output layer, which consists of one node.
This node sums up all the inputs algebraically to generate
the network’s output. To tune the ANFIS parameters, horse
herd optimization is employed, and the algorithm for this is
explained in the following section.

Ua = o5 = 〠
y2

k=1
o 4
k = 〠

y2

k=1
ωk f k =

∑y2

k=1ωk f k
∑y2

k=1ωk

20

Calculating the mean squared error may be done in
many different ways (MSE).

MSE = 1
N

〠
i

ti − oi
2 21

The goal value is t, the output value is o, and the number
of outputs in the network’s output layer is N . This mean
squared error is minimized using PSO algorithm by adjust-
ing the tunable parameter of the ANFIS network.

3.2. Particle Swarm Optimization (PSO). Kennedy proposed
PSO in 1995, which is a stochastic algorithm stimulated by
the social behavior of animals such as herds and flocks.
The decision to employ the particle swarm optimization

(PSO) method in this study, as opposed to alternative math-
ematical approaches, is rooted in several distinctive advan-
tages. PSO’s suitability for intricate search spaces,
nonsmooth and noisy functions, and global optimization
stands out. It excels in scenarios where traditional
gradient-based methods struggle due to sensitivity to initial
conditions and limitations with nonconvex functions, which
can be common in complex, multidimensional problems.
PSO’s population-based nature enables it to explore a wider
range of solutions concurrently, which is essential for avoid-
ing local optima. Unlike gradient-based methods, PSO does
not rely on gradient information, making it more robust for
situations involving nondifferentiable or noisy objective
functions. Another strength lies in PSO’s capability to
uncover global optima, setting it apart from methods that
are susceptible to getting stuck in local optima due to reli-
ance on local gradient information. Additionally, PSO’s flex-
ibility and simplicity in implementation make it adaptable
across diverse domains without necessitating complex math-
ematical derivations or constraints. These advantages collec-
tively support the rationale for selecting PSO as the preferred
optimization method in this study.

Initially, PSO fixes the population size with each particle
representing a unique solution candidate. Each particle in
the swarm acquires the velocity associated with its position
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to reach the ideal location. However, PSO may get stuck in a
cycle of local minima. Researchers have introduced addi-
tional formula variables to manage and direct the optimal
search procedure, including filtering the flock’s initialization,
the constriction coefficient, the inertia weight, and the muta-
tion operation. PSO primarily uses two mechanisms, cogni-
tive and social, to improve its exploitation and exploration
features.

Equations (22) and (23) provide mathematical expres-
sions for the velocity and location in PSO, respectively.

Vi t + 1 d =Vi t
d × ω + Pbi

d − Xi t
d × cc1 × rr1

+ Gbi
d − Xi t

d × cc2 × rr2,
22

Xi t + 1 d = Vi t + 1 d + Xi t
d 23

The formulas provided in (17) and (18) can be used to
express PSO mathematically, where “i” represents the parti-
cle number, d denotes the number of spatial dimensions,
and t denotes the number of discrete time intervals. Addi-
tionally, the particle population is denoted by n, and the par-
ticle size is denoted by m. Notably, ω represents the inertia
weight factor, rr1 and rr2 denote the randomization param-
eters, and cc1 and cc2 represent the social and cognitive fac-
tors, respectively.

3.3. Steps for PSO-ANFIS. In this section, the training pro-
cess of ANFIS with PSO is outlined in several steps. The first
step involves initializing various parameters such as the
number of particles, decision variables, maximum number
of iterations, social and cognitive parameters, objective func-
tion (refer to Equation (21)), and inertia weights. In the sec-
ond step, the weights and biases for the ANFIS are randomly
initialized, and the fitness function value is calculated using
the objective function for all input and target pairs. Next,
the local particles and local fitness as well as the global par-
ticles and global fitness are determined for initializing the
weights and biases. Subsequently, the velocity is calculated
based on Equation (22), and the weights and biases are
updated using Equation (23). The fitness function value is
recalculated using the objective function for all input and

target pairs, and the local and global particles and fitness
values are again determined. The process iterates until the
maximum number of iterations is reached or the stopping
criteria are met. The optimal values for the weights and
biases of the ANFIS model are displayed, and the ANFIS
model is created based on these optimal values. Finally, the
PSO algorithm is terminated. The flowchart of the particle
swarm-optimized ANFIS is shown in Figure 9.

4. Simulation Results and Discussion

The present section focuses on the implementation of the
energy management system based on ANFIS, utilizing parti-
cle swarm optimization in MATLAB. Furthermore, the
results of the energy management-controlled hybrid AC/
DC microgrid with the plugin EV system are analyzed and
measured using MATLAB software, employing the PSO-
ANFIS optimization method.

4.1. Training of ANFIS Using Particle Swarm Optimization
in MATLAB. Figure 10 shows the input and target data
taken to train the ANFIS network, consisting of 104125 sam-
ples for SOC of EV battery, load power, grid power tariff,
operation time, and reference power. The data was split into
70% for training, 15% for testing, and 15% for validation.
The PSO parameters included 100 maximum iterations,
100 swarm particles, personal learning coefficient of 1.5,
global learning coefficient of 2, and an inertia weight of
0.9. The merging graph of the PSO algorithm is presented
in Figure 11, and the final optimal fitness value obtained
was 2.18%. PSO effectively trained the neural network with
a small error. Figure 12 shows the regression plot after
ANFIS training by PSO, with a regression value of 0.98908.
This indicates that the trained ANFIS network output has
less error with the target data, demonstrating that ANFIS
trained well using particle swarm optimization. The results
were measured and analyzed using MATLAB software for
a hybrid AC/DC microgrid in a plugin EV scheme.

The application of the particle swarm optimization
(PSO) technique was pivotal in refining the parameters of
the adaptive neurofuzzy inference system (ANFIS) network.
To ascertain the PSO algorithm’s optimality, an extensive
parameter tuning process was conducted across 200 trials.
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The resulting metrics, encompassing values such as best fit-
ness (0.0218), worst fitness (0.0356), mean (0.0234), and
standard deviation (0.00014), underwent a rigorous analysis.
Notably, the comprehensive evaluation consistently demon-
strated that the PSO algorithm consistently surpassed alter-
native methods across a significant portion of the trials,
thus underscoring its remarkable efficiency in elevating the
ANFIS training procedure. Importantly, from these analyses,
it became evident that the PSO algorithm’s optimality was
consistently upheld, strengthening the confidence in its
effectiveness in generating optimal solutions. For a more
in-depth perspective, refer to Table 4, which outlines the
performance parameters of the PSO algorithm over the 200
trials. This table encompasses pivotal metrics including best

fitness, worst fitness, mean, standard deviation, and an aver-
age computation time of 45 seconds.

The sensitivity analysis of the particle swarm optimiza-
tion (PSO) method was conducted by manipulating key
parameters—the inertia weight, social factor, and cognitive
factor—across a series of tests and presented in Table 5
and convergence graph shown in Figure 13. Test 1 involved
setting the inertia weight (w) to 0.5, the social factor (cc1) to
2, and the cognitive factor (cc2) to 2, resulting in a mean
squared error (MSE) of 0.021844. Test 2 maintained the
same inertia weight but adjusted the social and cognitive fac-
tors to 1.5, yielding an MSE of 0.021862. In test 3, the inertia
weight was increased to 0.8 while keeping the social and cog-
nitive factors constant at 2, leading to an MSE of 0.021894.

Start

Initialize the parameter of the PSO, number of particles, number of decision 
variables, maximum number of iterations, social and cognitive parameter, objective 

function (refer equation (21)) and inertia weights

Initialize the random weights and bias for the ANFIS. And calculate the 
fitness function value using objective function for all set of input and target pairs.

Find the local particles and local fitness, global particles and global fitness for
the initialize the weights and bias.

Calculate the velocity based on the equation (22).
Update the weights and bias based on equation (23).

Calculate the fitness function value using objective function for all set of
input and target pairs.

Find the local particles and local fitness, global particles and global fitness for the
updated the weights and bias.

Stopping criteria reached?

No

Yes

Display the optimal values for weights and bias of the ANFIS.
Create the ANFIS model based on the optimal weight and bias.

End

Figure 9: Flowchart of PSO-ANFIS.
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For test 4, the inertia weight ranged from 0.9 to 0.1 incre-
mentally, with iteration increase, while maintaining the
social and cognitive factors at 2, resulting in an MSE of
0.021845. Impressively, despite variations in parameter
values, the MSE outcomes consistently clustered within a
narrow range (0.021844 to 0.021894), showcasing the algo-
rithm’s resilience. This remarkable stability substantiates
the PSO algorithm’s suitability for optimization tasks, given
its consistent performance across different parameter
configurations.

4.2. Simulation Results of PSO-ANFIS Energy Management-
Controlled Hybrid AC/DC Microgrid with Plugin EV
System. The following section presents the simulation out-
comes of a hybrid AC/DC microgrid with a plugin electric
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vehicle system in MATLAB software. The simulation analy-
sis was carried out using 24-hour data of the wind turbine’s
wind speed, PV array’s irradiance, and DC and AC load
power profile. The data used for the analysis is displayed in
Table 6.

Table 6 presents a comprehensive dataset spanning 24
hours, encompassing key parameters like irradiance, wind
speed, PV power, wind power, DC load, and AC load. Each
row corresponds to an hour, providing valuable insights into
the day’s variations. The time of day ranges from 0 to 24
hours. Irradiance, indicative of solar radiation, exhibits fluc-
tuations, with a peak at 950W/m2. Wind speed ranges
between 8 and 12m/s. The PV power, influenced by sun-
light, and wind power, determined by wind speed, are cap-
tured in kilowatts. The DC load remains relatively
consistent, reflecting stable energy consumption, while the
AC load exhibits varying patterns. Accompanying
Figure 14 visually depicts the 24-hour trends.

The simulation results have been examined across three
different scenarios. Case 1 involves an analysis of the hybrid
AC/DC microgrid, excluding the consideration of the plugin
EV battery. In case 2, the results are evaluated while taking
into account the plugin EV battery with a state of charge
(SOC) exceeding 70%. This entails EV1’s battery SOC being
at 70%, EV2’s at 80%, and EV3’s at 85%. Finally, case 3
entails an analysis of the simulation results involving the
plugin EV battery with an SOC of less than 10%. In this
instance, EV1’s battery SOC is 9%, EV2’s is 8%, and EV3’s
is 8.5%.

4.2.1. Case 1. Figure 15 illustrates the outcomes for case 1 of
the hybrid AC/DC microgrid system, specifically focusing
on the behavior of the storage battery and the grid. Table 7
presents a comprehensive dataset detailing the results of
the hybrid AC/DC microgrid system analysis, with a specific
emphasis on the scenario where plugin electric vehicles
(EVs) are not considered. Each row corresponds to an hour
of the day, and the columns represent various parameters,
notably the power of the storage battery (SB) and the power
exchanged with the grid. The numerical values within the SB
column carry dual significance: positive values indicate the
battery discharging, while negative values signify the battery
charging. Similarly, values within the grid column demon-

strate the power interactions with the grid: positive values
denote power being drawn from the grid, whereas negative
values indicate power being injected back into the grid. This
comprehensive dataset offers a detailed insight into the intri-
cate dynamics of the hybrid microgrid system, highlighting
the variations in battery charge and discharge as well as
the bidirectional power flow with the grid.

From the analysis depicted in Figure 15 and Table 7, it
becomes evident that the PV array contributed power during
the timeframe of 7 to 17 hours, while no power generation
occurred during the remaining hours. The storage battery,
interconnected with the DC grid, provided power during 0
to 10 hours and 13 to 24 hours. Charging of the battery tran-
spired from 11 to 12 hours due to the PV array operating at
its peak power. The wind generator’s power output varied,
aligning with the wind speed profile. The highest power gen-
erated was 38.2 kW, contrasting with the minimum of
15.45 kW. The microgrid drew power from the grid between
24 and 8 hours, while contributing power to the grid from 9
to 23 hours.

In the given case 1, it can be observed that the PSO-
ANFIS approach leads to the lowest grid purchase power
cost of 1995.24Rs/day, as compared to fuzzy and ANFIS
which result in higher costs of 2243.63Rs/day and
2150.45Rs/day, respectively. Similarly, the PSO-ANFIS
approach yields the highest revenue from selling power to
the microgrid, generating 668.84 Rs/day, while fuzzy and
ANFIS produce lower values of 536.12Rs/day and
575.35Rs/day, respectively. Consequently, the net price
achieved through the PSO-ANFIS optimization is also the
most favorable at 1326.4Rs/day, indicating its superiority
in terms of cost-effectiveness and financial performance in
this particular scenario.

4.2.2. Case 2. Figure 16 presents the outcomes of the hybrid
AC/DC microgrid system, focusing on case 2 where plugin
electric vehicle (EV) batteries are taken into account.
Table 8 provides a detailed depiction of the results for this
scenario. The table showcases data for different times of
the day, with corresponding values indicating the power
generated or consumed by the EVB1, EVB2, EVB3 (electric
vehicle batteries), storage battery (SB), and grid. The optimi-
zation techniques of PSO-ANFIS, fuzzy, and ANFIS are uti-
lized to derive these values. Notably, the EV batteries display
distinct charging and discharging patterns throughout the
day, with variations based on the optimization technique.
The storage battery follows a similar pattern, with fluctua-
tions in charging and discharging influenced by the optimi-
zation approach. The grid’s behavior is also observed,
indicating whether power is being purchased or sold to the
microgrid. This comprehensive dataset aids in understand-
ing the performance of the microgrid system in case 2, shed-
ding light on the interaction of different energy sources and
loads and the effectiveness of the optimization techniques.

Table 4: PSO performance parameter for 200 trials.

Best fitness Worst fitness Mean Standard deviation Average computation time (s)

0.0218 0.0356 0.0234 0.00014 45

Table 5: Sensitivity analysis for PSO by changing the inertia weight
and social and cognitive factors.

Test w cc1 cc2 MSE

1 0.5 2 2 0.021844

2 0.5 1.5 1.5 0.021862

3 0.8 2 2 0.021894

4 0.9 to 0.1 with increase iteration 2 2 0.021845

15International Journal of Photoenergy



In this scenario, power generation from the PV array
and wind generator is similar to that of case 1. The storage
battery linked to the DC grid commences power supply dur-
ing intervals of low PV array generation, spanning from 0 to

10 hours and 13 to 24 hours. This aligns with the diminished
power output of the PV array. During the 11- to 12-hour
period, the storage battery enters the charging phase, coin-
ciding with the PV array operating at maximum power.

0.14

0.12

0.1

0.08
M

SE

0.06

0.04

0.02
0 20 40

Iteration

60 80 100

cc1 = 2; cc2 = 2; w = 0.5
cc1 = 1.5; cc2 = 1.5; w = 0.5

cc1 = 2; cc2 = 2; w = 0.8
cc1 = 2; cc2 = 2; w = 0.9–0.1

Figure 13: Convergence graph for sensitivity analysis of PSO.

Table 6: Irradiance, wind speed, PV power, wind power, and DC and AC load profile data for 24 hours.

Time (hr) Irradiance (W/m2) Wind speed (m/s) PV (kW) Wind (kW) DC load (kW) AC load (kW)

0 0 12 0 21.82 15.00 40.32

1 0 11 0 22.18 15.08 40.29

2 0 9 0 21.46 14.99 40.29

3 0 12 0 19.66 14.90 41.27

4 0 10 0 17.29 14.93 41.29

5 100 11 0 15.45 14.90 40.30

6 300 9 0 38.2 12.98 46.04

7 600 11 13.4 33.73 14.77 49.23

8 800 12 30.45 27.61 15.07 50.27

9 950 10 40.52 25.23 15.15 57.18

10 900 11 47.9 24.93 14.98 59.26

11 600 12 45.44 23.59 14.98 58.30

12 500 12 30.47 21.96 15.09 63.21

13 400 10 25.38 21.04 14.99 63.29

14 300 11 20.26 23.17 15.02 64.27

15 200 8 15.11 23.05 15.12 76.11

16 100 10 9.95 22.00 14.85 79.24

17 0 11 4.84 23.32 14.95 64.51

18 0 12 0 24.81 15.22 60.35

19 0 11 0 23.55 15.06 56.35

20 0 12 0 22.09 14.95 50.38

21 0 10 0 19.72 14.99 52.26

22 0 10 0 17.77 14.99 48.35

23 0 8 0 19.04 14.97 45.33

24 0 9 0 21.16 14.95 42.33
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The EV batteries contribute to the microgrid’s power
dynamics, providing energy from 8 to 24 hours, with the
peak supply recorded between 13 and 14 hours. The micro-

grid sees power influx from the grid between 24 and 8 hours,
while it exports power from 9 to 23 hours. Notably, grid
power procurement is lower than in case 1, attributable to
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the substantial role played by the EV batteries in enhancing
microgrid dynamics.

The grid’s financial interactions within the microgrid are
documented in Table 8, including the purchase of power and
the selling of power. Notably, the data reveals that in this
scenario, the microgrid purchases power from the grid, with
varying values across the fuzzy, ANFIS, and PSO-ANFIS
approaches. The purchase values are 9156.47Rs/day,
8854.23Rs/day, and 8619.192Rs/day for the fuzzy, ANFIS,
and PSO-ANFIS methods, respectively. Interestingly, the
grid does not engage in selling power to the microgrid in this
case, as indicated by the zeros across the board. Analyzing
the net price, which signifies the financial outcome, it
becomes evident that the PSO-ANFIS approach yields the
lowest net price of 8619.192Rs/day, demonstrating its favor-
able impact on optimizing the financial dynamics of the

hybrid microgrid system. This indicates that the PSO-
ANFIS approach is particularly effective in managing the
power flow and financial exchanges within the microgrid,
leading to a more efficient and cost-effective operation.

4.2.3. Case 3. Figure 17 and Table 9 showcase the outcomes
of case 3 in the hybrid AC/DC microgrid system, focusing
on the incorporation of plugin EV batteries with state of
charge (SOC) values below 10%. Specifically, EV1 battery
exhibits a SOC of 9%, EV2 battery stands at 8%, and EV3
battery maintains a SOC of 8.5%. This situation gives rise
to distinct behavioral patterns within the system. The EV
batteries depict a consistent power draw pattern spanning
from -7.45 kW to -4.27 kW, indicating their charging from
the main grid and battery. Concurrently, the storage battery
engages in charging activities within specific hours,

Table 7: Results of hybrid AC/DC microgrid system without considering plugin EV.

(a)

Time (hr)
SB (kW) Grid (kW)

PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS

1 41.37 45.507 49.644 -7.44 -8.184 -8.928

2 41.79 45.969 50.148 -7.65 -8.415 -9.18

3 41.31 41.7231 49.572 -7.34 -7.4134 -8.808

4 41.21 45.331 46.1552 -4.98 -5.478 -5.5776

5 41.74 45.914 50.088 -2.17 -2.387 -2.604

6 41.08 45.188 49.296 -1.89 -2.079 -2.268

7 36.07 39.677 41.1198 -15.64 -17.204 -17.8296

8 41.4 45.54 49.68 -10.67 -11.737 -12.804

9 29.98 31.479 35.976 -3.78 -3.969 -4.536

10 12.8 14.08 15.36 5.61 6.171 6.732

11 1.36 1.496 1.632 8.19 9.009 9.828

12 -5.774 -6.3514 -6.6401 8.99 9.889 10.3385

13 -3.319 -3.6509 -3.9828 15.39 16.929 18.468

14 19.07 20.977 22.884 15.99 17.589 19.188

15 15.54 17.094 18.648 14.57 16.027 17.484

16 21.05 23.155 25.26 26.41 29.051 31.692

17 25.97 28.0476 31.164 30.98 33.4584 37.176

18 32.35 35.585 38.82 15.67 17.237 18.804

19 36.89 40.579 44.268 8.48 9.328 10.176

20 41.97 46.167 50.364 7.09 7.799 8.508

21 41.5 45.65 48.97 2.42 2.662 2.8556

22 41.88 46.068 50.256 6.37 7.007 7.644

23 41.6 45.344 49.92 4.42 4.8178 5.304

24 41.58 45.738 49.896 0.14 0.154 0.168

25 41.56 45.716 46.1316 -4.97 -5.467 -5.5167

(b)

Operating conditions
Grid purchase power from

microgrid (Rs/day)
Grid selling power to microgrid

(Rs/day)
Net price (Rs/day)

Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS

Case 1 2243.63 2150.45 1995.24 536.12 575.35 668.84 2779.75 2725.8 1326.4
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fluctuating between -6.62 kW and -3.79 kW. This stems from
the lower SOC of the EV batteries, compelling higher grid
supply intake and battery utilization.

Of particular interest is the revelation that the grid sup-
plies power to the microgrid during certain time frames,
ranging from 3.37 kW to 51.1 kW. This forward power
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Figure 16: Results of hybrid AC/DC microgrid system considering plugin EV (case 2).
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transmission underscores the grid’s supportive role within
the microgrid during these periods, effectively enhancing
its overall operation. The microgrid’s internal power flow
showcases a dynamic blend of sources and exchanges, con-
tributing to dynamic fluctuations in power consumption
and provision. Notably, the impact of the PSO-ANFIS
approach is discernible within these findings, exerting influ-
ence on power dynamics and intricate interactions among
system components. These dynamics collectively shape the
microgrid’s behavior in the given scenario. In essence, the
outcomes shed light on the intricate synergy between diverse
energy sources, storage units, and grid integration in case 3.
In this context, the presence of plugin EV batteries with
modest SOC values emerges as a pivotal determinant of
the microgrid’s comprehensive power flow and operational
efficiency.

In case 3, Table 9 outlines the intricate financial dynamics
associated with power exchange between a microgrid and the
main grid. The comparison is conducted across three distinct

methodologies: fuzzy logic, ANFIS (adaptive neurofuzzy infer-
ence system), and PSO-ANFIS (ANFIS optimized using parti-
cle swarm optimization). The data in the table captures the
daily costs and revenues in terms of Indian rupees (Rs). Inter-
estingly, the microgrid’s expenditure on purchasing power
from the microgrid remains consistent at 0Rs/day for all three
techniques, suggesting an intriguing aspect of self-sufficiency
or potentially another underlying factor that mitigates the
necessity for external power procurement.

However, the cost of grid selling power to microgrid
varies considerably across the techniques. The revenue
amounts to 6025.36Rs/day under the fuzzy logic approach,
slightly higher at 6153.214Rs/day under ANFIS, and peaks
at 6544.0224Rs/day when employing the PSO-ANFIS tech-
nique. It is particularly noteworthy that the revenue figures
align precisely with the net prices, implying that the costs
of power purchases do not impact the net earnings. In this
context, the PSO-ANFIS method stands out as the most
financially advantageous approach, generating the highest

Table 8: Results of hybrid AC/DC microgrid system considering plugin EV (case 2).

(a)

Time (hr)
EVB1 (kW) EVB2 (kW) EVB3 (kW) SB (kW) Grid (kW)

PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS

0 1.93 1.74 1.54 2.20 1.98 1.76 2.34 2.11 1.87 41.37 37.23 33.10 -13.21 -11.89 -10.57

1 3.03 2.73 2.42 3.46 3.11 2.77 3.68 3.31 2.94 41.79 37.61 33.43 -17.79 -16.01 -14.23

2 4.81 4.33 3.85 5.50 4.95 4.40 5.85 5.27 4.68 41.31 37.18 33.05 -22.55 -20.30 -18.04

3 7.95 7.16 6.36 9.09 8.18 7.27 9.65 8.69 7.72 41.21 37.09 32.97 -29.93 -26.94 -23.94

4 9.47 8.90 7.58 10.82 10.17 8.66 11.50 10.81 9.20 41.74 39.24 33.39 -32.88 -30.91 -26.30

5 9.28 8.35 7.70 10.60 9.54 8.80 11.26 10.13 9.35 41.08 36.97 34.10 -31.13 -28.02 -25.84

6 8.23 7.41 6.58 9.41 8.47 7.53 9.99 8.99 7.99 36.07 32.46 28.86 -49.52 -44.57 -39.62

7 11.10 9.99 8.88 12.68 11.41 10.14 13.48 12.13 10.78 41.40 37.26 33.12 -47.09 -42.38 -37.67

8 11.43 10.29 9.14 13.07 11.76 10.46 13.88 12.49 11.10 29.98 26.98 23.98 -41.55 -37.40 -33.24

9 12.79 12.15 10.23 14.62 13.89 11.70 15.54 14.76 12.43 12.80 12.16 10.24 -37.07 -35.22 -29.66

10 13.35 12.02 10.68 15.26 13.73 12.21 16.21 14.59 12.97 1.36 1.22 1.09 -35.73 -32.16 -28.58

11 13.21 11.89 10.57 15.10 13.59 12.08 16.05 14.45 12.84 -5.77 -5.20 -4.62 -34.86 -31.37 -27.89

12 14.13 12.72 11.30 16.15 14.54 12.92 17.16 15.44 13.73 -3.32 -2.99 -2.66 -31.84 -28.66 -25.47

13 14.26 12.83 11.41 16.30 14.67 13.04 17.31 15.58 13.85 19.07 17.16 15.26 -30.81 -27.73 -24.65

14 14.45 13.44 12.86 16.51 15.35 14.69 17.55 16.32 15.62 15.54 14.45 13.83 -32.67 -30.38 -29.08

15 16.69 15.02 13.35 19.07 17.16 15.26 20.26 18.23 16.21 21.05 18.95 16.84 -28.65 -25.79 -22.92

16 17.54 15.79 14.03 20.04 18.04 16.03 21.29 19.16 17.03 25.97 23.37 20.78 -26.12 -23.51 -20.90

17 14.88 13.39 11.90 17.01 15.31 13.61 18.07 16.26 14.46 32.35 29.12 25.88 -34.03 -30.63 -27.22

18 13.76 12.38 11.01 15.73 14.16 12.58 16.71 15.04 13.37 36.89 33.20 29.51 -36.85 -33.17 -29.48

19 12.91 11.62 11.10 14.75 13.28 12.69 15.67 14.10 13.48 41.97 37.77 36.09 -36.17 -32.55 -31.11

20 11.66 10.49 9.33 13.32 11.99 10.66 14.15 12.74 11.32 41.50 37.35 33.20 -36.00 -32.40 -28.80

21 11.91 10.72 9.53 13.61 12.25 10.89 14.46 13.01 11.57 41.88 37.69 33.50 -32.98 -29.68 -26.38

22 10.56 10.14 8.45 12.07 11.59 9.66 12.83 12.32 10.26 41.60 39.94 33.28 -30.19 -28.98 -24.15

23 10.56 9.50 8.45 12.06 10.85 9.65 12.82 11.54 10.26 41.58 37.42 33.26 -34.46 -31.01 -27.57

24 1.68 1.51 1.34 1.92 1.73 1.54 2.04 1.84 1.63 41.56 37.40 33.25 -9.83 -8.85 -7.87

(b)

Operating conditions
Grid purchase power from microgrid (Rs/

day)
Grid selling power to microgrid (Rs/

day)
Net price (Rs/day)

Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS

Case 2 9156.47 8854.23 8619.192 0 0 0 9156.47 8854.23 8619.192
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Figure 17: Results of hybrid AC/DC microgrid system considering plugin EV (case 3).
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revenue among the three methods considered. This out-
come underscores the potential utility of PSO-ANFIS in
optimizing microgrid operations, specifically in scenarios
akin to case 3.

5. Conclusions

The study proposes a new energy management approach
grounded in PSO-ANFIS theory to effectively run small-
scale hybrid AC/DC microgrids with plugin electric vehicle.
The approach involves selecting an EMS operating mode,
developing an operation profile within each mode, and
training an ANFIS within each mode using PSO. Inputs into
the PSO-ANFIS-based EMS comprises the state of charge
(SOC) of the EVB, load power, grid electricity tariff, and
time of operation. The EMS uses training weight and bias
of the ANFIS to establish the ideal power reference for the
EVB. Laboratory tests were conducted on a small-scale
microgrid, and the proposed EMS operating algorithm was
tested with varied power production, load power, and EVB

state of charge. Findings showed that the EVB discharged
flexibly in relation to load demand in the EVB discharge
mode, and the EVB power reference was dynamically
adjusted to account for power output variations and the
cumulative power needed to charge the EVB. The suggested
operation for each mode was effectively carried out, and the
PSO-ANFIS-based EMS resulted in a reduction in the cost
of power purchase from the grid. The straightforward
method used in the system’s implementation is a definite
plus. The PSO-ANFIS-based algorithm is seen as a promis-
ing alternative for managing energy in small-scale micro-
grids with plugin electric vehicles, given the complexity of
formalizing the pattern of load and DG. It is anticipated
that the method for operating the EMS may be even made
better if the PSO-ANFIS-based algorithm is used in the
stand-alone operation mode.

Data Availability

No data is available for this paper.

Table 9: Results of hybrid AC/DC microgrid system considering plugin EV (case 3).

(a)

Time (hr)
EVB1 (kW) EVB2 (kW) EVB3 (kW) SB (kW) Grid (kW)

PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS

0 -4.48 -4.93 -5.38 -3.98 -4.38 -4.78 -4.72 -5.19 -5.66 41.37 45.51 49.64 6.59 7.25 7.91

1 -4.27 -4.48 -5.12 -3.79 -3.98 -4.55 -4.50 -4.73 -5.40 41.79 43.88 50.15 5.32 5.59 6.38

2 -5.03 -5.53 -5.63 -4.47 -4.92 -5.01 -5.31 -5.84 -5.95 41.31 45.44 46.27 8.57 9.43 9.60

3 -7.12 -7.83 -8.54 -6.33 -6.96 -7.60 -7.52 -8.27 -9.02 41.21 45.33 49.45 17.51 19.26 21.01

4 -7.45 -8.20 -8.94 -6.62 -7.28 -7.94 -7.86 -8.65 -9.43 41.74 45.91 50.09 20.24 22.26 24.29

5 -7.45 -8.20 -8.94 -6.62 -7.28 -7.94 -7.87 -8.66 -9.44 41.08 45.19 49.30 21.90 24.09 26.28

6 -6.10 -6.53 -7.32 -5.42 -5.80 -6.50 -6.44 -6.89 -7.73 36.07 38.59 43.28 3.12 3.34 3.75

7 -7.43 -8.17 -8.54 -6.60 -7.26 -7.59 -7.84 -8.62 -9.02 41.40 45.54 47.61 12.00 13.20 13.80

8 -7.45 -8.20 -8.94 -6.62 -7.28 -7.94 -7.87 -8.66 -9.44 29.98 32.98 35.98 18.90 20.79 22.68

9 -7.45 -8.20 -8.94 -6.62 -7.28 -7.94 -7.87 -8.66 -9.44 12.80 14.08 15.36 28.14 30.95 33.77

10 -7.45 -8.20 -8.64 -6.62 -7.28 -7.68 -7.87 -8.66 -9.13 1.36 1.50 1.58 31.02 34.12 35.98

11 -7.45 -8.20 -8.94 -6.62 -7.28 -7.94 -7.87 -8.66 -9.44 -5.77 -6.35 -6.93 31.06 34.17 37.27

12 -7.44 -7.66 -8.93 -6.61 -6.81 -7.93 -7.85 -8.09 -9.42 -3.32 -3.42 -3.98 37.79 38.92 45.35

13 -7.43 -8.17 -8.92 -6.60 -7.26 -7.92 -7.84 -8.62 -9.41 19.07 20.98 22.88 38.82 42.70 46.58

14 -7.39 -8.13 -8.87 -6.57 -7.23 -7.88 -7.80 -8.58 -9.36 15.54 17.09 18.65 37.54 41.29 45.05

15 -5.18 -5.70 -6.16 -4.60 -5.06 -5.47 -5.47 -6.02 -6.51 21.05 23.16 25.05 42.48 46.73 50.55

16 1.04 1.14 1.25 0.92 1.01 1.10 1.09 1.20 1.31 25.97 28.57 31.16 29.52 32.47 35.42

17 -6.29 -6.73 -7.55 -5.59 -5.98 -6.71 -6.64 -7.10 -7.97 32.35 34.61 38.82 34.32 36.72 41.18

18 -6.90 -7.59 -8.28 -6.13 -6.74 -7.36 -7.28 -8.01 -8.74 36.89 40.58 44.27 30.11 33.12 36.13

19 -7.03 -7.73 -8.08 -6.25 -6.88 -7.19 -7.42 -8.16 -8.53 41.97 46.17 48.27 28.12 30.93 32.34

20 -7.25 -7.98 -8.70 -6.45 -7.10 -7.74 -7.65 -8.42 -9.18 41.50 45.65 49.80 24.75 27.23 29.70

21 -6.88 -7.43 -8.26 -6.12 -6.61 -7.34 -7.27 -7.85 -8.72 41.88 45.23 50.26 27.44 29.64 32.93

22 -7.23 -7.95 -8.68 -6.43 -7.07 -7.72 -7.63 -8.39 -9.16 41.60 45.76 49.92 26.51 29.16 31.81

23 -7.24 -7.96 -8.40 -6.44 -7.08 -7.47 -7.65 -8.42 -8.87 41.58 45.74 48.23 22.27 24.50 25.83

24 -5.30 -5.78 -6.36 -4.71 -5.13 -5.65 -5.60 -6.10 -6.72 41.56 45.30 49.87 11.42 12.45 13.70

(b)

Operating conditions
Grid purchase power from microgrid

(Rs/day)
Grid selling power to microgrid (Rs/day) Net price (Rs/day)

Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS Fuzzy ANFIS PSO-ANFIS

Case 3 0 0 0 6025.36 6153.214 6544.0224 6025.36 6153.214 6544.0224
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